gems-kernel/source/THIRDPARTY/xnu/bsd/net/pf.c
2024-06-03 11:29:39 -05:00

11196 lines
283 KiB
C

/*
* Copyright (c) 2007-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $apfw: git commit 6602420f2f101b74305cd78f7cd9e0c8fdedae97 $ */
/* $OpenBSD: pf.c,v 1.567 2008/02/20 23:40:13 henning Exp $ */
/*
* Copyright (c) 2001 Daniel Hartmeier
* Copyright (c) 2002 - 2013 Henning Brauer
* NAT64 - Copyright (c) 2010 Viagenie Inc. (http://www.viagenie.ca)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
#include <machine/endian.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/filio.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/random.h>
#include <sys/mcache.h>
#include <sys/protosw.h>
#include <libkern/crypto/md5.h>
#include <libkern/libkern.h>
#include <mach/thread_act.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/route.h>
#include <net/dlil.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_seq.h>
#include <netinet/udp.h>
#include <netinet/ip_icmp.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_fsm.h>
#include <netinet/udp_var.h>
#include <netinet/icmp_var.h>
#include <net/if_ether.h>
#include <net/ethernet.h>
#include <net/flowhash.h>
#include <net/nat464_utils.h>
#include <net/pfvar.h>
#include <net/if_pflog.h>
#if NPFSYNC
#include <net/if_pfsync.h>
#endif /* NPFSYNC */
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet/icmp6.h>
#include <netinet6/nd6.h>
#if DUMMYNET
#include <netinet/ip_dummynet.h>
#endif /* DUMMYNET */
#if SKYWALK
#include <skywalk/namespace/flowidns.h>
#endif /* SKYWALK */
/*
* For RandomULong(), to get a 32 bits random value
* Note that random() returns a 31 bits value, see rdar://11159750
*/
#include <dev/random/randomdev.h>
#define DPFPRINTF(n, x) (pf_status.debug >= (n) ? printf x : ((void)0))
/*
* On Mac OS X, the rtableid value is treated as the interface scope
* value that is equivalent to the interface index used for scoped
* routing. A valid scope value is anything but IFSCOPE_NONE (0),
* as per definition of ifindex which is a positive, non-zero number.
* The other BSDs treat a negative rtableid value as invalid, hence
* the test against INT_MAX to handle userland apps which initialize
* the field with a negative number.
*/
#define PF_RTABLEID_IS_VALID(r) \
((r) > IFSCOPE_NONE && (r) <= INT_MAX)
/*
* Global variables
*/
static LCK_GRP_DECLARE(pf_lock_grp, "pf");
LCK_MTX_DECLARE(pf_lock, &pf_lock_grp);
static LCK_GRP_DECLARE(pf_perim_lock_grp, "pf_perim");
LCK_RW_DECLARE(pf_perim_lock, &pf_perim_lock_grp);
/* state tables */
struct pf_state_tree_lan_ext pf_statetbl_lan_ext;
struct pf_state_tree_ext_gwy pf_statetbl_ext_gwy;
static uint32_t pf_state_tree_ext_gwy_nat64_cnt = 0;
struct pf_palist pf_pabuf;
struct pf_status pf_status;
u_int32_t ticket_pabuf;
static MD5_CTX pf_tcp_secret_ctx;
static u_char pf_tcp_secret[16];
static int pf_tcp_secret_init;
static int pf_tcp_iss_off;
static struct pf_anchor_stackframe {
struct pf_ruleset *rs;
struct pf_rule *r;
struct pf_anchor_node *parent;
struct pf_anchor *child;
} pf_anchor_stack[64];
struct pool pf_src_tree_pl, pf_rule_pl, pf_pooladdr_pl;
struct pool pf_state_pl, pf_state_key_pl;
typedef void (*hook_fn_t)(void *);
struct hook_desc {
TAILQ_ENTRY(hook_desc) hd_list;
hook_fn_t hd_fn;
void *hd_arg;
};
#define HOOK_REMOVE 0x01
#define HOOK_FREE 0x02
#define HOOK_ABORT 0x04
static void *hook_establish(struct hook_desc_head *, int,
hook_fn_t, void *);
static void hook_runloop(struct hook_desc_head *, int flags);
struct pool pf_app_state_pl;
static void pf_print_addr(struct pf_addr *addr, sa_family_t af);
static void pf_print_sk_host(struct pf_state_host *, u_int8_t, int,
u_int8_t);
static void pf_print_host(struct pf_addr *, u_int16_t, u_int8_t);
static void pf_init_threshold(struct pf_threshold *, u_int32_t,
u_int32_t);
static void pf_add_threshold(struct pf_threshold *);
static int pf_check_threshold(struct pf_threshold *);
static void pf_change_ap(int, pbuf_t *, struct pf_addr *,
u_int16_t *, u_int16_t *, u_int16_t *,
struct pf_addr *, u_int16_t, u_int8_t, sa_family_t,
sa_family_t, int);
static int pf_modulate_sack(pbuf_t *, int, struct pf_pdesc *,
struct tcphdr *, struct pf_state_peer *);
static void pf_change_a6(struct pf_addr *, u_int16_t *,
struct pf_addr *, u_int8_t);
static void pf_change_addr(struct pf_addr *a, u_int16_t *c, struct pf_addr *an,
u_int8_t u, sa_family_t af, sa_family_t afn);
static void pf_change_icmp(struct pf_addr *, u_int16_t *,
struct pf_addr *, struct pf_addr *, u_int16_t,
u_int16_t *, u_int16_t *, u_int16_t *,
u_int16_t *, u_int8_t, sa_family_t);
static void pf_send_tcp(const struct pf_rule *, sa_family_t,
const struct pf_addr *, const struct pf_addr *,
u_int16_t, u_int16_t, u_int32_t, u_int32_t,
u_int8_t, u_int16_t, u_int16_t, u_int8_t, int,
u_int16_t, struct ether_header *, struct ifnet *);
static void pf_send_icmp(pbuf_t *, u_int8_t, u_int8_t,
sa_family_t, struct pf_rule *);
static struct pf_rule *pf_match_translation(struct pf_pdesc *, pbuf_t *,
int, int, struct pfi_kif *, struct pf_addr *,
union pf_state_xport *, struct pf_addr *,
union pf_state_xport *, int);
static struct pf_rule *pf_get_translation_aux(struct pf_pdesc *,
pbuf_t *, int, int, struct pfi_kif *,
struct pf_src_node **, struct pf_addr *,
union pf_state_xport *, struct pf_addr *,
union pf_state_xport *, union pf_state_xport *
#if SKYWALK
, netns_token *
#endif
);
static void pf_attach_state(struct pf_state_key *,
struct pf_state *, int);
static u_int32_t pf_tcp_iss(struct pf_pdesc *);
static int pf_test_rule(struct pf_rule **, struct pf_state **,
int, struct pfi_kif *, pbuf_t *, int,
void *, struct pf_pdesc *, struct pf_rule **,
struct pf_ruleset **, struct ifqueue *);
#if DUMMYNET
static int pf_test_dummynet(struct pf_rule **, int,
struct pfi_kif *, pbuf_t **,
struct pf_pdesc *, struct ip_fw_args *);
#endif /* DUMMYNET */
static int pf_test_fragment(struct pf_rule **, int,
struct pfi_kif *, pbuf_t *, void *,
struct pf_pdesc *, struct pf_rule **,
struct pf_ruleset **);
static int pf_test_state_tcp(struct pf_state **, int,
struct pfi_kif *, pbuf_t *, int,
void *, struct pf_pdesc *, u_short *);
static int pf_test_state_udp(struct pf_state **, int,
struct pfi_kif *, pbuf_t *, int,
void *, struct pf_pdesc *, u_short *);
static int pf_test_state_icmp(struct pf_state **, int,
struct pfi_kif *, pbuf_t *, int,
void *, struct pf_pdesc *, u_short *);
static int pf_test_state_other(struct pf_state **, int,
struct pfi_kif *, struct pf_pdesc *);
static int pf_match_tag(struct pf_rule *,
struct pf_mtag *, int *);
static void pf_hash(struct pf_addr *, struct pf_addr *,
struct pf_poolhashkey *, sa_family_t);
static int pf_map_addr(u_int8_t, struct pf_rule *,
struct pf_addr *, struct pf_addr *,
struct pf_addr *, struct pf_src_node **);
static int pf_get_sport(struct pf_pdesc *, struct pfi_kif *,
struct pf_rule *, struct pf_addr *,
union pf_state_xport *, struct pf_addr *,
union pf_state_xport *, struct pf_addr *,
union pf_state_xport *, struct pf_src_node **
#if SKYWALK
, netns_token *
#endif
);
static void pf_route(pbuf_t **, struct pf_rule *, int,
struct ifnet *, struct pf_state *,
struct pf_pdesc *);
static void pf_route6(pbuf_t **, struct pf_rule *, int,
struct ifnet *, struct pf_state *,
struct pf_pdesc *);
static u_int8_t pf_get_wscale(pbuf_t *, int, u_int16_t,
sa_family_t);
static u_int16_t pf_get_mss(pbuf_t *, int, u_int16_t,
sa_family_t);
static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t,
u_int16_t);
static void pf_set_rt_ifp(struct pf_state *,
struct pf_addr *, sa_family_t af);
static int pf_check_proto_cksum(pbuf_t *, int, int,
u_int8_t, sa_family_t);
static int pf_addr_wrap_neq(struct pf_addr_wrap *,
struct pf_addr_wrap *);
static struct pf_state *pf_find_state(struct pfi_kif *,
struct pf_state_key_cmp *, u_int);
static int pf_src_connlimit(struct pf_state **);
static void pf_stateins_err(const char *, struct pf_state *,
struct pfi_kif *);
static int pf_check_congestion(struct ifqueue *);
#if 0
static const char *pf_pptp_ctrl_type_name(u_int16_t code);
#endif
static void pf_pptp_handler(struct pf_state *, int, int,
struct pf_pdesc *, struct pfi_kif *);
static void pf_pptp_unlink(struct pf_state *);
static void pf_grev1_unlink(struct pf_state *);
static int pf_test_state_grev1(struct pf_state **, int,
struct pfi_kif *, int, struct pf_pdesc *);
static int pf_ike_compare(struct pf_app_state *,
struct pf_app_state *);
static int pf_test_state_esp(struct pf_state **, int,
struct pfi_kif *, int, struct pf_pdesc *);
static int pf_test6(int, struct ifnet *, pbuf_t **, struct ether_header *,
struct ip_fw_args *);
#if INET
static int pf_test(int, struct ifnet *, pbuf_t **,
struct ether_header *, struct ip_fw_args *);
#endif /* INET */
extern struct pool pfr_ktable_pl;
extern struct pool pfr_kentry_pl;
extern int path_mtu_discovery;
struct pf_pool_limit pf_pool_limits[PF_LIMIT_MAX] = {
{ .pp = &pf_state_pl, .limit = PFSTATE_HIWAT },
{ .pp = &pf_app_state_pl, .limit = PFAPPSTATE_HIWAT },
{ .pp = &pf_src_tree_pl, .limit = PFSNODE_HIWAT },
{ .pp = &pf_frent_pl, .limit = PFFRAG_FRENT_HIWAT },
{ .pp = &pfr_ktable_pl, .limit = PFR_KTABLE_HIWAT },
{ .pp = &pfr_kentry_pl, .limit = PFR_KENTRY_HIWAT },
};
#if SKYWALK && defined(XNU_TARGET_OS_OSX)
const char *compatible_anchors[] = {
"com.apple.internet-sharing",
"com.apple/250.ApplicationFirewall",
"com.apple/200.AirDrop"
};
#endif // SKYWALK && defined(XNU_TARGET_OS_OSX)
void *
pf_lazy_makewritable(struct pf_pdesc *pd, pbuf_t *pbuf, int len)
{
void *p;
if (pd->lmw < 0) {
return NULL;
}
VERIFY(pbuf == pd->mp);
p = pbuf->pb_data;
if (len > pd->lmw) {
if ((p = pbuf_ensure_writable(pbuf, len)) == NULL) {
len = -1;
}
pd->lmw = len;
if (len >= 0) {
pd->pf_mtag = pf_find_mtag_pbuf(pbuf);
switch (pd->af) {
case AF_INET: {
struct ip *h = p;
pd->src = (struct pf_addr *)(uintptr_t)&h->ip_src;
pd->dst = (struct pf_addr *)(uintptr_t)&h->ip_dst;
pd->ip_sum = &h->ip_sum;
break;
}
case AF_INET6: {
struct ip6_hdr *h = p;
pd->src = (struct pf_addr *)(uintptr_t)&h->ip6_src;
pd->dst = (struct pf_addr *)(uintptr_t)&h->ip6_dst;
break;
}
}
}
}
return len < 0 ? NULL : p;
}
static const int *
pf_state_lookup_aux(struct pf_state **state, struct pfi_kif *kif,
int direction, int *action)
{
if (*state == NULL || (*state)->timeout == PFTM_PURGE) {
*action = PF_DROP;
return action;
}
if (direction == PF_OUT &&
(((*state)->rule.ptr->rt == PF_ROUTETO &&
(*state)->rule.ptr->direction == PF_OUT) ||
((*state)->rule.ptr->rt == PF_REPLYTO &&
(*state)->rule.ptr->direction == PF_IN)) &&
(*state)->rt_kif != NULL && (*state)->rt_kif != kif) {
*action = PF_PASS;
return action;
}
return 0;
}
#define STATE_LOOKUP() \
do { \
int action; \
*state = pf_find_state(kif, &key, direction); \
if (*state != NULL && pd != NULL && \
!(pd->pktflags & PKTF_FLOW_ID)) { \
pd->flowsrc = (*state)->state_key->flowsrc; \
pd->flowhash = (*state)->state_key->flowhash; \
if (pd->flowhash != 0) { \
pd->pktflags |= PKTF_FLOW_ID; \
pd->pktflags &= ~PKTF_FLOW_ADV; \
} \
} \
if (pf_state_lookup_aux(state, kif, direction, &action)) \
return (action); \
} while (0)
/*
* This macro resets the flowID information in a packet descriptor which was
* copied in from a PF state. This should be used after a protocol state lookup
* finds a matching PF state, but then decides to not use it for various
* reasons.
*/
#define PD_CLEAR_STATE_FLOWID(_pd) \
do { \
if (__improbable(((_pd)->pktflags & PKTF_FLOW_ID) && \
((_pd)->flowsrc == FLOWSRC_PF))) { \
(_pd)->flowhash = 0; \
(_pd)->flowsrc = 0; \
(_pd)->pktflags &= ~PKTF_FLOW_ID; \
} \
\
} while (0)
#define STATE_ADDR_TRANSLATE(sk) \
(sk)->lan.addr.addr32[0] != (sk)->gwy.addr.addr32[0] || \
((sk)->af_lan == AF_INET6 && \
((sk)->lan.addr.addr32[1] != (sk)->gwy.addr.addr32[1] || \
(sk)->lan.addr.addr32[2] != (sk)->gwy.addr.addr32[2] || \
(sk)->lan.addr.addr32[3] != (sk)->gwy.addr.addr32[3]))
#define STATE_TRANSLATE(sk) \
((sk)->af_lan != (sk)->af_gwy || \
STATE_ADDR_TRANSLATE(sk) || \
(sk)->lan.xport.port != (sk)->gwy.xport.port)
#define STATE_GRE_TRANSLATE(sk) \
(STATE_ADDR_TRANSLATE(sk) || \
(sk)->lan.xport.call_id != (sk)->gwy.xport.call_id)
#define BOUND_IFACE(r, k) \
((r)->rule_flag & PFRULE_IFBOUND) ? (k) : pfi_all
#define STATE_INC_COUNTERS(s) \
do { \
s->rule.ptr->states++; \
VERIFY(s->rule.ptr->states != 0); \
if (s->anchor.ptr != NULL) { \
s->anchor.ptr->states++; \
VERIFY(s->anchor.ptr->states != 0); \
} \
if (s->nat_rule.ptr != NULL) { \
s->nat_rule.ptr->states++; \
VERIFY(s->nat_rule.ptr->states != 0); \
} \
} while (0)
#define STATE_DEC_COUNTERS(s) \
do { \
if (s->nat_rule.ptr != NULL) { \
VERIFY(s->nat_rule.ptr->states > 0); \
s->nat_rule.ptr->states--; \
} \
if (s->anchor.ptr != NULL) { \
VERIFY(s->anchor.ptr->states > 0); \
s->anchor.ptr->states--; \
} \
VERIFY(s->rule.ptr->states > 0); \
s->rule.ptr->states--; \
} while (0)
static __inline int pf_src_compare(struct pf_src_node *, struct pf_src_node *);
static __inline int pf_state_compare_lan_ext(struct pf_state_key *,
struct pf_state_key *);
static __inline int pf_state_compare_ext_gwy(struct pf_state_key *,
struct pf_state_key *);
static __inline int pf_state_compare_id(struct pf_state *,
struct pf_state *);
struct pf_src_tree tree_src_tracking;
struct pf_state_tree_id tree_id;
struct pf_state_queue state_list;
RB_GENERATE(pf_src_tree, pf_src_node, entry, pf_src_compare);
RB_GENERATE(pf_state_tree_lan_ext, pf_state_key,
entry_lan_ext, pf_state_compare_lan_ext);
RB_GENERATE(pf_state_tree_ext_gwy, pf_state_key,
entry_ext_gwy, pf_state_compare_ext_gwy);
RB_GENERATE(pf_state_tree_id, pf_state,
entry_id, pf_state_compare_id);
#define PF_DT_SKIP_LANEXT 0x01
#define PF_DT_SKIP_EXTGWY 0x02
static const u_int16_t PF_PPTP_PORT = 1723;
static const u_int32_t PF_PPTP_MAGIC_NUMBER = 0x1A2B3C4D;
struct pf_pptp_hdr {
u_int16_t length;
u_int16_t type;
u_int32_t magic;
};
struct pf_pptp_ctrl_hdr {
u_int16_t type;
u_int16_t reserved_0;
};
struct pf_pptp_ctrl_generic {
u_int16_t data[0];
};
#define PF_PPTP_CTRL_TYPE_START_REQ 1
struct pf_pptp_ctrl_start_req {
u_int16_t protocol_version;
u_int16_t reserved_1;
u_int32_t framing_capabilities;
u_int32_t bearer_capabilities;
u_int16_t maximum_channels;
u_int16_t firmware_revision;
u_int8_t host_name[64];
u_int8_t vendor_string[64];
};
#define PF_PPTP_CTRL_TYPE_START_RPY 2
struct pf_pptp_ctrl_start_rpy {
u_int16_t protocol_version;
u_int8_t result_code;
u_int8_t error_code;
u_int32_t framing_capabilities;
u_int32_t bearer_capabilities;
u_int16_t maximum_channels;
u_int16_t firmware_revision;
u_int8_t host_name[64];
u_int8_t vendor_string[64];
};
#define PF_PPTP_CTRL_TYPE_STOP_REQ 3
struct pf_pptp_ctrl_stop_req {
u_int8_t reason;
u_int8_t reserved_1;
u_int16_t reserved_2;
};
#define PF_PPTP_CTRL_TYPE_STOP_RPY 4
struct pf_pptp_ctrl_stop_rpy {
u_int8_t reason;
u_int8_t error_code;
u_int16_t reserved_1;
};
#define PF_PPTP_CTRL_TYPE_ECHO_REQ 5
struct pf_pptp_ctrl_echo_req {
u_int32_t identifier;
};
#define PF_PPTP_CTRL_TYPE_ECHO_RPY 6
struct pf_pptp_ctrl_echo_rpy {
u_int32_t identifier;
u_int8_t result_code;
u_int8_t error_code;
u_int16_t reserved_1;
};
#define PF_PPTP_CTRL_TYPE_CALL_OUT_REQ 7
struct pf_pptp_ctrl_call_out_req {
u_int16_t call_id;
u_int16_t call_sernum;
u_int32_t min_bps;
u_int32_t bearer_type;
u_int32_t framing_type;
u_int16_t rxwindow_size;
u_int16_t proc_delay;
u_int8_t phone_num[64];
u_int8_t sub_addr[64];
};
#define PF_PPTP_CTRL_TYPE_CALL_OUT_RPY 8
struct pf_pptp_ctrl_call_out_rpy {
u_int16_t call_id;
u_int16_t peer_call_id;
u_int8_t result_code;
u_int8_t error_code;
u_int16_t cause_code;
u_int32_t connect_speed;
u_int16_t rxwindow_size;
u_int16_t proc_delay;
u_int32_t phy_channel_id;
};
#define PF_PPTP_CTRL_TYPE_CALL_IN_1ST 9
struct pf_pptp_ctrl_call_in_1st {
u_int16_t call_id;
u_int16_t call_sernum;
u_int32_t bearer_type;
u_int32_t phy_channel_id;
u_int16_t dialed_number_len;
u_int16_t dialing_number_len;
u_int8_t dialed_num[64];
u_int8_t dialing_num[64];
u_int8_t sub_addr[64];
};
#define PF_PPTP_CTRL_TYPE_CALL_IN_2ND 10
struct pf_pptp_ctrl_call_in_2nd {
u_int16_t call_id;
u_int16_t peer_call_id;
u_int8_t result_code;
u_int8_t error_code;
u_int16_t rxwindow_size;
u_int16_t txdelay;
u_int16_t reserved_1;
};
#define PF_PPTP_CTRL_TYPE_CALL_IN_3RD 11
struct pf_pptp_ctrl_call_in_3rd {
u_int16_t call_id;
u_int16_t reserved_1;
u_int32_t connect_speed;
u_int16_t rxwindow_size;
u_int16_t txdelay;
u_int32_t framing_type;
};
#define PF_PPTP_CTRL_TYPE_CALL_CLR 12
struct pf_pptp_ctrl_call_clr {
u_int16_t call_id;
u_int16_t reserved_1;
};
#define PF_PPTP_CTRL_TYPE_CALL_DISC 13
struct pf_pptp_ctrl_call_disc {
u_int16_t call_id;
u_int8_t result_code;
u_int8_t error_code;
u_int16_t cause_code;
u_int16_t reserved_1;
u_int8_t statistics[128];
};
#define PF_PPTP_CTRL_TYPE_ERROR 14
struct pf_pptp_ctrl_error {
u_int16_t peer_call_id;
u_int16_t reserved_1;
u_int32_t crc_errors;
u_int32_t fr_errors;
u_int32_t hw_errors;
u_int32_t buf_errors;
u_int32_t tim_errors;
u_int32_t align_errors;
};
#define PF_PPTP_CTRL_TYPE_SET_LINKINFO 15
struct pf_pptp_ctrl_set_linkinfo {
u_int16_t peer_call_id;
u_int16_t reserved_1;
u_int32_t tx_accm;
u_int32_t rx_accm;
};
static const size_t PF_PPTP_CTRL_MSG_MINSIZE =
sizeof(struct pf_pptp_hdr) + sizeof(struct pf_pptp_ctrl_hdr);
union pf_pptp_ctrl_msg_union {
struct pf_pptp_ctrl_start_req start_req;
struct pf_pptp_ctrl_start_rpy start_rpy;
struct pf_pptp_ctrl_stop_req stop_req;
struct pf_pptp_ctrl_stop_rpy stop_rpy;
struct pf_pptp_ctrl_echo_req echo_req;
struct pf_pptp_ctrl_echo_rpy echo_rpy;
struct pf_pptp_ctrl_call_out_req call_out_req;
struct pf_pptp_ctrl_call_out_rpy call_out_rpy;
struct pf_pptp_ctrl_call_in_1st call_in_1st;
struct pf_pptp_ctrl_call_in_2nd call_in_2nd;
struct pf_pptp_ctrl_call_in_3rd call_in_3rd;
struct pf_pptp_ctrl_call_clr call_clr;
struct pf_pptp_ctrl_call_disc call_disc;
struct pf_pptp_ctrl_error error;
struct pf_pptp_ctrl_set_linkinfo set_linkinfo;
u_int8_t data[0];
};
struct pf_pptp_ctrl_msg {
struct pf_pptp_hdr hdr;
struct pf_pptp_ctrl_hdr ctrl;
union pf_pptp_ctrl_msg_union msg;
};
#define PF_GRE_FLAG_CHECKSUM_PRESENT 0x8000
#define PF_GRE_FLAG_VERSION_MASK 0x0007
#define PF_GRE_PPP_ETHERTYPE 0x880B
struct pf_grev1_hdr {
u_int16_t flags;
u_int16_t protocol_type;
u_int16_t payload_length;
u_int16_t call_id;
/*
* u_int32_t seqno;
* u_int32_t ackno;
*/
};
static const u_int16_t PF_IKE_PORT = 500;
struct pf_ike_hdr {
u_int64_t initiator_cookie, responder_cookie;
u_int8_t next_payload, version, exchange_type, flags;
u_int32_t message_id, length;
};
#define PF_IKE_PACKET_MINSIZE (sizeof (struct pf_ike_hdr))
#define PF_IKEv1_EXCHTYPE_BASE 1
#define PF_IKEv1_EXCHTYPE_ID_PROTECT 2
#define PF_IKEv1_EXCHTYPE_AUTH_ONLY 3
#define PF_IKEv1_EXCHTYPE_AGGRESSIVE 4
#define PF_IKEv1_EXCHTYPE_INFORMATIONAL 5
#define PF_IKEv2_EXCHTYPE_SA_INIT 34
#define PF_IKEv2_EXCHTYPE_AUTH 35
#define PF_IKEv2_EXCHTYPE_CREATE_CHILD_SA 36
#define PF_IKEv2_EXCHTYPE_INFORMATIONAL 37
#define PF_IKEv1_FLAG_E 0x01
#define PF_IKEv1_FLAG_C 0x02
#define PF_IKEv1_FLAG_A 0x04
#define PF_IKEv2_FLAG_I 0x08
#define PF_IKEv2_FLAG_V 0x10
#define PF_IKEv2_FLAG_R 0x20
struct pf_esp_hdr {
u_int32_t spi;
u_int32_t seqno;
u_int8_t payload[];
};
static __inline int
pf_addr_compare(struct pf_addr *a, struct pf_addr *b, sa_family_t af)
{
switch (af) {
#ifdef INET
case AF_INET:
if (a->addr32[0] > b->addr32[0]) {
return 1;
}
if (a->addr32[0] < b->addr32[0]) {
return -1;
}
break;
#endif /* INET */
case AF_INET6:
if (a->addr32[3] > b->addr32[3]) {
return 1;
}
if (a->addr32[3] < b->addr32[3]) {
return -1;
}
if (a->addr32[2] > b->addr32[2]) {
return 1;
}
if (a->addr32[2] < b->addr32[2]) {
return -1;
}
if (a->addr32[1] > b->addr32[1]) {
return 1;
}
if (a->addr32[1] < b->addr32[1]) {
return -1;
}
if (a->addr32[0] > b->addr32[0]) {
return 1;
}
if (a->addr32[0] < b->addr32[0]) {
return -1;
}
break;
}
return 0;
}
static __inline int
pf_src_compare(struct pf_src_node *a, struct pf_src_node *b)
{
int diff;
if (a->rule.ptr > b->rule.ptr) {
return 1;
}
if (a->rule.ptr < b->rule.ptr) {
return -1;
}
if ((diff = a->af - b->af) != 0) {
return diff;
}
if ((diff = pf_addr_compare(&a->addr, &b->addr, a->af)) != 0) {
return diff;
}
return 0;
}
static __inline int
pf_state_compare_lan_ext(struct pf_state_key *a, struct pf_state_key *b)
{
int diff;
int extfilter;
if ((diff = a->proto - b->proto) != 0) {
return diff;
}
if ((diff = a->af_lan - b->af_lan) != 0) {
return diff;
}
extfilter = PF_EXTFILTER_APD;
switch (a->proto) {
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
if ((diff = a->lan.xport.port - b->lan.xport.port) != 0) {
return diff;
}
break;
case IPPROTO_TCP:
if ((diff = a->lan.xport.port - b->lan.xport.port) != 0) {
return diff;
}
if ((diff = a->ext_lan.xport.port - b->ext_lan.xport.port) != 0) {
return diff;
}
break;
case IPPROTO_UDP:
if ((diff = a->proto_variant - b->proto_variant)) {
return diff;
}
extfilter = a->proto_variant;
if ((diff = a->lan.xport.port - b->lan.xport.port) != 0) {
return diff;
}
if ((extfilter < PF_EXTFILTER_AD) &&
(diff = a->ext_lan.xport.port - b->ext_lan.xport.port) != 0) {
return diff;
}
break;
case IPPROTO_GRE:
if (a->proto_variant == PF_GRE_PPTP_VARIANT &&
a->proto_variant == b->proto_variant) {
if (!!(diff = a->ext_lan.xport.call_id -
b->ext_lan.xport.call_id)) {
return diff;
}
}
break;
case IPPROTO_ESP:
if (!!(diff = a->ext_lan.xport.spi - b->ext_lan.xport.spi)) {
return diff;
}
break;
default:
break;
}
switch (a->af_lan) {
#if INET
case AF_INET:
if ((diff = pf_addr_compare(&a->lan.addr, &b->lan.addr,
a->af_lan)) != 0) {
return diff;
}
if (extfilter < PF_EXTFILTER_EI) {
if ((diff = pf_addr_compare(&a->ext_lan.addr,
&b->ext_lan.addr,
a->af_lan)) != 0) {
return diff;
}
}
break;
#endif /* INET */
case AF_INET6:
if ((diff = pf_addr_compare(&a->lan.addr, &b->lan.addr,
a->af_lan)) != 0) {
return diff;
}
if (extfilter < PF_EXTFILTER_EI ||
!PF_AZERO(&b->ext_lan.addr, AF_INET6)) {
if ((diff = pf_addr_compare(&a->ext_lan.addr,
&b->ext_lan.addr,
a->af_lan)) != 0) {
return diff;
}
}
break;
}
if (a->app_state && b->app_state) {
if (a->app_state->compare_lan_ext &&
b->app_state->compare_lan_ext) {
diff = (const char *)b->app_state->compare_lan_ext -
(const char *)a->app_state->compare_lan_ext;
if (diff != 0) {
return diff;
}
diff = a->app_state->compare_lan_ext(a->app_state,
b->app_state);
if (diff != 0) {
return diff;
}
}
}
return 0;
}
static __inline int
pf_state_compare_ext_gwy(struct pf_state_key *a, struct pf_state_key *b)
{
int diff;
int extfilter;
int a_nat64, b_nat64;
if ((diff = a->proto - b->proto) != 0) {
return diff;
}
if ((diff = a->af_gwy - b->af_gwy) != 0) {
return diff;
}
a_nat64 = (a->af_lan == PF_INET6 && a->af_gwy == PF_INET) ? 1 : 0;
b_nat64 = (b->af_lan == PF_INET6 && b->af_gwy == PF_INET) ? 1 : 0;
if ((diff = a_nat64 - b_nat64) != 0) {
return diff;
}
extfilter = PF_EXTFILTER_APD;
switch (a->proto) {
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
if ((diff = a->gwy.xport.port - b->gwy.xport.port) != 0) {
return diff;
}
break;
case IPPROTO_TCP:
if ((diff = a->ext_gwy.xport.port - b->ext_gwy.xport.port) != 0) {
return diff;
}
if ((diff = a->gwy.xport.port - b->gwy.xport.port) != 0) {
return diff;
}
break;
case IPPROTO_UDP:
if ((diff = a->proto_variant - b->proto_variant)) {
return diff;
}
extfilter = a->proto_variant;
if ((diff = a->gwy.xport.port - b->gwy.xport.port) != 0) {
return diff;
}
if ((extfilter < PF_EXTFILTER_AD) &&
(diff = a->ext_gwy.xport.port - b->ext_gwy.xport.port) != 0) {
return diff;
}
break;
case IPPROTO_GRE:
if (a->proto_variant == PF_GRE_PPTP_VARIANT &&
a->proto_variant == b->proto_variant) {
if (!!(diff = a->gwy.xport.call_id -
b->gwy.xport.call_id)) {
return diff;
}
}
break;
case IPPROTO_ESP:
if (!!(diff = a->gwy.xport.spi - b->gwy.xport.spi)) {
return diff;
}
break;
default:
break;
}
switch (a->af_gwy) {
#if INET
case AF_INET:
if ((diff = pf_addr_compare(&a->gwy.addr, &b->gwy.addr,
a->af_gwy)) != 0) {
return diff;
}
if (extfilter < PF_EXTFILTER_EI) {
if ((diff = pf_addr_compare(&a->ext_gwy.addr, &b->ext_gwy.addr,
a->af_gwy)) != 0) {
return diff;
}
}
break;
#endif /* INET */
case AF_INET6:
if ((diff = pf_addr_compare(&a->gwy.addr, &b->gwy.addr,
a->af_gwy)) != 0) {
return diff;
}
if (extfilter < PF_EXTFILTER_EI ||
!PF_AZERO(&b->ext_gwy.addr, AF_INET6)) {
if ((diff = pf_addr_compare(&a->ext_gwy.addr, &b->ext_gwy.addr,
a->af_gwy)) != 0) {
return diff;
}
}
break;
}
if (a->app_state && b->app_state) {
if (a->app_state->compare_ext_gwy &&
b->app_state->compare_ext_gwy) {
diff = (const char *)b->app_state->compare_ext_gwy -
(const char *)a->app_state->compare_ext_gwy;
if (diff != 0) {
return diff;
}
diff = a->app_state->compare_ext_gwy(a->app_state,
b->app_state);
if (diff != 0) {
return diff;
}
}
}
return 0;
}
static __inline int
pf_state_compare_id(struct pf_state *a, struct pf_state *b)
{
if (a->id > b->id) {
return 1;
}
if (a->id < b->id) {
return -1;
}
if (a->creatorid > b->creatorid) {
return 1;
}
if (a->creatorid < b->creatorid) {
return -1;
}
return 0;
}
void
pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af)
{
switch (af) {
#if INET
case AF_INET:
dst->addr32[0] = src->addr32[0];
break;
#endif /* INET */
case AF_INET6:
dst->addr32[0] = src->addr32[0];
dst->addr32[1] = src->addr32[1];
dst->addr32[2] = src->addr32[2];
dst->addr32[3] = src->addr32[3];
break;
}
}
struct pf_state *
pf_find_state_byid(struct pf_state_cmp *key)
{
pf_status.fcounters[FCNT_STATE_SEARCH]++;
return RB_FIND(pf_state_tree_id, &tree_id,
(struct pf_state *)(void *)key);
}
static struct pf_state *
pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir)
{
struct pf_state_key *sk = NULL;
struct pf_state *s;
pf_status.fcounters[FCNT_STATE_SEARCH]++;
switch (dir) {
case PF_OUT:
sk = RB_FIND(pf_state_tree_lan_ext, &pf_statetbl_lan_ext,
(struct pf_state_key *)key);
break;
case PF_IN:
/*
* Generally, a packet can match to
* at most 1 state in the GWY table, with the sole exception
* of NAT64, where a packet can match with at most 2 states
* on the GWY table. This is because, unlike NAT44 or NAT66,
* NAT64 forward translation is done on the input, not output.
* This means a forwarded packet could cause PF to generate 2 states
* on both input and output.
*
* NAT64 reverse translation is done on input. If a packet
* matches NAT64 state on the GWY table, prioritize it
* over any IPv4 state on the GWY table.
*/
if (pf_state_tree_ext_gwy_nat64_cnt > 0 &&
key->af_lan == PF_INET && key->af_gwy == PF_INET) {
key->af_lan = PF_INET6;
sk = RB_FIND(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy,
(struct pf_state_key *) key);
key->af_lan = PF_INET;
}
if (sk == NULL) {
sk = RB_FIND(pf_state_tree_ext_gwy, &pf_statetbl_ext_gwy,
(struct pf_state_key *)key);
}
/*
* NAT64 is done only on input, for packets coming in from
* from the LAN side, need to lookup the lan_ext tree.
*/
if (sk == NULL) {
sk = RB_FIND(pf_state_tree_lan_ext,
&pf_statetbl_lan_ext,
(struct pf_state_key *)key);
if (sk && sk->af_lan == sk->af_gwy) {
sk = NULL;
}
}
break;
default:
panic("pf_find_state");
}
/* list is sorted, if-bound states before floating ones */
if (sk != NULL) {
TAILQ_FOREACH(s, &sk->states, next)
if (s->kif == pfi_all || s->kif == kif) {
return s;
}
}
return NULL;
}
struct pf_state *
pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more)
{
struct pf_state_key *sk = NULL;
struct pf_state *s, *ret = NULL;
pf_status.fcounters[FCNT_STATE_SEARCH]++;
switch (dir) {
case PF_OUT:
sk = RB_FIND(pf_state_tree_lan_ext,
&pf_statetbl_lan_ext, (struct pf_state_key *)key);
break;
case PF_IN:
sk = RB_FIND(pf_state_tree_ext_gwy,
&pf_statetbl_ext_gwy, (struct pf_state_key *)key);
/*
* NAT64 is done only on input, for packets coming in from
* from the LAN side, need to lookup the lan_ext tree.
*/
if ((sk == NULL) && pf_nat64_configured) {
sk = RB_FIND(pf_state_tree_lan_ext,
&pf_statetbl_lan_ext,
(struct pf_state_key *)key);
if (sk && sk->af_lan == sk->af_gwy) {
sk = NULL;
}
}
break;
default:
panic("pf_find_state_all");
}
if (sk != NULL) {
ret = TAILQ_FIRST(&sk->states);
if (more == NULL) {
return ret;
}
TAILQ_FOREACH(s, &sk->states, next)
(*more)++;
}
return ret;
}
static void
pf_init_threshold(struct pf_threshold *threshold,
u_int32_t limit, u_int32_t seconds)
{
threshold->limit = limit * PF_THRESHOLD_MULT;
threshold->seconds = seconds;
threshold->count = 0;
threshold->last = pf_time_second();
}
static void
pf_add_threshold(struct pf_threshold *threshold)
{
u_int32_t t = pf_time_second(), diff = t - threshold->last;
if (diff >= threshold->seconds) {
threshold->count = 0;
} else {
threshold->count -= threshold->count * diff /
threshold->seconds;
}
threshold->count += PF_THRESHOLD_MULT;
threshold->last = t;
}
static int
pf_check_threshold(struct pf_threshold *threshold)
{
return threshold->count > threshold->limit;
}
static int
pf_src_connlimit(struct pf_state **state)
{
int bad = 0;
(*state)->src_node->conn++;
VERIFY((*state)->src_node->conn != 0);
(*state)->src.tcp_est = 1;
pf_add_threshold(&(*state)->src_node->conn_rate);
if ((*state)->rule.ptr->max_src_conn &&
(*state)->rule.ptr->max_src_conn <
(*state)->src_node->conn) {
pf_status.lcounters[LCNT_SRCCONN]++;
bad++;
}
if ((*state)->rule.ptr->max_src_conn_rate.limit &&
pf_check_threshold(&(*state)->src_node->conn_rate)) {
pf_status.lcounters[LCNT_SRCCONNRATE]++;
bad++;
}
if (!bad) {
return 0;
}
if ((*state)->rule.ptr->overload_tbl) {
struct pfr_addr p;
u_int32_t killed = 0;
pf_status.lcounters[LCNT_OVERLOAD_TABLE]++;
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf_src_connlimit: blocking address ");
pf_print_host(&(*state)->src_node->addr, 0,
(*state)->state_key->af_lan);
}
bzero(&p, sizeof(p));
p.pfra_af = (*state)->state_key->af_lan;
switch ((*state)->state_key->af_lan) {
#if INET
case AF_INET:
p.pfra_net = 32;
p.pfra_ip4addr = (*state)->src_node->addr.v4addr;
break;
#endif /* INET */
case AF_INET6:
p.pfra_net = 128;
p.pfra_ip6addr = (*state)->src_node->addr.v6addr;
break;
}
pfr_insert_kentry((*state)->rule.ptr->overload_tbl,
&p, pf_calendar_time_second());
/* kill existing states if that's required. */
if ((*state)->rule.ptr->flush) {
struct pf_state_key *sk;
struct pf_state *st;
pf_status.lcounters[LCNT_OVERLOAD_FLUSH]++;
RB_FOREACH(st, pf_state_tree_id, &tree_id) {
sk = st->state_key;
/*
* Kill states from this source. (Only those
* from the same rule if PF_FLUSH_GLOBAL is not
* set)
*/
if (sk->af_lan ==
(*state)->state_key->af_lan &&
(((*state)->state_key->direction ==
PF_OUT &&
PF_AEQ(&(*state)->src_node->addr,
&sk->lan.addr, sk->af_lan)) ||
((*state)->state_key->direction == PF_IN &&
PF_AEQ(&(*state)->src_node->addr,
&sk->ext_lan.addr, sk->af_lan))) &&
((*state)->rule.ptr->flush &
PF_FLUSH_GLOBAL ||
(*state)->rule.ptr == st->rule.ptr)) {
st->timeout = PFTM_PURGE;
st->src.state = st->dst.state =
TCPS_CLOSED;
killed++;
}
}
if (pf_status.debug >= PF_DEBUG_MISC) {
printf(", %u states killed", killed);
}
}
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("\n");
}
}
/* kill this state */
(*state)->timeout = PFTM_PURGE;
(*state)->src.state = (*state)->dst.state = TCPS_CLOSED;
return 1;
}
int
pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule,
struct pf_addr *src, sa_family_t af)
{
struct pf_src_node k;
if (*sn == NULL) {
k.af = af;
PF_ACPY(&k.addr, src, af);
if (rule->rule_flag & PFRULE_RULESRCTRACK ||
rule->rpool.opts & PF_POOL_STICKYADDR) {
k.rule.ptr = rule;
} else {
k.rule.ptr = NULL;
}
pf_status.scounters[SCNT_SRC_NODE_SEARCH]++;
*sn = RB_FIND(pf_src_tree, &tree_src_tracking, &k);
}
if (*sn == NULL) {
if (!rule->max_src_nodes ||
rule->src_nodes < rule->max_src_nodes) {
(*sn) = pool_get(&pf_src_tree_pl, PR_WAITOK);
} else {
pf_status.lcounters[LCNT_SRCNODES]++;
}
if ((*sn) == NULL) {
return -1;
}
bzero(*sn, sizeof(struct pf_src_node));
pf_init_threshold(&(*sn)->conn_rate,
rule->max_src_conn_rate.limit,
rule->max_src_conn_rate.seconds);
(*sn)->af = af;
if (rule->rule_flag & PFRULE_RULESRCTRACK ||
rule->rpool.opts & PF_POOL_STICKYADDR) {
(*sn)->rule.ptr = rule;
} else {
(*sn)->rule.ptr = NULL;
}
PF_ACPY(&(*sn)->addr, src, af);
if (RB_INSERT(pf_src_tree,
&tree_src_tracking, *sn) != NULL) {
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: src_tree insert failed: ");
pf_print_host(&(*sn)->addr, 0, af);
printf("\n");
}
pool_put(&pf_src_tree_pl, *sn);
*sn = NULL; /* signal the caller that no additional cleanup is needed */
return -1;
}
(*sn)->creation = pf_time_second();
(*sn)->ruletype = rule->action;
if ((*sn)->rule.ptr != NULL) {
(*sn)->rule.ptr->src_nodes++;
}
pf_status.scounters[SCNT_SRC_NODE_INSERT]++;
pf_status.src_nodes++;
} else {
if (rule->max_src_states &&
(*sn)->states >= rule->max_src_states) {
pf_status.lcounters[LCNT_SRCSTATES]++;
return -1;
}
}
return 0;
}
static void
pf_stateins_err(const char *tree, struct pf_state *s, struct pfi_kif *kif)
{
struct pf_state_key *sk = s->state_key;
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: state insert failed: %s %s ", tree, kif->pfik_name);
switch (sk->proto) {
case IPPROTO_TCP:
printf("TCP");
break;
case IPPROTO_UDP:
printf("UDP");
break;
case IPPROTO_ICMP:
printf("ICMP4");
break;
case IPPROTO_ICMPV6:
printf("ICMP6");
break;
default:
printf("PROTO=%u", sk->proto);
break;
}
printf(" lan: ");
pf_print_sk_host(&sk->lan, sk->af_lan, sk->proto,
sk->proto_variant);
printf(" gwy: ");
pf_print_sk_host(&sk->gwy, sk->af_gwy, sk->proto,
sk->proto_variant);
printf(" ext_lan: ");
pf_print_sk_host(&sk->ext_lan, sk->af_lan, sk->proto,
sk->proto_variant);
printf(" ext_gwy: ");
pf_print_sk_host(&sk->ext_gwy, sk->af_gwy, sk->proto,
sk->proto_variant);
if (s->sync_flags & PFSTATE_FROMSYNC) {
printf(" (from sync)");
}
printf("\n");
}
}
static __inline struct pf_state_key *
pf_insert_state_key_ext_gwy(struct pf_state_key *psk)
{
struct pf_state_key * ret = RB_INSERT(pf_state_tree_ext_gwy,
&pf_statetbl_ext_gwy, psk);
if (!ret && psk->af_lan == PF_INET6 &&
psk->af_gwy == PF_INET) {
pf_state_tree_ext_gwy_nat64_cnt++;
}
return ret;
}
static __inline struct pf_state_key *
pf_remove_state_key_ext_gwy(struct pf_state_key *psk)
{
struct pf_state_key * ret = RB_REMOVE(pf_state_tree_ext_gwy,
&pf_statetbl_ext_gwy, psk);
if (ret && psk->af_lan == PF_INET6 &&
psk->af_gwy == PF_INET) {
pf_state_tree_ext_gwy_nat64_cnt--;
}
return ret;
}
int
pf_insert_state(struct pfi_kif *kif, struct pf_state *s)
{
struct pf_state_key *cur;
struct pf_state *sp;
VERIFY(s->state_key != NULL);
s->kif = kif;
if ((cur = RB_INSERT(pf_state_tree_lan_ext, &pf_statetbl_lan_ext,
s->state_key)) != NULL) {
/* key exists. check for same kif, if none, add to key */
TAILQ_FOREACH(sp, &cur->states, next)
if (sp->kif == kif) { /* collision! */
pf_stateins_err("tree_lan_ext", s, kif);
pf_detach_state(s,
PF_DT_SKIP_LANEXT | PF_DT_SKIP_EXTGWY);
return -1;
}
pf_detach_state(s, PF_DT_SKIP_LANEXT | PF_DT_SKIP_EXTGWY);
pf_attach_state(cur, s, kif == pfi_all ? 1 : 0);
}
/* if cur != NULL, we already found a state key and attached to it */
if (cur == NULL &&
(cur = pf_insert_state_key_ext_gwy(s->state_key)) != NULL) {
/* must not happen. we must have found the sk above! */
pf_stateins_err("tree_ext_gwy", s, kif);
pf_detach_state(s, PF_DT_SKIP_EXTGWY);
return -1;
}
if (s->id == 0 && s->creatorid == 0) {
s->id = htobe64(pf_status.stateid++);
s->creatorid = pf_status.hostid;
}
if (RB_INSERT(pf_state_tree_id, &tree_id, s) != NULL) {
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: state insert failed: "
"id: %016llx creatorid: %08x",
be64toh(s->id), ntohl(s->creatorid));
if (s->sync_flags & PFSTATE_FROMSYNC) {
printf(" (from sync)");
}
printf("\n");
}
pf_detach_state(s, 0);
return -1;
}
TAILQ_INSERT_TAIL(&state_list, s, entry_list);
pf_status.fcounters[FCNT_STATE_INSERT]++;
pf_status.states++;
VERIFY(pf_status.states != 0);
pfi_kif_ref(kif, PFI_KIF_REF_STATE);
#if NPFSYNC
pfsync_insert_state(s);
#endif
return 0;
}
static int
pf_purge_thread_cont(int err)
{
#pragma unused(err)
static u_int32_t nloops = 0;
int t = 1; /* 1 second */
/*
* Update coarse-grained networking timestamp (in sec.); the idea
* is to piggy-back on the periodic timeout callout to update
* the counter returnable via net_uptime().
*/
net_update_uptime();
lck_rw_lock_shared(&pf_perim_lock);
lck_mtx_lock(&pf_lock);
/* purge everything if not running */
if (!pf_status.running) {
pf_purge_expired_states(pf_status.states);
pf_purge_expired_fragments();
pf_purge_expired_src_nodes();
/* terminate thread (we don't currently do this) */
if (pf_purge_thread == NULL) {
lck_mtx_unlock(&pf_lock);
lck_rw_done(&pf_perim_lock);
thread_deallocate(current_thread());
thread_terminate(current_thread());
/* NOTREACHED */
return 0;
} else {
/* if there's nothing left, sleep w/o timeout */
if (pf_status.states == 0 &&
pf_normalize_isempty() &&
RB_EMPTY(&tree_src_tracking)) {
nloops = 0;
t = 0;
}
goto done;
}
}
/* process a fraction of the state table every second */
pf_purge_expired_states(1 + (pf_status.states
/ pf_default_rule.timeout[PFTM_INTERVAL]));
/* purge other expired types every PFTM_INTERVAL seconds */
if (++nloops >= pf_default_rule.timeout[PFTM_INTERVAL]) {
pf_purge_expired_fragments();
pf_purge_expired_src_nodes();
nloops = 0;
}
done:
lck_mtx_unlock(&pf_lock);
lck_rw_done(&pf_perim_lock);
(void) tsleep0(pf_purge_thread_fn, PWAIT, "pf_purge_cont",
t * hz, pf_purge_thread_cont);
/* NOTREACHED */
VERIFY(0);
return 0;
}
void
pf_purge_thread_fn(void *v, wait_result_t w)
{
#pragma unused(v, w)
(void) tsleep0(pf_purge_thread_fn, PWAIT, "pf_purge", 0,
pf_purge_thread_cont);
/*
* tsleep0() shouldn't have returned as PCATCH was not set;
* therefore assert in this case.
*/
VERIFY(0);
}
u_int64_t
pf_state_expires(const struct pf_state *state)
{
u_int32_t t;
u_int32_t start;
u_int32_t end;
u_int32_t states;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
/* handle all PFTM_* > PFTM_MAX here */
if (state->timeout == PFTM_PURGE) {
return pf_time_second();
}
VERIFY(state->timeout != PFTM_UNLINKED);
VERIFY(state->timeout < PFTM_MAX);
t = state->rule.ptr->timeout[state->timeout];
if (!t) {
t = pf_default_rule.timeout[state->timeout];
}
start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START];
if (start) {
end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END];
states = state->rule.ptr->states;
} else {
start = pf_default_rule.timeout[PFTM_ADAPTIVE_START];
end = pf_default_rule.timeout[PFTM_ADAPTIVE_END];
states = pf_status.states;
}
if (end && states > start && start < end) {
if (states < end) {
return state->expire + t * (end - states) /
(end - start);
} else {
return pf_time_second();
}
}
return state->expire + t;
}
void
pf_purge_expired_src_nodes(void)
{
struct pf_src_node *cur, *next;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
for (cur = RB_MIN(pf_src_tree, &tree_src_tracking); cur; cur = next) {
next = RB_NEXT(pf_src_tree, &tree_src_tracking, cur);
if (cur->states <= 0 && cur->expire <= pf_time_second()) {
if (cur->rule.ptr != NULL) {
cur->rule.ptr->src_nodes--;
if (cur->rule.ptr->states <= 0 &&
cur->rule.ptr->max_src_nodes <= 0) {
pf_rm_rule(NULL, cur->rule.ptr);
}
}
RB_REMOVE(pf_src_tree, &tree_src_tracking, cur);
pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++;
pf_status.src_nodes--;
pool_put(&pf_src_tree_pl, cur);
}
}
}
void
pf_src_tree_remove_state(struct pf_state *s)
{
u_int32_t t;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (s->src_node != NULL) {
if (s->src.tcp_est) {
VERIFY(s->src_node->conn > 0);
--s->src_node->conn;
}
VERIFY(s->src_node->states > 0);
if (--s->src_node->states <= 0) {
t = s->rule.ptr->timeout[PFTM_SRC_NODE];
if (!t) {
t = pf_default_rule.timeout[PFTM_SRC_NODE];
}
s->src_node->expire = pf_time_second() + t;
}
}
if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) {
VERIFY(s->nat_src_node->states > 0);
if (--s->nat_src_node->states <= 0) {
t = s->rule.ptr->timeout[PFTM_SRC_NODE];
if (!t) {
t = pf_default_rule.timeout[PFTM_SRC_NODE];
}
s->nat_src_node->expire = pf_time_second() + t;
}
}
s->src_node = s->nat_src_node = NULL;
}
void
pf_unlink_state(struct pf_state *cur)
{
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (cur->src.state == PF_TCPS_PROXY_DST) {
pf_send_tcp(cur->rule.ptr, cur->state_key->af_lan,
&cur->state_key->ext_lan.addr, &cur->state_key->lan.addr,
cur->state_key->ext_lan.xport.port,
cur->state_key->lan.xport.port,
cur->src.seqhi, cur->src.seqlo + 1,
TH_RST | TH_ACK, 0, 0, 0, 1, cur->tag, NULL, NULL);
}
hook_runloop(&cur->unlink_hooks, HOOK_REMOVE | HOOK_FREE);
RB_REMOVE(pf_state_tree_id, &tree_id, cur);
#if NPFSYNC
if (cur->creatorid == pf_status.hostid) {
pfsync_delete_state(cur);
}
#endif
cur->timeout = PFTM_UNLINKED;
pf_src_tree_remove_state(cur);
pf_detach_state(cur, 0);
}
/* callers should be at splpf and hold the
* write_lock on pf_consistency_lock */
void
pf_free_state(struct pf_state *cur)
{
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
#if NPFSYNC
if (pfsyncif != NULL &&
(pfsyncif->sc_bulk_send_next == cur ||
pfsyncif->sc_bulk_terminator == cur)) {
return;
}
#endif
VERIFY(cur->timeout == PFTM_UNLINKED);
VERIFY(cur->rule.ptr->states > 0);
if (--cur->rule.ptr->states <= 0 &&
cur->rule.ptr->src_nodes <= 0) {
pf_rm_rule(NULL, cur->rule.ptr);
}
if (cur->nat_rule.ptr != NULL) {
VERIFY(cur->nat_rule.ptr->states > 0);
if (--cur->nat_rule.ptr->states <= 0 &&
cur->nat_rule.ptr->src_nodes <= 0) {
pf_rm_rule(NULL, cur->nat_rule.ptr);
}
}
if (cur->anchor.ptr != NULL) {
VERIFY(cur->anchor.ptr->states > 0);
if (--cur->anchor.ptr->states <= 0) {
pf_rm_rule(NULL, cur->anchor.ptr);
}
}
pf_normalize_tcp_cleanup(cur);
pfi_kif_unref(cur->kif, PFI_KIF_REF_STATE);
TAILQ_REMOVE(&state_list, cur, entry_list);
if (cur->tag) {
pf_tag_unref(cur->tag);
}
#if SKYWALK
netns_release(&cur->nstoken);
#endif
pool_put(&pf_state_pl, cur);
pf_status.fcounters[FCNT_STATE_REMOVALS]++;
VERIFY(pf_status.states > 0);
pf_status.states--;
}
void
pf_purge_expired_states(u_int32_t maxcheck)
{
static struct pf_state *cur = NULL;
struct pf_state *next;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
while (maxcheck--) {
/* wrap to start of list when we hit the end */
if (cur == NULL) {
cur = TAILQ_FIRST(&state_list);
if (cur == NULL) {
break; /* list empty */
}
}
/* get next state, as cur may get deleted */
next = TAILQ_NEXT(cur, entry_list);
if (cur->timeout == PFTM_UNLINKED) {
pf_free_state(cur);
} else if (pf_state_expires(cur) <= pf_time_second()) {
/* unlink and free expired state */
pf_unlink_state(cur);
pf_free_state(cur);
}
cur = next;
}
}
int
pf_tbladdr_setup(struct pf_ruleset *rs, struct pf_addr_wrap *aw)
{
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (aw->type != PF_ADDR_TABLE) {
return 0;
}
if ((aw->p.tbl = pfr_attach_table(rs, aw->v.tblname)) == NULL) {
return 1;
}
return 0;
}
void
pf_tbladdr_remove(struct pf_addr_wrap *aw)
{
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (aw->type != PF_ADDR_TABLE || aw->p.tbl == NULL) {
return;
}
pfr_detach_table(aw->p.tbl);
aw->p.tbl = NULL;
}
void
pf_tbladdr_copyout(struct pf_addr_wrap *aw)
{
struct pfr_ktable *kt = aw->p.tbl;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (aw->type != PF_ADDR_TABLE || kt == NULL) {
return;
}
if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) {
kt = kt->pfrkt_root;
}
aw->p.tbl = NULL;
aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ?
kt->pfrkt_cnt : -1;
}
static void
pf_print_addr(struct pf_addr *addr, sa_family_t af)
{
switch (af) {
#if INET
case AF_INET: {
u_int32_t a = ntohl(addr->addr32[0]);
printf("%u.%u.%u.%u", (a >> 24) & 255, (a >> 16) & 255,
(a >> 8) & 255, a & 255);
break;
}
#endif /* INET */
case AF_INET6: {
u_int16_t b;
u_int8_t i, curstart = 255, curend = 0,
maxstart = 0, maxend = 0;
for (i = 0; i < 8; i++) {
if (!addr->addr16[i]) {
if (curstart == 255) {
curstart = i;
} else {
curend = i;
}
} else {
if (curstart) {
if ((curend - curstart) >
(maxend - maxstart)) {
maxstart = curstart;
maxend = curend;
curstart = 255;
}
}
}
}
for (i = 0; i < 8; i++) {
if (i >= maxstart && i <= maxend) {
if (maxend != 7) {
if (i == maxstart) {
printf(":");
}
} else {
if (i == maxend) {
printf(":");
}
}
} else {
b = ntohs(addr->addr16[i]);
printf("%x", b);
if (i < 7) {
printf(":");
}
}
}
break;
}
}
}
static void
pf_print_sk_host(struct pf_state_host *sh, sa_family_t af, int proto,
u_int8_t proto_variant)
{
pf_print_addr(&sh->addr, af);
switch (proto) {
case IPPROTO_ESP:
if (sh->xport.spi) {
printf("[%08x]", ntohl(sh->xport.spi));
}
break;
case IPPROTO_GRE:
if (proto_variant == PF_GRE_PPTP_VARIANT) {
printf("[%u]", ntohs(sh->xport.call_id));
}
break;
case IPPROTO_TCP:
case IPPROTO_UDP:
printf("[%u]", ntohs(sh->xport.port));
break;
default:
break;
}
}
static void
pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af)
{
pf_print_addr(addr, af);
if (p) {
printf("[%u]", ntohs(p));
}
}
void
pf_print_state(struct pf_state *s)
{
struct pf_state_key *sk = s->state_key;
switch (sk->proto) {
case IPPROTO_ESP:
printf("ESP ");
break;
case IPPROTO_GRE:
printf("GRE%u ", sk->proto_variant);
break;
case IPPROTO_TCP:
printf("TCP ");
break;
case IPPROTO_UDP:
printf("UDP ");
break;
case IPPROTO_ICMP:
printf("ICMP ");
break;
case IPPROTO_ICMPV6:
printf("ICMPV6 ");
break;
default:
printf("%u ", sk->proto);
break;
}
pf_print_sk_host(&sk->lan, sk->af_lan, sk->proto, sk->proto_variant);
printf(" ");
pf_print_sk_host(&sk->gwy, sk->af_gwy, sk->proto, sk->proto_variant);
printf(" ");
pf_print_sk_host(&sk->ext_lan, sk->af_lan, sk->proto,
sk->proto_variant);
printf(" ");
pf_print_sk_host(&sk->ext_gwy, sk->af_gwy, sk->proto,
sk->proto_variant);
printf(" [lo=%u high=%u win=%u modulator=%u", s->src.seqlo,
s->src.seqhi, s->src.max_win, s->src.seqdiff);
if (s->src.wscale && s->dst.wscale) {
printf(" wscale=%u", s->src.wscale & PF_WSCALE_MASK);
}
printf("]");
printf(" [lo=%u high=%u win=%u modulator=%u", s->dst.seqlo,
s->dst.seqhi, s->dst.max_win, s->dst.seqdiff);
if (s->src.wscale && s->dst.wscale) {
printf(" wscale=%u", s->dst.wscale & PF_WSCALE_MASK);
}
printf("]");
printf(" %u:%u", s->src.state, s->dst.state);
}
void
pf_print_flags(u_int8_t f)
{
if (f) {
printf(" ");
}
if (f & TH_FIN) {
printf("F");
}
if (f & TH_SYN) {
printf("S");
}
if (f & TH_RST) {
printf("R");
}
if (f & TH_PUSH) {
printf("P");
}
if (f & TH_ACK) {
printf("A");
}
if (f & TH_URG) {
printf("U");
}
if (f & TH_ECE) {
printf("E");
}
if (f & TH_CWR) {
printf("W");
}
}
#define PF_SET_SKIP_STEPS(i) \
do { \
while (head[i] != cur) { \
head[i]->skip[i].ptr = cur; \
head[i] = TAILQ_NEXT(head[i], entries); \
} \
} while (0)
void
pf_calc_skip_steps(struct pf_rulequeue *rules)
{
struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT];
int i;
cur = TAILQ_FIRST(rules);
prev = cur;
for (i = 0; i < PF_SKIP_COUNT; ++i) {
head[i] = cur;
}
while (cur != NULL) {
if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) {
PF_SET_SKIP_STEPS(PF_SKIP_IFP);
}
if (cur->direction != prev->direction) {
PF_SET_SKIP_STEPS(PF_SKIP_DIR);
}
if (cur->af != prev->af) {
PF_SET_SKIP_STEPS(PF_SKIP_AF);
}
if (cur->proto != prev->proto) {
PF_SET_SKIP_STEPS(PF_SKIP_PROTO);
}
if (cur->src.neg != prev->src.neg ||
pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) {
PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR);
}
{
union pf_rule_xport *cx = &cur->src.xport;
union pf_rule_xport *px = &prev->src.xport;
switch (cur->proto) {
case IPPROTO_GRE:
case IPPROTO_ESP:
PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
break;
default:
if (prev->proto == IPPROTO_GRE ||
prev->proto == IPPROTO_ESP ||
cx->range.op != px->range.op ||
cx->range.port[0] != px->range.port[0] ||
cx->range.port[1] != px->range.port[1]) {
PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT);
}
break;
}
}
if (cur->dst.neg != prev->dst.neg ||
pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) {
PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR);
}
{
union pf_rule_xport *cx = &cur->dst.xport;
union pf_rule_xport *px = &prev->dst.xport;
switch (cur->proto) {
case IPPROTO_GRE:
if (cur->proto != prev->proto ||
cx->call_id != px->call_id) {
PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
}
break;
case IPPROTO_ESP:
if (cur->proto != prev->proto ||
cx->spi != px->spi) {
PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
}
break;
default:
if (prev->proto == IPPROTO_GRE ||
prev->proto == IPPROTO_ESP ||
cx->range.op != px->range.op ||
cx->range.port[0] != px->range.port[0] ||
cx->range.port[1] != px->range.port[1]) {
PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT);
}
break;
}
}
prev = cur;
cur = TAILQ_NEXT(cur, entries);
}
for (i = 0; i < PF_SKIP_COUNT; ++i) {
PF_SET_SKIP_STEPS(i);
}
}
u_int32_t
pf_calc_state_key_flowhash(struct pf_state_key *sk)
{
#if SKYWALK
uint32_t flowid;
struct flowidns_flow_key fk;
VERIFY(sk->flowsrc == FLOWSRC_PF);
bzero(&fk, sizeof(fk));
_CASSERT(sizeof(sk->lan.addr) == sizeof(fk.ffk_laddr));
_CASSERT(sizeof(sk->ext_lan.addr) == sizeof(fk.ffk_laddr));
bcopy(&sk->lan.addr, &fk.ffk_laddr, sizeof(fk.ffk_laddr));
bcopy(&sk->ext_lan.addr, &fk.ffk_raddr, sizeof(fk.ffk_raddr));
fk.ffk_af = sk->af_lan;
fk.ffk_proto = sk->proto;
switch (sk->proto) {
case IPPROTO_ESP:
case IPPROTO_AH:
fk.ffk_spi = sk->lan.xport.spi;
break;
default:
if (sk->lan.xport.spi <= sk->ext_lan.xport.spi) {
fk.ffk_lport = sk->lan.xport.port;
fk.ffk_rport = sk->ext_lan.xport.port;
} else {
fk.ffk_lport = sk->ext_lan.xport.port;
fk.ffk_rport = sk->lan.xport.port;
}
break;
}
flowidns_allocate_flowid(FLOWIDNS_DOMAIN_PF, &fk, &flowid);
return flowid;
#else /* !SKYWALK */
struct pf_flowhash_key fh __attribute__((aligned(8)));
uint32_t flowhash = 0;
bzero(&fh, sizeof(fh));
if (PF_ALEQ(&sk->lan.addr, &sk->ext_lan.addr, sk->af_lan)) {
bcopy(&sk->lan.addr, &fh.ap1.addr, sizeof(fh.ap1.addr));
bcopy(&sk->ext_lan.addr, &fh.ap2.addr, sizeof(fh.ap2.addr));
} else {
bcopy(&sk->ext_lan.addr, &fh.ap1.addr, sizeof(fh.ap1.addr));
bcopy(&sk->lan.addr, &fh.ap2.addr, sizeof(fh.ap2.addr));
}
if (sk->lan.xport.spi <= sk->ext_lan.xport.spi) {
fh.ap1.xport.spi = sk->lan.xport.spi;
fh.ap2.xport.spi = sk->ext_lan.xport.spi;
} else {
fh.ap1.xport.spi = sk->ext_lan.xport.spi;
fh.ap2.xport.spi = sk->lan.xport.spi;
}
fh.af = sk->af_lan;
fh.proto = sk->proto;
try_again:
flowhash = net_flowhash(&fh, sizeof(fh), pf_hash_seed);
if (flowhash == 0) {
/* try to get a non-zero flowhash */
pf_hash_seed = RandomULong();
goto try_again;
}
return flowhash;
#endif /* !SKYWALK */
}
static int
pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2)
{
if (aw1->type != aw2->type) {
return 1;
}
switch (aw1->type) {
case PF_ADDR_ADDRMASK:
case PF_ADDR_RANGE:
if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) {
return 1;
}
if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) {
return 1;
}
return 0;
case PF_ADDR_DYNIFTL:
return aw1->p.dyn == NULL || aw2->p.dyn == NULL ||
aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt;
case PF_ADDR_NOROUTE:
case PF_ADDR_URPFFAILED:
return 0;
case PF_ADDR_TABLE:
return aw1->p.tbl != aw2->p.tbl;
case PF_ADDR_RTLABEL:
return aw1->v.rtlabel != aw2->v.rtlabel;
default:
printf("invalid address type: %d\n", aw1->type);
return 1;
}
}
u_int16_t
pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp)
{
return nat464_cksum_fixup(cksum, old, new, udp);
}
/*
* change ip address & port
* dir : packet direction
* a : address to be changed
* p : port to be changed
* ic : ip header checksum
* pc : protocol checksum
* an : new ip address
* pn : new port
* u : should be 1 if UDP packet else 0
* af : address family of the packet
* afn : address family of the new address
* ua : should be 1 if ip address needs to be updated in the packet else
* only the checksum is recalculated & updated.
*/
static __attribute__((noinline)) void
pf_change_ap(int dir, pbuf_t *pbuf, struct pf_addr *a, u_int16_t *p,
u_int16_t *ic, u_int16_t *pc, struct pf_addr *an, u_int16_t pn,
u_int8_t u, sa_family_t af, sa_family_t afn, int ua)
{
struct pf_addr ao;
u_int16_t po = *p;
PF_ACPY(&ao, a, af);
if (ua) {
PF_ACPY(a, an, afn);
}
*p = pn;
switch (af) {
#if INET
case AF_INET:
switch (afn) {
case AF_INET:
*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
ao.addr16[0], an->addr16[0], 0),
ao.addr16[1], an->addr16[1], 0);
*p = pn;
/*
* If the packet is originated from an ALG on the NAT gateway
* (source address is loopback or local), in which case the
* TCP/UDP checksum field contains the pseudo header checksum
* that's not yet complemented.
* In that case we do not need to fixup the checksum for port
* translation as the pseudo header checksum doesn't include ports.
*
* A packet generated locally will have UDP/TCP CSUM flag
* set (gets set in protocol output).
*
* It should be noted that the fixup doesn't do anything if the
* checksum is 0.
*/
if (dir == PF_OUT && pbuf != NULL &&
(*pbuf->pb_csum_flags & (CSUM_TCP | CSUM_UDP))) {
/* Pseudo-header checksum does not include ports */
*pc = ~pf_cksum_fixup(pf_cksum_fixup(~*pc,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u);
} else {
*pc =
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
*pc, ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
po, pn, u);
}
break;
case AF_INET6:
*p = pn;
*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
0, an->addr16[2], u),
0, an->addr16[3], u),
0, an->addr16[4], u),
0, an->addr16[5], u),
0, an->addr16[6], u),
0, an->addr16[7], u),
po, pn, u);
break;
}
break;
#endif /* INET */
case AF_INET6:
switch (afn) {
case AF_INET6:
/*
* If the packet is originated from an ALG on the NAT gateway
* (source address is loopback or local), in which case the
* TCP/UDP checksum field contains the pseudo header checksum
* that's not yet complemented.
* A packet generated locally
* will have UDP/TCP CSUM flag set (gets set in protocol
* output).
*/
if (dir == PF_OUT && pbuf != NULL &&
(*pbuf->pb_csum_flags & (CSUM_TCPIPV6 |
CSUM_UDPIPV6))) {
/* Pseudo-header checksum does not include ports */
*pc =
~pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
~*pc,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
ao.addr16[2], an->addr16[2], u),
ao.addr16[3], an->addr16[3], u),
ao.addr16[4], an->addr16[4], u),
ao.addr16[5], an->addr16[5], u),
ao.addr16[6], an->addr16[6], u),
ao.addr16[7], an->addr16[7], u);
} else {
*pc =
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
*pc,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
ao.addr16[2], an->addr16[2], u),
ao.addr16[3], an->addr16[3], u),
ao.addr16[4], an->addr16[4], u),
ao.addr16[5], an->addr16[5], u),
ao.addr16[6], an->addr16[6], u),
ao.addr16[7], an->addr16[7], u),
po, pn, u);
}
break;
#ifdef INET
case AF_INET:
*pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pc,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
ao.addr16[2], 0, u),
ao.addr16[3], 0, u),
ao.addr16[4], 0, u),
ao.addr16[5], 0, u),
ao.addr16[6], 0, u),
ao.addr16[7], 0, u),
po, pn, u);
break;
#endif /* INET */
}
break;
}
}
/* Changes a u_int32_t. Uses a void * so there are no align restrictions */
void
pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u)
{
u_int32_t ao;
memcpy(&ao, a, sizeof(ao));
memcpy(a, &an, sizeof(u_int32_t));
*c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u),
ao % 65536, an % 65536, u);
}
static __attribute__((noinline)) void
pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u)
{
struct pf_addr ao;
PF_ACPY(&ao, a, AF_INET6);
PF_ACPY(a, an, AF_INET6);
*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(*c,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
ao.addr16[2], an->addr16[2], u),
ao.addr16[3], an->addr16[3], u),
ao.addr16[4], an->addr16[4], u),
ao.addr16[5], an->addr16[5], u),
ao.addr16[6], an->addr16[6], u),
ao.addr16[7], an->addr16[7], u);
}
static __attribute__((noinline)) void
pf_change_addr(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u,
sa_family_t af, sa_family_t afn)
{
struct pf_addr ao;
if (af != afn) {
PF_ACPY(&ao, a, af);
PF_ACPY(a, an, afn);
}
switch (af) {
case AF_INET:
switch (afn) {
case AF_INET:
pf_change_a(a, c, an->v4addr.s_addr, u);
break;
case AF_INET6:
*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(*c,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
0, an->addr16[2], u),
0, an->addr16[3], u),
0, an->addr16[4], u),
0, an->addr16[5], u),
0, an->addr16[6], u),
0, an->addr16[7], u);
break;
}
break;
case AF_INET6:
switch (afn) {
case AF_INET:
*c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(*c,
ao.addr16[0], an->addr16[0], u),
ao.addr16[1], an->addr16[1], u),
ao.addr16[2], 0, u),
ao.addr16[3], 0, u),
ao.addr16[4], 0, u),
ao.addr16[5], 0, u),
ao.addr16[6], 0, u),
ao.addr16[7], 0, u);
break;
case AF_INET6:
pf_change_a6(a, c, an, u);
break;
}
break;
}
}
static __attribute__((noinline)) void
pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa,
struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c,
u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af)
{
struct pf_addr oia, ooa;
PF_ACPY(&oia, ia, af);
PF_ACPY(&ooa, oa, af);
/* Change inner protocol port, fix inner protocol checksum. */
if (ip != NULL) {
u_int16_t oip = *ip;
u_int32_t opc = 0;
if (pc != NULL) {
opc = *pc;
}
*ip = np;
if (pc != NULL) {
*pc = pf_cksum_fixup(*pc, oip, *ip, u);
}
*ic = pf_cksum_fixup(*ic, oip, *ip, 0);
if (pc != NULL) {
*ic = pf_cksum_fixup(*ic, opc, *pc, 0);
}
}
/* Change inner ip address, fix inner ip and icmp checksums. */
PF_ACPY(ia, na, af);
switch (af) {
#if INET
case AF_INET: {
u_int32_t oh2c = *h2c;
*h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c,
oia.addr16[0], ia->addr16[0], 0),
oia.addr16[1], ia->addr16[1], 0);
*ic = pf_cksum_fixup(pf_cksum_fixup(*ic,
oia.addr16[0], ia->addr16[0], 0),
oia.addr16[1], ia->addr16[1], 0);
*ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0);
break;
}
#endif /* INET */
case AF_INET6:
*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(*ic,
oia.addr16[0], ia->addr16[0], u),
oia.addr16[1], ia->addr16[1], u),
oia.addr16[2], ia->addr16[2], u),
oia.addr16[3], ia->addr16[3], u),
oia.addr16[4], ia->addr16[4], u),
oia.addr16[5], ia->addr16[5], u),
oia.addr16[6], ia->addr16[6], u),
oia.addr16[7], ia->addr16[7], u);
break;
}
/* Change outer ip address, fix outer ip or icmpv6 checksum. */
PF_ACPY(oa, na, af);
switch (af) {
#if INET
case AF_INET:
*hc = pf_cksum_fixup(pf_cksum_fixup(*hc,
ooa.addr16[0], oa->addr16[0], 0),
ooa.addr16[1], oa->addr16[1], 0);
break;
#endif /* INET */
case AF_INET6:
*ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(
pf_cksum_fixup(pf_cksum_fixup(*ic,
ooa.addr16[0], oa->addr16[0], u),
ooa.addr16[1], oa->addr16[1], u),
ooa.addr16[2], oa->addr16[2], u),
ooa.addr16[3], oa->addr16[3], u),
ooa.addr16[4], oa->addr16[4], u),
ooa.addr16[5], oa->addr16[5], u),
ooa.addr16[6], oa->addr16[6], u),
ooa.addr16[7], oa->addr16[7], u);
break;
}
}
/*
* Need to modulate the sequence numbers in the TCP SACK option
* (credits to Krzysztof Pfaff for report and patch)
*/
static __attribute__((noinline)) int
pf_modulate_sack(pbuf_t *pbuf, int off, struct pf_pdesc *pd,
struct tcphdr *th, struct pf_state_peer *dst)
{
int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen;
u_int8_t opts[MAX_TCPOPTLEN], *opt = opts;
int copyback = 0, i, olen;
struct sackblk sack;
#define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2)
if (hlen < TCPOLEN_SACKLEN ||
!pf_pull_hdr(pbuf, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) {
return 0;
}
while (hlen >= TCPOLEN_SACKLEN) {
olen = opt[1];
switch (*opt) {
case TCPOPT_EOL: /* FALLTHROUGH */
case TCPOPT_NOP:
opt++;
hlen--;
break;
case TCPOPT_SACK:
if (olen > hlen) {
olen = hlen;
}
if (olen >= TCPOLEN_SACKLEN) {
for (i = 2; i + TCPOLEN_SACK <= olen;
i += TCPOLEN_SACK) {
memcpy(&sack, &opt[i], sizeof(sack));
pf_change_a(&sack.start, &th->th_sum,
htonl(ntohl(sack.start) -
dst->seqdiff), 0);
pf_change_a(&sack.end, &th->th_sum,
htonl(ntohl(sack.end) -
dst->seqdiff), 0);
memcpy(&opt[i], &sack, sizeof(sack));
}
copyback = off + sizeof(*th) + thoptlen;
}
OS_FALLTHROUGH;
default:
if (olen < 2) {
olen = 2;
}
hlen -= olen;
opt += olen;
}
}
if (copyback) {
if (pf_lazy_makewritable(pd, pbuf, copyback) == NULL) {
return -1;
}
pbuf_copy_back(pbuf, off + sizeof(*th), thoptlen, opts);
}
return copyback;
}
/*
* XXX
*
* The following functions (pf_send_tcp and pf_send_icmp) are somewhat
* special in that they originate "spurious" packets rather than
* filter/NAT existing packets. As such, they're not a great fit for
* the 'pbuf' shim, which assumes the underlying packet buffers are
* allocated elsewhere.
*
* Since these functions are rarely used, we'll carry on allocating mbufs
* and passing them to the IP stack for eventual routing.
*/
static __attribute__((noinline)) void
pf_send_tcp(const struct pf_rule *r, sa_family_t af,
const struct pf_addr *saddr, const struct pf_addr *daddr,
u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack,
u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag,
u_int16_t rtag, struct ether_header *eh, struct ifnet *ifp)
{
#pragma unused(eh, ifp)
struct mbuf *m;
int len, tlen;
#if INET
struct ip *h = NULL;
#endif /* INET */
struct ip6_hdr *h6 = NULL;
struct tcphdr *th = NULL;
char *opt;
struct pf_mtag *pf_mtag;
/* maximum segment size tcp option */
tlen = sizeof(struct tcphdr);
if (mss) {
tlen += 4;
}
switch (af) {
#if INET
case AF_INET:
len = sizeof(struct ip) + tlen;
break;
#endif /* INET */
case AF_INET6:
len = sizeof(struct ip6_hdr) + tlen;
break;
default:
panic("pf_send_tcp: not AF_INET or AF_INET6!");
return;
}
/* create outgoing mbuf */
m = m_gethdr(M_DONTWAIT, MT_HEADER);
if (m == NULL) {
return;
}
if ((pf_mtag = pf_get_mtag(m)) == NULL) {
return;
}
if (tag) {
pf_mtag->pftag_flags |= PF_TAG_GENERATED;
}
pf_mtag->pftag_tag = rtag;
if (r != NULL && PF_RTABLEID_IS_VALID(r->rtableid)) {
pf_mtag->pftag_rtableid = r->rtableid;
}
#if PF_ECN
/* add hints for ecn */
pf_mtag->pftag_hdr = mtod(m, struct ip *);
/* record address family */
pf_mtag->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6);
switch (af) {
#if INET
case AF_INET:
pf_mtag->pftag_flags |= PF_TAG_HDR_INET;
break;
#endif /* INET */
case AF_INET6:
pf_mtag->pftag_flags |= PF_TAG_HDR_INET6;
break;
}
#endif /* PF_ECN */
/* indicate this is TCP */
m->m_pkthdr.pkt_proto = IPPROTO_TCP;
/* Make sure headers are 32-bit aligned */
m->m_data += max_linkhdr;
m->m_pkthdr.len = m->m_len = len;
m->m_pkthdr.rcvif = NULL;
bzero(m_mtod_current(m), len);
switch (af) {
#if INET
case AF_INET:
h = mtod(m, struct ip *);
/* IP header fields included in the TCP checksum */
h->ip_p = IPPROTO_TCP;
h->ip_len = htons(tlen);
h->ip_src.s_addr = saddr->v4addr.s_addr;
h->ip_dst.s_addr = daddr->v4addr.s_addr;
th = (struct tcphdr *)(void *)((caddr_t)h + sizeof(struct ip));
break;
#endif /* INET */
case AF_INET6:
h6 = mtod(m, struct ip6_hdr *);
/* IP header fields included in the TCP checksum */
h6->ip6_nxt = IPPROTO_TCP;
h6->ip6_plen = htons(tlen);
memcpy(&h6->ip6_src, &saddr->v6addr, sizeof(struct in6_addr));
memcpy(&h6->ip6_dst, &daddr->v6addr, sizeof(struct in6_addr));
th = (struct tcphdr *)(void *)
((caddr_t)h6 + sizeof(struct ip6_hdr));
break;
}
/* TCP header */
th->th_sport = sport;
th->th_dport = dport;
th->th_seq = htonl(seq);
th->th_ack = htonl(ack);
th->th_off = tlen >> 2;
th->th_flags = flags;
th->th_win = htons(win);
if (mss) {
opt = (char *)(th + 1);
opt[0] = TCPOPT_MAXSEG;
opt[1] = 4;
#if BYTE_ORDER != BIG_ENDIAN
HTONS(mss);
#endif
bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2);
}
switch (af) {
#if INET
case AF_INET: {
struct route ro;
/* TCP checksum */
th->th_sum = in_cksum(m, len);
/* Finish the IP header */
h->ip_v = 4;
h->ip_hl = sizeof(*h) >> 2;
h->ip_tos = IPTOS_LOWDELAY;
/*
* ip_output() expects ip_len and ip_off to be in host order.
*/
h->ip_len = len;
h->ip_off = (path_mtu_discovery ? IP_DF : 0);
h->ip_ttl = ttl ? ttl : ip_defttl;
h->ip_sum = 0;
bzero(&ro, sizeof(ro));
ip_output(m, NULL, &ro, 0, NULL, NULL);
ROUTE_RELEASE(&ro);
break;
}
#endif /* INET */
case AF_INET6: {
struct route_in6 ro6;
/* TCP checksum */
th->th_sum = in6_cksum(m, IPPROTO_TCP,
sizeof(struct ip6_hdr), tlen);
h6->ip6_vfc |= IPV6_VERSION;
h6->ip6_hlim = IPV6_DEFHLIM;
ip6_output_setsrcifscope(m, IFSCOPE_UNKNOWN, NULL);
ip6_output_setdstifscope(m, IFSCOPE_UNKNOWN, NULL);
bzero(&ro6, sizeof(ro6));
ip6_output(m, NULL, &ro6, 0, NULL, NULL, NULL);
ROUTE_RELEASE(&ro6);
break;
}
}
}
static __attribute__((noinline)) void
pf_send_icmp(pbuf_t *pbuf, u_int8_t type, u_int8_t code, sa_family_t af,
struct pf_rule *r)
{
struct mbuf *m0;
struct pf_mtag *pf_mtag;
m0 = pbuf_clone_to_mbuf(pbuf);
if (m0 == NULL) {
return;
}
if ((pf_mtag = pf_get_mtag(m0)) == NULL) {
return;
}
pf_mtag->pftag_flags |= PF_TAG_GENERATED;
if (PF_RTABLEID_IS_VALID(r->rtableid)) {
pf_mtag->pftag_rtableid = r->rtableid;
}
#if PF_ECN
/* add hints for ecn */
pf_mtag->pftag_hdr = mtod(m0, struct ip *);
/* record address family */
pf_mtag->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6);
switch (af) {
#if INET
case AF_INET:
pf_mtag->pftag_flags |= PF_TAG_HDR_INET;
m0->m_pkthdr.pkt_proto = IPPROTO_ICMP;
break;
#endif /* INET */
case AF_INET6:
pf_mtag->pftag_flags |= PF_TAG_HDR_INET6;
m0->m_pkthdr.pkt_proto = IPPROTO_ICMPV6;
break;
}
#endif /* PF_ECN */
switch (af) {
#if INET
case AF_INET:
icmp_error(m0, type, code, 0, 0);
break;
#endif /* INET */
case AF_INET6:
icmp6_error(m0, type, code, 0);
break;
}
}
/*
* Return 1 if the addresses a and b match (with mask m), otherwise return 0.
* If n is 0, they match if they are equal. If n is != 0, they match if they
* are different.
*/
int
pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m,
struct pf_addr *b, sa_family_t af)
{
int match = 0;
switch (af) {
#if INET
case AF_INET:
if ((a->addr32[0] & m->addr32[0]) ==
(b->addr32[0] & m->addr32[0])) {
match++;
}
break;
#endif /* INET */
case AF_INET6:
if (((a->addr32[0] & m->addr32[0]) ==
(b->addr32[0] & m->addr32[0])) &&
((a->addr32[1] & m->addr32[1]) ==
(b->addr32[1] & m->addr32[1])) &&
((a->addr32[2] & m->addr32[2]) ==
(b->addr32[2] & m->addr32[2])) &&
((a->addr32[3] & m->addr32[3]) ==
(b->addr32[3] & m->addr32[3]))) {
match++;
}
break;
}
if (match) {
if (n) {
return 0;
} else {
return 1;
}
} else {
if (n) {
return 1;
} else {
return 0;
}
}
}
/*
* Return 1 if b <= a <= e, otherwise return 0.
*/
int
pf_match_addr_range(struct pf_addr *b, struct pf_addr *e,
struct pf_addr *a, sa_family_t af)
{
switch (af) {
#if INET
case AF_INET:
if ((a->addr32[0] < b->addr32[0]) ||
(a->addr32[0] > e->addr32[0])) {
return 0;
}
break;
#endif /* INET */
case AF_INET6: {
int i;
/* check a >= b */
for (i = 0; i < 4; ++i) {
if (a->addr32[i] > b->addr32[i]) {
break;
} else if (a->addr32[i] < b->addr32[i]) {
return 0;
}
}
/* check a <= e */
for (i = 0; i < 4; ++i) {
if (a->addr32[i] < e->addr32[i]) {
break;
} else if (a->addr32[i] > e->addr32[i]) {
return 0;
}
}
break;
}
}
return 1;
}
int
pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p)
{
switch (op) {
case PF_OP_IRG:
return (p > a1) && (p < a2);
case PF_OP_XRG:
return (p < a1) || (p > a2);
case PF_OP_RRG:
return (p >= a1) && (p <= a2);
case PF_OP_EQ:
return p == a1;
case PF_OP_NE:
return p != a1;
case PF_OP_LT:
return p < a1;
case PF_OP_LE:
return p <= a1;
case PF_OP_GT:
return p > a1;
case PF_OP_GE:
return p >= a1;
}
return 0; /* never reached */
}
int
pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p)
{
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(a1);
NTOHS(a2);
NTOHS(p);
#endif
return pf_match(op, a1, a2, p);
}
int
pf_match_xport(u_int8_t proto, u_int8_t proto_variant, union pf_rule_xport *rx,
union pf_state_xport *sx)
{
int d = !0;
if (sx) {
switch (proto) {
case IPPROTO_GRE:
if (proto_variant == PF_GRE_PPTP_VARIANT) {
d = (rx->call_id == sx->call_id);
}
break;
case IPPROTO_ESP:
d = (rx->spi == sx->spi);
break;
case IPPROTO_TCP:
case IPPROTO_UDP:
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
if (rx->range.op) {
d = pf_match_port(rx->range.op,
rx->range.port[0], rx->range.port[1],
sx->port);
}
break;
default:
break;
}
}
return d;
}
int
pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u)
{
if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) {
return 0;
}
return pf_match(op, a1, a2, u);
}
int
pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g)
{
if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) {
return 0;
}
return pf_match(op, a1, a2, g);
}
static int
pf_match_tag(struct pf_rule *r, struct pf_mtag *pf_mtag,
int *tag)
{
if (*tag == -1) {
*tag = pf_mtag->pftag_tag;
}
return (!r->match_tag_not && r->match_tag == *tag) ||
(r->match_tag_not && r->match_tag != *tag);
}
int
pf_tag_packet(pbuf_t *pbuf, struct pf_mtag *pf_mtag, int tag,
unsigned int rtableid, struct pf_pdesc *pd)
{
if (tag <= 0 && !PF_RTABLEID_IS_VALID(rtableid) &&
(pd == NULL || !(pd->pktflags & PKTF_FLOW_ID))) {
return 0;
}
if (pf_mtag == NULL && (pf_mtag = pf_get_mtag_pbuf(pbuf)) == NULL) {
return 1;
}
if (tag > 0) {
pf_mtag->pftag_tag = tag;
}
if (PF_RTABLEID_IS_VALID(rtableid)) {
pf_mtag->pftag_rtableid = rtableid;
}
if (pd != NULL && (pd->pktflags & PKTF_FLOW_ID)) {
*pbuf->pb_flowsrc = pd->flowsrc;
*pbuf->pb_flowid = pd->flowhash;
*pbuf->pb_flags |= pd->pktflags;
*pbuf->pb_proto = pd->proto;
}
return 0;
}
void
pf_step_into_anchor(int *depth, struct pf_ruleset **rs, int n,
struct pf_rule **r, struct pf_rule **a, int *match)
{
struct pf_anchor_stackframe *f;
(*r)->anchor->match = 0;
if (match) {
*match = 0;
}
if (*depth >= (int)sizeof(pf_anchor_stack) /
(int)sizeof(pf_anchor_stack[0])) {
printf("pf_step_into_anchor: stack overflow\n");
*r = TAILQ_NEXT(*r, entries);
return;
} else if (*depth == 0 && a != NULL) {
*a = *r;
}
f = pf_anchor_stack + (*depth)++;
f->rs = *rs;
f->r = *r;
if ((*r)->anchor_wildcard) {
f->parent = &(*r)->anchor->children;
if ((f->child = RB_MIN(pf_anchor_node, f->parent)) ==
NULL) {
*r = NULL;
return;
}
*rs = &f->child->ruleset;
} else {
f->parent = NULL;
f->child = NULL;
*rs = &(*r)->anchor->ruleset;
}
*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
}
int
pf_step_out_of_anchor(int *depth, struct pf_ruleset **rs, int n,
struct pf_rule **r, struct pf_rule **a, int *match)
{
struct pf_anchor_stackframe *f;
int quick = 0;
do {
if (*depth <= 0) {
break;
}
f = pf_anchor_stack + *depth - 1;
if (f->parent != NULL && f->child != NULL) {
if (f->child->match ||
(match != NULL && *match)) {
f->r->anchor->match = 1;
if (match) {
*match = 0;
}
}
f->child = RB_NEXT(pf_anchor_node, f->parent, f->child);
if (f->child != NULL) {
*rs = &f->child->ruleset;
*r = TAILQ_FIRST((*rs)->rules[n].active.ptr);
if (*r == NULL) {
continue;
} else {
break;
}
}
}
(*depth)--;
if (*depth == 0 && a != NULL) {
*a = NULL;
}
*rs = f->rs;
if (f->r->anchor->match || (match != NULL && *match)) {
quick = f->r->quick;
}
*r = TAILQ_NEXT(f->r, entries);
} while (*r == NULL);
return quick;
}
void
pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr,
struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af)
{
switch (af) {
#if INET
case AF_INET:
naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
((rmask->addr32[0] ^ 0xffffffff) & saddr->addr32[0]);
break;
#endif /* INET */
case AF_INET6:
naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) |
((rmask->addr32[0] ^ 0xffffffff) & saddr->addr32[0]);
naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) |
((rmask->addr32[1] ^ 0xffffffff) & saddr->addr32[1]);
naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) |
((rmask->addr32[2] ^ 0xffffffff) & saddr->addr32[2]);
naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) |
((rmask->addr32[3] ^ 0xffffffff) & saddr->addr32[3]);
break;
}
}
void
pf_addr_inc(struct pf_addr *addr, sa_family_t af)
{
switch (af) {
#if INET
case AF_INET:
addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1);
break;
#endif /* INET */
case AF_INET6:
if (addr->addr32[3] == 0xffffffff) {
addr->addr32[3] = 0;
if (addr->addr32[2] == 0xffffffff) {
addr->addr32[2] = 0;
if (addr->addr32[1] == 0xffffffff) {
addr->addr32[1] = 0;
addr->addr32[0] =
htonl(ntohl(addr->addr32[0]) + 1);
} else {
addr->addr32[1] =
htonl(ntohl(addr->addr32[1]) + 1);
}
} else {
addr->addr32[2] =
htonl(ntohl(addr->addr32[2]) + 1);
}
} else {
addr->addr32[3] =
htonl(ntohl(addr->addr32[3]) + 1);
}
break;
}
}
#define mix(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while (0)
/*
* hash function based on bridge_hash in if_bridge.c
*/
static void
pf_hash(struct pf_addr *inaddr, struct pf_addr *hash,
struct pf_poolhashkey *key, sa_family_t af)
{
u_int32_t a = 0x9e3779b9, b = 0x9e3779b9, c = key->key32[0];
switch (af) {
#if INET
case AF_INET:
a += inaddr->addr32[0];
b += key->key32[1];
mix(a, b, c);
hash->addr32[0] = c + key->key32[2];
break;
#endif /* INET */
case AF_INET6:
a += inaddr->addr32[0];
b += inaddr->addr32[2];
mix(a, b, c);
hash->addr32[0] = c;
a += inaddr->addr32[1];
b += inaddr->addr32[3];
c += key->key32[1];
mix(a, b, c);
hash->addr32[1] = c;
a += inaddr->addr32[2];
b += inaddr->addr32[1];
c += key->key32[2];
mix(a, b, c);
hash->addr32[2] = c;
a += inaddr->addr32[3];
b += inaddr->addr32[0];
c += key->key32[3];
mix(a, b, c);
hash->addr32[3] = c;
break;
}
}
static __attribute__((noinline)) int
pf_map_addr(sa_family_t af, struct pf_rule *r, struct pf_addr *saddr,
struct pf_addr *naddr, struct pf_addr *init_addr, struct pf_src_node **sn)
{
unsigned char hash[16];
struct pf_pool *rpool = &r->rpool;
struct pf_addr *raddr = &rpool->cur->addr.v.a.addr;
struct pf_addr *rmask = &rpool->cur->addr.v.a.mask;
struct pf_pooladdr *acur = rpool->cur;
struct pf_src_node k;
if (*sn == NULL && r->rpool.opts & PF_POOL_STICKYADDR &&
(r->rpool.opts & PF_POOL_TYPEMASK) != PF_POOL_NONE) {
k.af = af;
PF_ACPY(&k.addr, saddr, af);
if (r->rule_flag & PFRULE_RULESRCTRACK ||
r->rpool.opts & PF_POOL_STICKYADDR) {
k.rule.ptr = r;
} else {
k.rule.ptr = NULL;
}
pf_status.scounters[SCNT_SRC_NODE_SEARCH]++;
*sn = RB_FIND(pf_src_tree, &tree_src_tracking, &k);
if (*sn != NULL && !PF_AZERO(&(*sn)->raddr, rpool->af)) {
PF_ACPY(naddr, &(*sn)->raddr, rpool->af);
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf_map_addr: src tracking maps ");
pf_print_host(&k.addr, 0, af);
printf(" to ");
pf_print_host(naddr, 0, rpool->af);
printf("\n");
}
return 0;
}
}
if (rpool->cur->addr.type == PF_ADDR_NOROUTE) {
return 1;
}
if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) {
if (rpool->cur->addr.p.dyn == NULL) {
return 1;
}
switch (rpool->af) {
#if INET
case AF_INET:
if (rpool->cur->addr.p.dyn->pfid_acnt4 < 1 &&
(rpool->opts & PF_POOL_TYPEMASK) !=
PF_POOL_ROUNDROBIN) {
return 1;
}
raddr = &rpool->cur->addr.p.dyn->pfid_addr4;
rmask = &rpool->cur->addr.p.dyn->pfid_mask4;
break;
#endif /* INET */
case AF_INET6:
if (rpool->cur->addr.p.dyn->pfid_acnt6 < 1 &&
(rpool->opts & PF_POOL_TYPEMASK) !=
PF_POOL_ROUNDROBIN) {
return 1;
}
raddr = &rpool->cur->addr.p.dyn->pfid_addr6;
rmask = &rpool->cur->addr.p.dyn->pfid_mask6;
break;
}
} else if (rpool->cur->addr.type == PF_ADDR_TABLE) {
if ((rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_ROUNDROBIN) {
return 1; /* unsupported */
}
} else {
raddr = &rpool->cur->addr.v.a.addr;
rmask = &rpool->cur->addr.v.a.mask;
}
switch (rpool->opts & PF_POOL_TYPEMASK) {
case PF_POOL_NONE:
PF_ACPY(naddr, raddr, rpool->af);
break;
case PF_POOL_BITMASK:
ASSERT(af == rpool->af);
PF_POOLMASK(naddr, raddr, rmask, saddr, af);
break;
case PF_POOL_RANDOM:
if (init_addr != NULL && PF_AZERO(init_addr, rpool->af)) {
switch (af) {
#if INET
case AF_INET:
rpool->counter.addr32[0] = htonl(random());
break;
#endif /* INET */
case AF_INET6:
if (rmask->addr32[3] != 0xffffffff) {
rpool->counter.addr32[3] =
RandomULong();
} else {
break;
}
if (rmask->addr32[2] != 0xffffffff) {
rpool->counter.addr32[2] =
RandomULong();
} else {
break;
}
if (rmask->addr32[1] != 0xffffffff) {
rpool->counter.addr32[1] =
RandomULong();
} else {
break;
}
if (rmask->addr32[0] != 0xffffffff) {
rpool->counter.addr32[0] =
RandomULong();
}
break;
}
PF_POOLMASK(naddr, raddr, rmask, &rpool->counter,
rpool->af);
PF_ACPY(init_addr, naddr, rpool->af);
} else {
PF_AINC(&rpool->counter, rpool->af);
PF_POOLMASK(naddr, raddr, rmask, &rpool->counter,
rpool->af);
}
break;
case PF_POOL_SRCHASH:
ASSERT(af == rpool->af);
PF_POOLMASK(naddr, raddr, rmask, saddr, af);
pf_hash(saddr, (struct pf_addr *)(void *)&hash,
&rpool->key, af);
PF_POOLMASK(naddr, raddr, rmask,
(struct pf_addr *)(void *)&hash, af);
break;
case PF_POOL_ROUNDROBIN:
if (rpool->cur->addr.type == PF_ADDR_TABLE) {
if (!pfr_pool_get(rpool->cur->addr.p.tbl,
&rpool->tblidx, &rpool->counter,
&raddr, &rmask, rpool->af)) {
goto get_addr;
}
} else if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) {
if (rpool->cur->addr.p.dyn != NULL &&
!pfr_pool_get(rpool->cur->addr.p.dyn->pfid_kt,
&rpool->tblidx, &rpool->counter,
&raddr, &rmask, af)) {
goto get_addr;
}
} else if (pf_match_addr(0, raddr, rmask, &rpool->counter,
rpool->af)) {
goto get_addr;
}
try_next:
if ((rpool->cur = TAILQ_NEXT(rpool->cur, entries)) == NULL) {
rpool->cur = TAILQ_FIRST(&rpool->list);
}
if (rpool->cur->addr.type == PF_ADDR_TABLE) {
rpool->tblidx = -1;
if (pfr_pool_get(rpool->cur->addr.p.tbl,
&rpool->tblidx, &rpool->counter,
&raddr, &rmask, rpool->af)) {
/* table contains no address of type
* 'rpool->af' */
if (rpool->cur != acur) {
goto try_next;
}
return 1;
}
} else if (rpool->cur->addr.type == PF_ADDR_DYNIFTL) {
rpool->tblidx = -1;
if (rpool->cur->addr.p.dyn == NULL) {
return 1;
}
if (pfr_pool_get(rpool->cur->addr.p.dyn->pfid_kt,
&rpool->tblidx, &rpool->counter,
&raddr, &rmask, rpool->af)) {
/* table contains no address of type
* 'rpool->af' */
if (rpool->cur != acur) {
goto try_next;
}
return 1;
}
} else {
raddr = &rpool->cur->addr.v.a.addr;
rmask = &rpool->cur->addr.v.a.mask;
PF_ACPY(&rpool->counter, raddr, rpool->af);
}
get_addr:
PF_ACPY(naddr, &rpool->counter, rpool->af);
if (init_addr != NULL && PF_AZERO(init_addr, rpool->af)) {
PF_ACPY(init_addr, naddr, rpool->af);
}
PF_AINC(&rpool->counter, rpool->af);
break;
}
if (*sn != NULL) {
PF_ACPY(&(*sn)->raddr, naddr, rpool->af);
}
if (pf_status.debug >= PF_DEBUG_MISC &&
(rpool->opts & PF_POOL_TYPEMASK) != PF_POOL_NONE) {
printf("pf_map_addr: selected address ");
pf_print_host(naddr, 0, rpool->af);
printf("\n");
}
return 0;
}
static __attribute__((noinline)) int
pf_get_sport(struct pf_pdesc *pd, struct pfi_kif *kif, struct pf_rule *r,
struct pf_addr *saddr, union pf_state_xport *sxport, struct pf_addr *daddr,
union pf_state_xport *dxport, struct pf_addr *naddr,
union pf_state_xport *nxport, struct pf_src_node **sn
#if SKYWALK
, netns_token *pnstoken
#endif
)
{
#pragma unused(kif)
struct pf_state_key_cmp key;
struct pf_addr init_addr;
unsigned int cut;
sa_family_t af = pd->af;
u_int8_t proto = pd->proto;
unsigned int low = r->rpool.proxy_port[0];
unsigned int high = r->rpool.proxy_port[1];
bzero(&init_addr, sizeof(init_addr));
if (pf_map_addr(af, r, saddr, naddr, &init_addr, sn)) {
return 1;
}
if (proto == IPPROTO_ICMP) {
low = 1;
high = 65535;
}
if (!nxport) {
return 0; /* No output necessary. */
}
/*--- Special mapping rules for UDP ---*/
if (proto == IPPROTO_UDP) {
/*--- Never float IKE source port ---*/
if (ntohs(sxport->port) == PF_IKE_PORT) {
nxport->port = sxport->port;
return 0;
}
/*--- Apply exterior mapping options ---*/
if (r->extmap > PF_EXTMAP_APD) {
struct pf_state *s;
TAILQ_FOREACH(s, &state_list, entry_list) {
struct pf_state_key *sk = s->state_key;
if (!sk) {
continue;
}
if (s->nat_rule.ptr != r) {
continue;
}
if (sk->proto != IPPROTO_UDP ||
sk->af_lan != af) {
continue;
}
if (sk->lan.xport.port != sxport->port) {
continue;
}
if (PF_ANEQ(&sk->lan.addr, saddr, af)) {
continue;
}
if (r->extmap < PF_EXTMAP_EI &&
PF_ANEQ(&sk->ext_lan.addr, daddr, af)) {
continue;
}
#if SKYWALK
if (netns_reserve(pnstoken, naddr->addr32,
NETNS_AF_SIZE(af), proto, sxport->port,
NETNS_PF, NULL) != 0) {
return 1;
}
#endif
nxport->port = sk->gwy.xport.port;
return 0;
}
}
} else if (proto == IPPROTO_TCP) {
struct pf_state* s;
/*
* APPLE MODIFICATION: <rdar://problem/6546358>
* Fix allows....NAT to use a single binding for TCP session
* with same source IP and source port
*/
TAILQ_FOREACH(s, &state_list, entry_list) {
struct pf_state_key* sk = s->state_key;
if (!sk) {
continue;
}
if (s->nat_rule.ptr != r) {
continue;
}
if (sk->proto != IPPROTO_TCP || sk->af_lan != af) {
continue;
}
if (sk->lan.xport.port != sxport->port) {
continue;
}
if (!(PF_AEQ(&sk->lan.addr, saddr, af))) {
continue;
}
#if SKYWALK
if (netns_reserve(pnstoken, naddr->addr32,
NETNS_AF_SIZE(af), proto, sxport->port,
NETNS_PF, NULL) != 0) {
return 1;
}
#endif
nxport->port = sk->gwy.xport.port;
return 0;
}
}
do {
key.af_gwy = af;
key.proto = proto;
PF_ACPY(&key.ext_gwy.addr, daddr, key.af_gwy);
PF_ACPY(&key.gwy.addr, naddr, key.af_gwy);
switch (proto) {
case IPPROTO_UDP:
key.proto_variant = r->extfilter;
break;
default:
key.proto_variant = 0;
break;
}
if (dxport) {
key.ext_gwy.xport = *dxport;
} else {
memset(&key.ext_gwy.xport, 0,
sizeof(key.ext_gwy.xport));
}
/*
* port search; start random, step;
* similar 2 portloop in in_pcbbind
*/
if (!(proto == IPPROTO_TCP || proto == IPPROTO_UDP ||
proto == IPPROTO_ICMP)) {
if (dxport) {
key.gwy.xport = *dxport;
} else {
memset(&key.gwy.xport, 0,
sizeof(key.gwy.xport));
}
#if SKYWALK
/* Nothing to do: netns handles TCP/UDP only */
#endif
if (pf_find_state_all(&key, PF_IN, NULL) == NULL) {
return 0;
}
} else if (low == 0 && high == 0) {
key.gwy.xport = *nxport;
if (pf_find_state_all(&key, PF_IN, NULL) == NULL
#if SKYWALK
&& ((proto != IPPROTO_TCP && proto != IPPROTO_UDP)
|| netns_reserve(pnstoken, naddr->addr32,
NETNS_AF_SIZE(af), proto, nxport->port,
NETNS_PF, NULL) == 0)
#endif
) {
return 0;
}
} else if (low == high) {
key.gwy.xport.port = htons(low);
if (pf_find_state_all(&key, PF_IN, NULL) == NULL
#if SKYWALK
&& ((proto != IPPROTO_TCP && proto != IPPROTO_UDP)
|| netns_reserve(pnstoken, naddr->addr32,
NETNS_AF_SIZE(af), proto, htons(low),
NETNS_PF, NULL) == 0)
#endif
) {
nxport->port = htons(low);
return 0;
}
} else {
unsigned int tmp;
if (low > high) {
tmp = low;
low = high;
high = tmp;
}
/* low < high */
cut = htonl(random()) % (1 + high - low) + low;
/* low <= cut <= high */
for (tmp = cut; tmp <= high; ++(tmp)) {
key.gwy.xport.port = htons(tmp);
if (pf_find_state_all(&key, PF_IN, NULL) == NULL
#if SKYWALK
&& ((proto != IPPROTO_TCP && proto != IPPROTO_UDP)
|| netns_reserve(pnstoken, naddr->addr32,
NETNS_AF_SIZE(af), proto, htons(tmp),
NETNS_PF, NULL) == 0)
#endif
) {
nxport->port = htons(tmp);
return 0;
}
}
for (tmp = cut - 1; tmp >= low; --(tmp)) {
key.gwy.xport.port = htons(tmp);
if (pf_find_state_all(&key, PF_IN, NULL) == NULL
#if SKYWALK
&& ((proto != IPPROTO_TCP && proto != IPPROTO_UDP)
|| netns_reserve(pnstoken, naddr->addr32,
NETNS_AF_SIZE(af), proto, htons(tmp),
NETNS_PF, NULL) == 0)
#endif
) {
nxport->port = htons(tmp);
return 0;
}
}
}
switch (r->rpool.opts & PF_POOL_TYPEMASK) {
case PF_POOL_RANDOM:
case PF_POOL_ROUNDROBIN:
if (pf_map_addr(af, r, saddr, naddr, &init_addr, sn)) {
return 1;
}
break;
case PF_POOL_NONE:
case PF_POOL_SRCHASH:
case PF_POOL_BITMASK:
default:
return 1;
}
} while (!PF_AEQ(&init_addr, naddr, af));
return 1; /* none available */
}
static __attribute__((noinline)) struct pf_rule *
pf_match_translation(struct pf_pdesc *pd, pbuf_t *pbuf, int off,
int direction, struct pfi_kif *kif, struct pf_addr *saddr,
union pf_state_xport *sxport, struct pf_addr *daddr,
union pf_state_xport *dxport, int rs_num)
{
struct pf_rule *r, *rm = NULL;
struct pf_ruleset *ruleset = NULL;
int tag = -1;
unsigned int rtableid = IFSCOPE_NONE;
int asd = 0;
r = TAILQ_FIRST(pf_main_ruleset.rules[rs_num].active.ptr);
while (r && rm == NULL) {
struct pf_rule_addr *src = NULL, *dst = NULL;
struct pf_addr_wrap *xdst = NULL;
struct pf_addr_wrap *xsrc = NULL;
union pf_rule_xport rdrxport;
if (r->action == PF_BINAT && direction == PF_IN) {
src = &r->dst;
if (r->rpool.cur != NULL) {
xdst = &r->rpool.cur->addr;
}
} else if (r->action == PF_RDR && direction == PF_OUT) {
dst = &r->src;
src = &r->dst;
if (r->rpool.cur != NULL) {
rdrxport.range.op = PF_OP_EQ;
rdrxport.range.port[0] =
htons(r->rpool.proxy_port[0]);
xsrc = &r->rpool.cur->addr;
}
} else {
src = &r->src;
dst = &r->dst;
}
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != direction) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != pd->af) {
r = r->skip[PF_SKIP_AF].ptr;
} else if (r->proto && r->proto != pd->proto) {
r = r->skip[PF_SKIP_PROTO].ptr;
} else if (xsrc && PF_MISMATCHAW(xsrc, saddr, pd->af, 0, NULL)) {
r = TAILQ_NEXT(r, entries);
} else if (!xsrc && PF_MISMATCHAW(&src->addr, saddr, pd->af,
src->neg, kif)) {
r = TAILQ_NEXT(r, entries);
} else if (xsrc && (!rdrxport.range.port[0] ||
!pf_match_xport(r->proto, r->proto_variant, &rdrxport,
sxport))) {
r = TAILQ_NEXT(r, entries);
} else if (!xsrc && !pf_match_xport(r->proto,
r->proto_variant, &src->xport, sxport)) {
r = r->skip[src == &r->src ? PF_SKIP_SRC_PORT :
PF_SKIP_DST_PORT].ptr;
} else if (dst != NULL &&
PF_MISMATCHAW(&dst->addr, daddr, pd->af, dst->neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
} else if (xdst != NULL && PF_MISMATCHAW(xdst, daddr, pd->af,
0, NULL)) {
r = TAILQ_NEXT(r, entries);
} else if (dst && !pf_match_xport(r->proto, r->proto_variant,
&dst->xport, dxport)) {
r = r->skip[PF_SKIP_DST_PORT].ptr;
} else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) {
r = TAILQ_NEXT(r, entries);
} else if (r->os_fingerprint != PF_OSFP_ANY && (pd->proto !=
IPPROTO_TCP || !pf_osfp_match(pf_osfp_fingerprint(pd, pbuf,
off, pd->hdr.tcp), r->os_fingerprint))) {
r = TAILQ_NEXT(r, entries);
} else {
if (r->tag) {
tag = r->tag;
}
if (PF_RTABLEID_IS_VALID(r->rtableid)) {
rtableid = r->rtableid;
}
if (r->anchor == NULL) {
rm = r;
} else {
pf_step_into_anchor(&asd, &ruleset, rs_num,
&r, NULL, NULL);
}
}
if (r == NULL) {
pf_step_out_of_anchor(&asd, &ruleset, rs_num, &r,
NULL, NULL);
}
}
if (pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, NULL)) {
return NULL;
}
if (rm != NULL && (rm->action == PF_NONAT ||
rm->action == PF_NORDR || rm->action == PF_NOBINAT ||
rm->action == PF_NONAT64)) {
return NULL;
}
return rm;
}
/*
* Get address translation information for NAT/BINAT/RDR
* pd : pf packet descriptor
* pbuf : pbuf holding the packet
* off : offset to protocol header
* direction : direction of packet
* kif : pf interface info obtained from the packet's recv interface
* sn : source node pointer (output)
* saddr : packet source address
* sxport : packet source port
* daddr : packet destination address
* dxport : packet destination port
* nsxport : translated source port (output)
*
* Translated source & destination address are updated in pd->nsaddr &
* pd->ndaddr
*/
static __attribute__((noinline)) struct pf_rule *
pf_get_translation_aux(struct pf_pdesc *pd, pbuf_t *pbuf, int off,
int direction, struct pfi_kif *kif, struct pf_src_node **sn,
struct pf_addr *saddr, union pf_state_xport *sxport, struct pf_addr *daddr,
union pf_state_xport *dxport, union pf_state_xport *nsxport
#if SKYWALK
, netns_token *pnstoken
#endif
)
{
struct pf_rule *r = NULL;
pd->naf = pd->af;
if (direction == PF_OUT) {
r = pf_match_translation(pd, pbuf, off, direction, kif, saddr,
sxport, daddr, dxport, PF_RULESET_BINAT);
if (r == NULL) {
r = pf_match_translation(pd, pbuf, off, direction, kif,
saddr, sxport, daddr, dxport, PF_RULESET_RDR);
}
if (r == NULL) {
r = pf_match_translation(pd, pbuf, off, direction, kif,
saddr, sxport, daddr, dxport, PF_RULESET_NAT);
}
} else {
r = pf_match_translation(pd, pbuf, off, direction, kif, saddr,
sxport, daddr, dxport, PF_RULESET_RDR);
if (r == NULL) {
r = pf_match_translation(pd, pbuf, off, direction, kif,
saddr, sxport, daddr, dxport, PF_RULESET_BINAT);
}
}
if (r != NULL) {
struct pf_addr *nsaddr = &pd->naddr;
struct pf_addr *ndaddr = &pd->ndaddr;
PF_ACPY(nsaddr, saddr, pd->af);
PF_ACPY(ndaddr, daddr, pd->af);
switch (r->action) {
case PF_NONAT:
case PF_NONAT64:
case PF_NOBINAT:
case PF_NORDR:
return NULL;
case PF_NAT:
case PF_NAT64:
/*
* we do NAT64 on incoming path and we call ip_input
* which asserts receive interface to be not NULL.
* The below check is to prevent NAT64 action on any
* packet generated by local entity using synthesized
* IPv6 address.
*/
if ((r->action == PF_NAT64) && (direction == PF_OUT)) {
return NULL;
}
if (pf_get_sport(pd, kif, r, saddr, sxport, daddr,
dxport, nsaddr, nsxport, sn
#if SKYWALK
, pnstoken
#endif
)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: NAT proxy port allocation "
"(%u-%u) failed\n",
r->rpool.proxy_port[0],
r->rpool.proxy_port[1]));
return NULL;
}
/*
* For NAT64 the destination IPv4 address is derived
* from the last 32 bits of synthesized IPv6 address
*/
if (r->action == PF_NAT64) {
ndaddr->v4addr.s_addr = daddr->addr32[3];
pd->naf = AF_INET;
}
break;
case PF_BINAT:
switch (direction) {
case PF_OUT:
if (r->rpool.cur->addr.type ==
PF_ADDR_DYNIFTL) {
if (r->rpool.cur->addr.p.dyn == NULL) {
return NULL;
}
switch (pd->af) {
#if INET
case AF_INET:
if (r->rpool.cur->addr.p.dyn->
pfid_acnt4 < 1) {
return NULL;
}
PF_POOLMASK(nsaddr,
&r->rpool.cur->addr.p.dyn->
pfid_addr4,
&r->rpool.cur->addr.p.dyn->
pfid_mask4,
saddr, AF_INET);
break;
#endif /* INET */
case AF_INET6:
if (r->rpool.cur->addr.p.dyn->
pfid_acnt6 < 1) {
return NULL;
}
PF_POOLMASK(nsaddr,
&r->rpool.cur->addr.p.dyn->
pfid_addr6,
&r->rpool.cur->addr.p.dyn->
pfid_mask6,
saddr, AF_INET6);
break;
}
} else {
PF_POOLMASK(nsaddr,
&r->rpool.cur->addr.v.a.addr,
&r->rpool.cur->addr.v.a.mask,
saddr, pd->af);
}
break;
case PF_IN:
if (r->src.addr.type == PF_ADDR_DYNIFTL) {
if (r->src.addr.p.dyn == NULL) {
return NULL;
}
switch (pd->af) {
#if INET
case AF_INET:
if (r->src.addr.p.dyn->
pfid_acnt4 < 1) {
return NULL;
}
PF_POOLMASK(ndaddr,
&r->src.addr.p.dyn->
pfid_addr4,
&r->src.addr.p.dyn->
pfid_mask4,
daddr, AF_INET);
break;
#endif /* INET */
case AF_INET6:
if (r->src.addr.p.dyn->
pfid_acnt6 < 1) {
return NULL;
}
PF_POOLMASK(ndaddr,
&r->src.addr.p.dyn->
pfid_addr6,
&r->src.addr.p.dyn->
pfid_mask6,
daddr, AF_INET6);
break;
}
} else {
PF_POOLMASK(ndaddr,
&r->src.addr.v.a.addr,
&r->src.addr.v.a.mask, daddr,
pd->af);
}
break;
}
break;
case PF_RDR: {
switch (direction) {
case PF_OUT:
if (r->dst.addr.type == PF_ADDR_DYNIFTL) {
if (r->dst.addr.p.dyn == NULL) {
return NULL;
}
switch (pd->af) {
#if INET
case AF_INET:
if (r->dst.addr.p.dyn->
pfid_acnt4 < 1) {
return NULL;
}
PF_POOLMASK(nsaddr,
&r->dst.addr.p.dyn->
pfid_addr4,
&r->dst.addr.p.dyn->
pfid_mask4,
daddr, AF_INET);
break;
#endif /* INET */
case AF_INET6:
if (r->dst.addr.p.dyn->
pfid_acnt6 < 1) {
return NULL;
}
PF_POOLMASK(nsaddr,
&r->dst.addr.p.dyn->
pfid_addr6,
&r->dst.addr.p.dyn->
pfid_mask6,
daddr, AF_INET6);
break;
}
} else {
PF_POOLMASK(nsaddr,
&r->dst.addr.v.a.addr,
&r->dst.addr.v.a.mask,
daddr, pd->af);
}
if (nsxport && r->dst.xport.range.port[0]) {
nsxport->port =
r->dst.xport.range.port[0];
}
break;
case PF_IN:
if (pf_map_addr(pd->af, r, saddr,
ndaddr, NULL, sn)) {
return NULL;
}
if ((r->rpool.opts & PF_POOL_TYPEMASK) ==
PF_POOL_BITMASK) {
PF_POOLMASK(ndaddr, ndaddr,
&r->rpool.cur->addr.v.a.mask, daddr,
pd->af);
}
if (nsxport && dxport) {
if (r->rpool.proxy_port[1]) {
u_int32_t tmp_nport;
tmp_nport =
((ntohs(dxport->port) -
ntohs(r->dst.xport.range.
port[0])) %
(r->rpool.proxy_port[1] -
r->rpool.proxy_port[0] +
1)) + r->rpool.proxy_port[0];
/* wrap around if necessary */
if (tmp_nport > 65535) {
tmp_nport -= 65535;
}
nsxport->port =
htons((u_int16_t)tmp_nport);
} else if (r->rpool.proxy_port[0]) {
nsxport->port = htons(r->rpool.
proxy_port[0]);
}
}
break;
}
break;
}
default:
return NULL;
}
}
return r;
}
int
pf_socket_lookup(int direction, struct pf_pdesc *pd)
{
struct pf_addr *saddr, *daddr;
u_int16_t sport, dport;
struct inpcbinfo *pi;
int inp = 0;
if (pd == NULL) {
return -1;
}
pd->lookup.uid = UID_MAX;
pd->lookup.gid = GID_MAX;
pd->lookup.pid = NO_PID;
switch (pd->proto) {
case IPPROTO_TCP:
if (pd->hdr.tcp == NULL) {
return -1;
}
sport = pd->hdr.tcp->th_sport;
dport = pd->hdr.tcp->th_dport;
pi = &tcbinfo;
break;
case IPPROTO_UDP:
if (pd->hdr.udp == NULL) {
return -1;
}
sport = pd->hdr.udp->uh_sport;
dport = pd->hdr.udp->uh_dport;
pi = &udbinfo;
break;
default:
return -1;
}
if (direction == PF_IN) {
saddr = pd->src;
daddr = pd->dst;
} else {
u_int16_t p;
p = sport;
sport = dport;
dport = p;
saddr = pd->dst;
daddr = pd->src;
}
switch (pd->af) {
#if INET
case AF_INET:
inp = in_pcblookup_hash_exists(pi, saddr->v4addr, sport, daddr->v4addr, dport,
0, &pd->lookup.uid, &pd->lookup.gid, NULL);
if (inp == 0) {
struct in6_addr s6, d6;
memset(&s6, 0, sizeof(s6));
s6.s6_addr16[5] = htons(0xffff);
memcpy(&s6.s6_addr32[3], &saddr->v4addr,
sizeof(saddr->v4addr));
memset(&d6, 0, sizeof(d6));
d6.s6_addr16[5] = htons(0xffff);
memcpy(&d6.s6_addr32[3], &daddr->v4addr,
sizeof(daddr->v4addr));
inp = in6_pcblookup_hash_exists(pi, &s6, sport, IFSCOPE_NONE,
&d6, dport, IFSCOPE_NONE, 0, &pd->lookup.uid, &pd->lookup.gid, NULL, false);
if (inp == 0) {
inp = in_pcblookup_hash_exists(pi, saddr->v4addr, sport,
daddr->v4addr, dport, INPLOOKUP_WILDCARD, &pd->lookup.uid, &pd->lookup.gid, NULL);
if (inp == 0) {
inp = in6_pcblookup_hash_exists(pi, &s6, sport, IFSCOPE_NONE,
&d6, dport, IFSCOPE_NONE, INPLOOKUP_WILDCARD,
&pd->lookup.uid, &pd->lookup.gid, NULL, false);
if (inp == 0) {
return -1;
}
}
}
}
break;
#endif /* INET */
case AF_INET6:
inp = in6_pcblookup_hash_exists(pi, &saddr->v6addr, sport, IFSCOPE_UNKNOWN, &daddr->v6addr,
dport, IFSCOPE_UNKNOWN, 0, &pd->lookup.uid, &pd->lookup.gid, NULL, false);
if (inp == 0) {
inp = in6_pcblookup_hash_exists(pi, &saddr->v6addr, sport, IFSCOPE_UNKNOWN,
&daddr->v6addr, dport, IFSCOPE_UNKNOWN, INPLOOKUP_WILDCARD,
&pd->lookup.uid, &pd->lookup.gid, NULL, false);
if (inp == 0) {
return -1;
}
}
break;
default:
return -1;
}
return 1;
}
static __attribute__((noinline)) u_int8_t
pf_get_wscale(pbuf_t *pbuf, int off, u_int16_t th_off, sa_family_t af)
{
int hlen;
u_int8_t hdr[60];
u_int8_t *opt, optlen;
u_int8_t wscale = 0;
hlen = th_off << 2; /* hlen <= sizeof (hdr) */
if (hlen <= (int)sizeof(struct tcphdr)) {
return 0;
}
if (!pf_pull_hdr(pbuf, off, hdr, hlen, NULL, NULL, af)) {
return 0;
}
opt = hdr + sizeof(struct tcphdr);
hlen -= sizeof(struct tcphdr);
while (hlen >= 3) {
switch (*opt) {
case TCPOPT_EOL:
case TCPOPT_NOP:
++opt;
--hlen;
break;
case TCPOPT_WINDOW:
wscale = opt[2];
if (wscale > TCP_MAX_WINSHIFT) {
wscale = TCP_MAX_WINSHIFT;
}
wscale |= PF_WSCALE_FLAG;
OS_FALLTHROUGH;
default:
optlen = opt[1];
if (optlen < 2) {
optlen = 2;
}
hlen -= optlen;
opt += optlen;
break;
}
}
return wscale;
}
static __attribute__((noinline)) u_int16_t
pf_get_mss(pbuf_t *pbuf, int off, u_int16_t th_off, sa_family_t af)
{
int hlen;
u_int8_t hdr[60];
u_int8_t *opt, optlen;
u_int16_t mss = tcp_mssdflt;
hlen = th_off << 2; /* hlen <= sizeof (hdr) */
if (hlen <= (int)sizeof(struct tcphdr)) {
return 0;
}
if (!pf_pull_hdr(pbuf, off, hdr, hlen, NULL, NULL, af)) {
return 0;
}
opt = hdr + sizeof(struct tcphdr);
hlen -= sizeof(struct tcphdr);
while (hlen >= TCPOLEN_MAXSEG) {
switch (*opt) {
case TCPOPT_EOL:
case TCPOPT_NOP:
++opt;
--hlen;
break;
case TCPOPT_MAXSEG:
bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2);
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(mss);
#endif
OS_FALLTHROUGH;
default:
optlen = opt[1];
if (optlen < 2) {
optlen = 2;
}
hlen -= optlen;
opt += optlen;
break;
}
}
return mss;
}
static __attribute__((noinline)) u_int16_t
pf_calc_mss(struct pf_addr *addr, sa_family_t af, u_int16_t offer)
{
#if INET
struct sockaddr_in *dst;
struct route ro;
#endif /* INET */
struct sockaddr_in6 *dst6;
struct route_in6 ro6;
struct rtentry *rt = NULL;
int hlen;
u_int16_t mss = tcp_mssdflt;
switch (af) {
#if INET
case AF_INET:
hlen = sizeof(struct ip);
bzero(&ro, sizeof(ro));
dst = (struct sockaddr_in *)(void *)&ro.ro_dst;
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = addr->v4addr;
rtalloc(&ro);
rt = ro.ro_rt;
break;
#endif /* INET */
case AF_INET6:
hlen = sizeof(struct ip6_hdr);
bzero(&ro6, sizeof(ro6));
dst6 = (struct sockaddr_in6 *)(void *)&ro6.ro_dst;
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(*dst6);
dst6->sin6_addr = addr->v6addr;
rtalloc((struct route *)&ro);
rt = ro6.ro_rt;
break;
default:
panic("pf_calc_mss: not AF_INET or AF_INET6!");
return 0;
}
if (rt && rt->rt_ifp) {
/* This is relevant only for PF SYN Proxy */
int interface_mtu = rt->rt_ifp->if_mtu;
if (af == AF_INET &&
INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) {
interface_mtu = IN6_LINKMTU(rt->rt_ifp);
/* Further adjust the size for CLAT46 expansion */
interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
}
mss = interface_mtu - hlen - sizeof(struct tcphdr);
mss = max(tcp_mssdflt, mss);
rtfree(rt);
}
mss = min(mss, offer);
mss = max(mss, 64); /* sanity - at least max opt space */
return mss;
}
static void
pf_set_rt_ifp(struct pf_state *s, struct pf_addr *saddr, sa_family_t af)
{
struct pf_rule *r = s->rule.ptr;
s->rt_kif = NULL;
if (!r->rt || r->rt == PF_FASTROUTE) {
return;
}
if ((af == AF_INET) || (af == AF_INET6)) {
pf_map_addr(af, r, saddr, &s->rt_addr, NULL,
&s->nat_src_node);
s->rt_kif = r->rpool.cur->kif;
}
return;
}
static void
pf_attach_state(struct pf_state_key *sk, struct pf_state *s, int tail)
{
s->state_key = sk;
sk->refcnt++;
/* list is sorted, if-bound states before floating */
if (tail) {
TAILQ_INSERT_TAIL(&sk->states, s, next);
} else {
TAILQ_INSERT_HEAD(&sk->states, s, next);
}
}
static void
pf_state_key_release_flowid(struct pf_state_key *sk)
{
#pragma unused (sk)
#if SKYWALK
if ((sk->flowsrc == FLOWSRC_PF) && (sk->flowhash != 0)) {
flowidns_release_flowid(sk->flowhash);
sk->flowhash = 0;
sk->flowsrc = 0;
}
#endif /* SKYWALK */
}
void
pf_detach_state(struct pf_state *s, int flags)
{
struct pf_state_key *sk = s->state_key;
if (sk == NULL) {
return;
}
s->state_key = NULL;
TAILQ_REMOVE(&sk->states, s, next);
if (--sk->refcnt == 0) {
if (!(flags & PF_DT_SKIP_EXTGWY)) {
pf_remove_state_key_ext_gwy(sk);
}
if (!(flags & PF_DT_SKIP_LANEXT)) {
RB_REMOVE(pf_state_tree_lan_ext,
&pf_statetbl_lan_ext, sk);
}
if (sk->app_state) {
pool_put(&pf_app_state_pl, sk->app_state);
}
pf_state_key_release_flowid(sk);
pool_put(&pf_state_key_pl, sk);
}
}
struct pf_state_key *
pf_alloc_state_key(struct pf_state *s, struct pf_state_key *psk)
{
struct pf_state_key *sk;
if ((sk = pool_get(&pf_state_key_pl, PR_WAITOK)) == NULL) {
return NULL;
}
bzero(sk, sizeof(*sk));
TAILQ_INIT(&sk->states);
pf_attach_state(sk, s, 0);
/* initialize state key from psk, if provided */
if (psk != NULL) {
bcopy(&psk->lan, &sk->lan, sizeof(sk->lan));
bcopy(&psk->gwy, &sk->gwy, sizeof(sk->gwy));
bcopy(&psk->ext_lan, &sk->ext_lan, sizeof(sk->ext_lan));
bcopy(&psk->ext_gwy, &sk->ext_gwy, sizeof(sk->ext_gwy));
sk->af_lan = psk->af_lan;
sk->af_gwy = psk->af_gwy;
sk->proto = psk->proto;
sk->direction = psk->direction;
sk->proto_variant = psk->proto_variant;
VERIFY(psk->app_state == NULL);
ASSERT(psk->flowsrc != FLOWSRC_PF);
sk->flowsrc = psk->flowsrc;
sk->flowhash = psk->flowhash;
/* don't touch tree entries, states and refcnt on sk */
}
if (sk->flowhash == 0) {
ASSERT(sk->flowsrc == 0);
sk->flowsrc = FLOWSRC_PF;
sk->flowhash = pf_calc_state_key_flowhash(sk);
}
return sk;
}
static __attribute__((noinline)) u_int32_t
pf_tcp_iss(struct pf_pdesc *pd)
{
MD5_CTX ctx;
u_int32_t digest[4];
if (pf_tcp_secret_init == 0) {
read_frandom(pf_tcp_secret, sizeof(pf_tcp_secret));
MD5Init(&pf_tcp_secret_ctx);
MD5Update(&pf_tcp_secret_ctx, pf_tcp_secret,
sizeof(pf_tcp_secret));
pf_tcp_secret_init = 1;
}
ctx = pf_tcp_secret_ctx;
MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short));
MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short));
if (pd->af == AF_INET6) {
MD5Update(&ctx, (char *)&pd->src->v6addr, sizeof(struct in6_addr));
MD5Update(&ctx, (char *)&pd->dst->v6addr, sizeof(struct in6_addr));
} else {
MD5Update(&ctx, (char *)&pd->src->v4addr, sizeof(struct in_addr));
MD5Update(&ctx, (char *)&pd->dst->v4addr, sizeof(struct in_addr));
}
MD5Final((u_char *)digest, &ctx);
pf_tcp_iss_off += 4096;
return digest[0] + random() + pf_tcp_iss_off;
}
/*
* This routine is called to perform address family translation on the
* inner IP header (that may come as payload) of an ICMP(v4addr/6) error
* response.
*/
static __attribute__((noinline)) int
pf_change_icmp_af(pbuf_t *pbuf, int off,
struct pf_pdesc *pd, struct pf_pdesc *pd2, struct pf_addr *src,
struct pf_addr *dst, sa_family_t af, sa_family_t naf)
{
struct ip *ip4 = NULL;
struct ip6_hdr *ip6 = NULL;
void *hdr;
int hlen, olen;
uint64_t ipid_salt = (uint64_t)pbuf_get_packet_buffer_address(pbuf);
if (af == naf || (af != AF_INET && af != AF_INET6) ||
(naf != AF_INET && naf != AF_INET6)) {
return -1;
}
/* old header */
olen = pd2->off - off;
/* new header */
hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6);
/* Modify the pbuf to accommodate the new header */
hdr = pbuf_resize_segment(pbuf, off, olen, hlen);
if (hdr == NULL) {
return -1;
}
/* translate inner ip/ip6 header */
switch (naf) {
case AF_INET:
ip4 = hdr;
bzero(ip4, sizeof(*ip4));
ip4->ip_v = IPVERSION;
ip4->ip_hl = sizeof(*ip4) >> 2;
ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen);
ip4->ip_id = rfc6864 ? 0 : htons(ip_randomid(ipid_salt));
ip4->ip_off = htons(IP_DF);
ip4->ip_ttl = pd2->ttl;
if (pd2->proto == IPPROTO_ICMPV6) {
ip4->ip_p = IPPROTO_ICMP;
} else {
ip4->ip_p = pd2->proto;
}
ip4->ip_src = src->v4addr;
ip4->ip_dst = dst->v4addr;
ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2);
break;
case AF_INET6:
ip6 = hdr;
bzero(ip6, sizeof(*ip6));
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = htons(pd2->tot_len - olen);
if (pd2->proto == IPPROTO_ICMP) {
ip6->ip6_nxt = IPPROTO_ICMPV6;
} else {
ip6->ip6_nxt = pd2->proto;
}
if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) {
ip6->ip6_hlim = IPV6_DEFHLIM;
} else {
ip6->ip6_hlim = pd2->ttl;
}
ip6->ip6_src = src->v6addr;
ip6->ip6_dst = dst->v6addr;
break;
}
/* adjust payload offset and total packet length */
pd2->off += hlen - olen;
pd->tot_len += hlen - olen;
return 0;
}
#define PTR_IP(field) ((int32_t)offsetof(struct ip, field))
#define PTR_IP6(field) ((int32_t)offsetof(struct ip6_hdr, field))
static __attribute__((noinline)) int
pf_translate_icmp_af(int af, void *arg)
{
struct icmp *icmp4;
struct icmp6_hdr *icmp6;
u_int32_t mtu;
int32_t ptr = -1;
u_int8_t type;
u_int8_t code;
switch (af) {
case AF_INET:
icmp6 = arg;
type = icmp6->icmp6_type;
code = icmp6->icmp6_code;
mtu = ntohl(icmp6->icmp6_mtu);
switch (type) {
case ICMP6_ECHO_REQUEST:
type = ICMP_ECHO;
break;
case ICMP6_ECHO_REPLY:
type = ICMP_ECHOREPLY;
break;
case ICMP6_DST_UNREACH:
type = ICMP_UNREACH;
switch (code) {
case ICMP6_DST_UNREACH_NOROUTE:
case ICMP6_DST_UNREACH_BEYONDSCOPE:
case ICMP6_DST_UNREACH_ADDR:
code = ICMP_UNREACH_HOST;
break;
case ICMP6_DST_UNREACH_ADMIN:
code = ICMP_UNREACH_HOST_PROHIB;
break;
case ICMP6_DST_UNREACH_NOPORT:
code = ICMP_UNREACH_PORT;
break;
default:
return -1;
}
break;
case ICMP6_PACKET_TOO_BIG:
type = ICMP_UNREACH;
code = ICMP_UNREACH_NEEDFRAG;
mtu -= 20;
break;
case ICMP6_TIME_EXCEEDED:
type = ICMP_TIMXCEED;
break;
case ICMP6_PARAM_PROB:
switch (code) {
case ICMP6_PARAMPROB_HEADER:
type = ICMP_PARAMPROB;
code = ICMP_PARAMPROB_ERRATPTR;
ptr = ntohl(icmp6->icmp6_pptr);
if (ptr == PTR_IP6(ip6_vfc)) {
; /* preserve */
} else if (ptr == PTR_IP6(ip6_vfc) + 1) {
ptr = PTR_IP(ip_tos);
} else if (ptr == PTR_IP6(ip6_plen) ||
ptr == PTR_IP6(ip6_plen) + 1) {
ptr = PTR_IP(ip_len);
} else if (ptr == PTR_IP6(ip6_nxt)) {
ptr = PTR_IP(ip_p);
} else if (ptr == PTR_IP6(ip6_hlim)) {
ptr = PTR_IP(ip_ttl);
} else if (ptr >= PTR_IP6(ip6_src) &&
ptr < PTR_IP6(ip6_dst)) {
ptr = PTR_IP(ip_src);
} else if (ptr >= PTR_IP6(ip6_dst) &&
ptr < (int32_t)sizeof(struct ip6_hdr)) {
ptr = PTR_IP(ip_dst);
} else {
return -1;
}
break;
case ICMP6_PARAMPROB_NEXTHEADER:
type = ICMP_UNREACH;
code = ICMP_UNREACH_PROTOCOL;
break;
default:
return -1;
}
break;
default:
return -1;
}
icmp6->icmp6_type = type;
icmp6->icmp6_code = code;
/* aligns well with a icmpv4 nextmtu */
icmp6->icmp6_mtu = htonl(mtu);
/* icmpv4 pptr is a one most significant byte */
if (ptr >= 0) {
icmp6->icmp6_pptr = htonl(ptr << 24);
}
break;
case AF_INET6:
icmp4 = arg;
type = icmp4->icmp_type;
code = icmp4->icmp_code;
mtu = ntohs(icmp4->icmp_nextmtu);
switch (type) {
case ICMP_ECHO:
type = ICMP6_ECHO_REQUEST;
break;
case ICMP_ECHOREPLY:
type = ICMP6_ECHO_REPLY;
break;
case ICMP_UNREACH:
type = ICMP6_DST_UNREACH;
switch (code) {
case ICMP_UNREACH_NET:
case ICMP_UNREACH_HOST:
case ICMP_UNREACH_NET_UNKNOWN:
case ICMP_UNREACH_HOST_UNKNOWN:
case ICMP_UNREACH_ISOLATED:
case ICMP_UNREACH_TOSNET:
case ICMP_UNREACH_TOSHOST:
code = ICMP6_DST_UNREACH_NOROUTE;
break;
case ICMP_UNREACH_PORT:
code = ICMP6_DST_UNREACH_NOPORT;
break;
case ICMP_UNREACH_NET_PROHIB:
case ICMP_UNREACH_HOST_PROHIB:
case ICMP_UNREACH_FILTER_PROHIB:
case ICMP_UNREACH_PRECEDENCE_CUTOFF:
code = ICMP6_DST_UNREACH_ADMIN;
break;
case ICMP_UNREACH_PROTOCOL:
type = ICMP6_PARAM_PROB;
code = ICMP6_PARAMPROB_NEXTHEADER;
ptr = offsetof(struct ip6_hdr, ip6_nxt);
break;
case ICMP_UNREACH_NEEDFRAG:
type = ICMP6_PACKET_TOO_BIG;
code = 0;
mtu += 20;
break;
default:
return -1;
}
break;
case ICMP_TIMXCEED:
type = ICMP6_TIME_EXCEEDED;
break;
case ICMP_PARAMPROB:
type = ICMP6_PARAM_PROB;
switch (code) {
case ICMP_PARAMPROB_ERRATPTR:
code = ICMP6_PARAMPROB_HEADER;
break;
case ICMP_PARAMPROB_LENGTH:
code = ICMP6_PARAMPROB_HEADER;
break;
default:
return -1;
}
ptr = icmp4->icmp_pptr;
if (ptr == 0 || ptr == PTR_IP(ip_tos)) {
; /* preserve */
} else if (ptr == PTR_IP(ip_len) ||
ptr == PTR_IP(ip_len) + 1) {
ptr = PTR_IP6(ip6_plen);
} else if (ptr == PTR_IP(ip_ttl)) {
ptr = PTR_IP6(ip6_hlim);
} else if (ptr == PTR_IP(ip_p)) {
ptr = PTR_IP6(ip6_nxt);
} else if (ptr >= PTR_IP(ip_src) &&
ptr < PTR_IP(ip_dst)) {
ptr = PTR_IP6(ip6_src);
} else if (ptr >= PTR_IP(ip_dst) &&
ptr < (int32_t)sizeof(struct ip)) {
ptr = PTR_IP6(ip6_dst);
} else {
return -1;
}
break;
default:
return -1;
}
icmp4->icmp_type = type;
icmp4->icmp_code = code;
icmp4->icmp_nextmtu = htons(mtu);
if (ptr >= 0) {
icmp4->icmp_void = htonl(ptr);
}
break;
}
return 0;
}
/* Note: frees pbuf if PF_NAT64 is returned */
static __attribute__((noinline)) int
pf_nat64_ipv6(pbuf_t *pbuf, int off, struct pf_pdesc *pd)
{
struct ip *ip4;
struct mbuf *m;
/*
* ip_input asserts for rcvif to be not NULL
* That may not be true for two corner cases
* 1. If for some reason a local app sends DNS
* AAAA query to local host
* 2. If IPv6 stack in kernel internally generates a
* message destined for a synthesized IPv6 end-point.
*/
if (pbuf->pb_ifp == NULL) {
return PF_DROP;
}
ip4 = (struct ip *)pbuf_resize_segment(pbuf, 0, off, sizeof(*ip4));
if (ip4 == NULL) {
return PF_DROP;
}
ip4->ip_v = 4;
ip4->ip_hl = 5;
ip4->ip_tos = pd->tos & htonl(0x0ff00000);
ip4->ip_len = htons(sizeof(*ip4) + (pd->tot_len - off));
ip4->ip_id = 0;
ip4->ip_off = htons(IP_DF);
ip4->ip_ttl = pd->ttl;
ip4->ip_p = pd->proto;
ip4->ip_sum = 0;
ip4->ip_src = pd->naddr.v4addr;
ip4->ip_dst = pd->ndaddr.v4addr;
ip4->ip_sum = pbuf_inet_cksum(pbuf, 0, 0, ip4->ip_hl << 2);
/* recalculate icmp checksums */
if (pd->proto == IPPROTO_ICMP) {
struct icmp *icmp;
int hlen = sizeof(*ip4);
icmp = (struct icmp *)pbuf_contig_segment(pbuf, hlen,
ICMP_MINLEN);
if (icmp == NULL) {
return PF_DROP;
}
icmp->icmp_cksum = 0;
icmp->icmp_cksum = pbuf_inet_cksum(pbuf, 0, hlen,
ntohs(ip4->ip_len) - hlen);
}
if ((m = pbuf_to_mbuf(pbuf, TRUE)) != NULL) {
ip_input(m);
}
return PF_NAT64;
}
static __attribute__((noinline)) int
pf_nat64_ipv4(pbuf_t *pbuf, int off, struct pf_pdesc *pd)
{
struct ip6_hdr *ip6;
struct mbuf *m;
if (pbuf->pb_ifp == NULL) {
return PF_DROP;
}
ip6 = (struct ip6_hdr *)pbuf_resize_segment(pbuf, 0, off, sizeof(*ip6));
if (ip6 == NULL) {
return PF_DROP;
}
ip6->ip6_vfc = htonl((6 << 28) | (pd->tos << 20));
ip6->ip6_plen = htons(pd->tot_len - off);
ip6->ip6_nxt = pd->proto;
ip6->ip6_hlim = pd->ttl;
ip6->ip6_src = pd->naddr.v6addr;
ip6->ip6_dst = pd->ndaddr.v6addr;
/* recalculate icmp6 checksums */
if (pd->proto == IPPROTO_ICMPV6) {
struct icmp6_hdr *icmp6;
int hlen = sizeof(*ip6);
icmp6 = (struct icmp6_hdr *)pbuf_contig_segment(pbuf, hlen,
sizeof(*icmp6));
if (icmp6 == NULL) {
return PF_DROP;
}
icmp6->icmp6_cksum = 0;
icmp6->icmp6_cksum = pbuf_inet6_cksum(pbuf,
IPPROTO_ICMPV6, hlen,
ntohs(ip6->ip6_plen));
} else if (pd->proto == IPPROTO_UDP) {
struct udphdr *uh;
int hlen = sizeof(*ip6);
uh = (struct udphdr *)pbuf_contig_segment(pbuf, hlen,
sizeof(*uh));
if (uh == NULL) {
return PF_DROP;
}
if (uh->uh_sum == 0) {
uh->uh_sum = pbuf_inet6_cksum(pbuf, IPPROTO_UDP,
hlen, ntohs(ip6->ip6_plen));
}
}
if ((m = pbuf_to_mbuf(pbuf, TRUE)) != NULL) {
ip6_input(m);
}
return PF_NAT64;
}
static __attribute__((noinline)) int
pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction,
struct pfi_kif *kif, pbuf_t *pbuf, int off, void *h,
struct pf_pdesc *pd, struct pf_rule **am, struct pf_ruleset **rsm,
struct ifqueue *ifq)
{
#pragma unused(h)
struct pf_rule *nr = NULL;
struct pf_addr *saddr = pd->src, *daddr = pd->dst;
sa_family_t af = pd->af;
struct pf_rule *r, *a = NULL;
struct pf_ruleset *ruleset = NULL;
struct pf_src_node *nsn = NULL;
struct tcphdr *th = pd->hdr.tcp;
struct udphdr *uh = pd->hdr.udp;
u_short reason;
int rewrite = 0, hdrlen = 0;
int tag = -1;
unsigned int rtableid = IFSCOPE_NONE;
int asd = 0;
int match = 0;
int state_icmp = 0;
u_int16_t mss = tcp_mssdflt;
u_int8_t icmptype = 0, icmpcode = 0;
#if SKYWALK
netns_token nstoken = NULL;
#endif
struct pf_grev1_hdr *grev1 = pd->hdr.grev1;
union pf_state_xport bxport, bdxport, nxport, sxport, dxport;
struct pf_state_key psk;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
PD_CLEAR_STATE_FLOWID(pd);
if (direction == PF_IN && pf_check_congestion(ifq)) {
REASON_SET(&reason, PFRES_CONGEST);
return PF_DROP;
}
hdrlen = 0;
sxport.spi = 0;
dxport.spi = 0;
nxport.spi = 0;
switch (pd->proto) {
case IPPROTO_TCP:
sxport.port = th->th_sport;
dxport.port = th->th_dport;
hdrlen = sizeof(*th);
break;
case IPPROTO_UDP:
sxport.port = uh->uh_sport;
dxport.port = uh->uh_dport;
hdrlen = sizeof(*uh);
break;
#if INET
case IPPROTO_ICMP:
if (pd->af != AF_INET) {
break;
}
sxport.port = dxport.port = pd->hdr.icmp->icmp_id;
hdrlen = ICMP_MINLEN;
icmptype = pd->hdr.icmp->icmp_type;
icmpcode = pd->hdr.icmp->icmp_code;
if (ICMP_ERRORTYPE(icmptype)) {
state_icmp++;
}
break;
#endif /* INET */
case IPPROTO_ICMPV6:
if (pd->af != AF_INET6) {
break;
}
sxport.port = dxport.port = pd->hdr.icmp6->icmp6_id;
hdrlen = sizeof(*pd->hdr.icmp6);
icmptype = pd->hdr.icmp6->icmp6_type;
icmpcode = pd->hdr.icmp6->icmp6_code;
if (ICMP6_ERRORTYPE(icmptype)) {
state_icmp++;
}
break;
case IPPROTO_GRE:
if (pd->proto_variant == PF_GRE_PPTP_VARIANT) {
sxport.call_id = dxport.call_id =
pd->hdr.grev1->call_id;
hdrlen = sizeof(*pd->hdr.grev1);
}
break;
case IPPROTO_ESP:
sxport.spi = 0;
dxport.spi = pd->hdr.esp->spi;
hdrlen = sizeof(*pd->hdr.esp);
break;
}
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
bxport = sxport;
bdxport = dxport;
if (direction == PF_OUT) {
nxport = sxport;
} else {
nxport = dxport;
}
/* check packet for BINAT/NAT/RDR */
if ((nr = pf_get_translation_aux(pd, pbuf, off, direction, kif, &nsn,
saddr, &sxport, daddr, &dxport, &nxport
#if SKYWALK
, &nstoken
#endif
)) != NULL) {
int ua;
u_int16_t dport;
if (pd->af != pd->naf) {
ua = 0;
} else {
ua = 1;
}
PF_ACPY(&pd->baddr, saddr, af);
PF_ACPY(&pd->bdaddr, daddr, af);
switch (pd->proto) {
case IPPROTO_TCP:
if (pd->af != pd->naf ||
PF_ANEQ(saddr, &pd->naddr, pd->af)) {
pf_change_ap(direction, pd->mp, saddr,
&th->th_sport, pd->ip_sum, &th->th_sum,
&pd->naddr, nxport.port, 0, af,
pd->naf, ua);
sxport.port = th->th_sport;
}
if (pd->af != pd->naf ||
PF_ANEQ(daddr, &pd->ndaddr, pd->af) ||
(nr && (nr->action == PF_RDR) &&
(th->th_dport != nxport.port))) {
if (nr && nr->action == PF_RDR) {
dport = nxport.port;
} else {
dport = th->th_dport;
}
pf_change_ap(direction, pd->mp, daddr,
&th->th_dport, pd->ip_sum,
&th->th_sum, &pd->ndaddr,
dport, 0, af, pd->naf, ua);
dxport.port = th->th_dport;
}
rewrite++;
break;
case IPPROTO_UDP:
if (pd->af != pd->naf ||
PF_ANEQ(saddr, &pd->naddr, pd->af)) {
pf_change_ap(direction, pd->mp, saddr,
&uh->uh_sport, pd->ip_sum,
&uh->uh_sum, &pd->naddr,
nxport.port, 1, af, pd->naf, ua);
sxport.port = uh->uh_sport;
}
if (pd->af != pd->naf ||
PF_ANEQ(daddr, &pd->ndaddr, pd->af) ||
(nr && (nr->action == PF_RDR) &&
(uh->uh_dport != nxport.port))) {
if (nr && nr->action == PF_RDR) {
dport = nxport.port;
} else {
dport = uh->uh_dport;
}
pf_change_ap(direction, pd->mp, daddr,
&uh->uh_dport, pd->ip_sum,
&uh->uh_sum, &pd->ndaddr,
dport, 0, af, pd->naf, ua);
dxport.port = uh->uh_dport;
}
rewrite++;
break;
#if INET
case IPPROTO_ICMP:
if (pd->af != AF_INET) {
break;
}
/*
* TODO:
* pd->af != pd->naf not handled yet here and would be
* needed for NAT46 needed to support XLAT.
* Will cross the bridge when it comes.
*/
if (PF_ANEQ(saddr, &pd->naddr, pd->af)) {
pf_change_a(&saddr->v4addr.s_addr, pd->ip_sum,
pd->naddr.v4addr.s_addr, 0);
pd->hdr.icmp->icmp_cksum = pf_cksum_fixup(
pd->hdr.icmp->icmp_cksum, sxport.port,
nxport.port, 0);
pd->hdr.icmp->icmp_id = nxport.port;
}
if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
pf_change_a(&daddr->v4addr.s_addr, pd->ip_sum,
pd->ndaddr.v4addr.s_addr, 0);
}
++rewrite;
break;
#endif /* INET */
case IPPROTO_ICMPV6:
if (pd->af != AF_INET6) {
break;
}
if (pd->af != pd->naf ||
PF_ANEQ(saddr, &pd->naddr, pd->af)) {
pf_change_addr(saddr,
&pd->hdr.icmp6->icmp6_cksum,
&pd->naddr, 0, pd->af, pd->naf);
}
if (pd->af != pd->naf ||
PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
pf_change_addr(daddr,
&pd->hdr.icmp6->icmp6_cksum,
&pd->ndaddr, 0, pd->af, pd->naf);
}
if (pd->af != pd->naf) {
if (pf_translate_icmp_af(AF_INET,
pd->hdr.icmp6)) {
return PF_DROP;
}
pd->proto = IPPROTO_ICMP;
}
rewrite++;
break;
case IPPROTO_GRE:
if ((direction == PF_IN) &&
(pd->proto_variant == PF_GRE_PPTP_VARIANT)) {
grev1->call_id = nxport.call_id;
}
switch (pd->af) {
#if INET
case AF_INET:
if (PF_ANEQ(saddr, &pd->naddr, pd->af)) {
pf_change_a(&saddr->v4addr.s_addr,
pd->ip_sum,
pd->naddr.v4addr.s_addr, 0);
}
if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
pf_change_a(&daddr->v4addr.s_addr,
pd->ip_sum,
pd->ndaddr.v4addr.s_addr, 0);
}
break;
#endif /* INET */
case AF_INET6:
if (PF_ANEQ(saddr, &pd->naddr, pd->af)) {
PF_ACPY(saddr, &pd->naddr, AF_INET6);
}
if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
PF_ACPY(daddr, &pd->ndaddr, AF_INET6);
}
break;
}
++rewrite;
break;
case IPPROTO_ESP:
if (direction == PF_OUT) {
bxport.spi = 0;
}
switch (pd->af) {
#if INET
case AF_INET:
if (PF_ANEQ(saddr, &pd->naddr, pd->af)) {
pf_change_a(&saddr->v4addr.s_addr,
pd->ip_sum, pd->naddr.v4addr.s_addr, 0);
}
if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
pf_change_a(&daddr->v4addr.s_addr,
pd->ip_sum,
pd->ndaddr.v4addr.s_addr, 0);
}
break;
#endif /* INET */
case AF_INET6:
if (PF_ANEQ(saddr, &pd->naddr, pd->af)) {
PF_ACPY(saddr, &pd->naddr, AF_INET6);
}
if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
PF_ACPY(daddr, &pd->ndaddr, AF_INET6);
}
break;
}
break;
default:
switch (pd->af) {
#if INET
case AF_INET:
if ((pd->naf != AF_INET) ||
(PF_ANEQ(saddr, &pd->naddr, pd->af))) {
pf_change_addr(saddr, pd->ip_sum,
&pd->naddr, 0, af, pd->naf);
}
if ((pd->naf != AF_INET) ||
(PF_ANEQ(daddr, &pd->ndaddr, pd->af))) {
pf_change_addr(daddr, pd->ip_sum,
&pd->ndaddr, 0, af, pd->naf);
}
break;
#endif /* INET */
case AF_INET6:
if (PF_ANEQ(saddr, &pd->naddr, pd->af)) {
PF_ACPY(saddr, &pd->naddr, af);
}
if (PF_ANEQ(daddr, &pd->ndaddr, pd->af)) {
PF_ACPY(daddr, &pd->ndaddr, af);
}
break;
}
break;
}
if (nr->natpass) {
r = NULL;
}
pd->nat_rule = nr;
pd->af = pd->naf;
} else {
#if SKYWALK
VERIFY(!NETNS_TOKEN_VALID(&nstoken));
#endif
}
if (nr && nr->tag > 0) {
tag = nr->tag;
}
while (r != NULL) {
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != direction) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != pd->af) {
r = r->skip[PF_SKIP_AF].ptr;
} else if (r->proto && r->proto != pd->proto) {
r = r->skip[PF_SKIP_PROTO].ptr;
} else if (PF_MISMATCHAW(&r->src.addr, saddr, pd->af,
r->src.neg, kif)) {
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
}
/* tcp/udp only. port_op always 0 in other cases */
else if (r->proto == pd->proto &&
(r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) &&
r->src.xport.range.op &&
!pf_match_port(r->src.xport.range.op,
r->src.xport.range.port[0], r->src.xport.range.port[1],
th->th_sport)) {
r = r->skip[PF_SKIP_SRC_PORT].ptr;
} else if (PF_MISMATCHAW(&r->dst.addr, daddr, pd->af,
r->dst.neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
}
/* tcp/udp only. port_op always 0 in other cases */
else if (r->proto == pd->proto &&
(r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) &&
r->dst.xport.range.op &&
!pf_match_port(r->dst.xport.range.op,
r->dst.xport.range.port[0], r->dst.xport.range.port[1],
th->th_dport)) {
r = r->skip[PF_SKIP_DST_PORT].ptr;
}
/* icmp only. type always 0 in other cases */
else if (r->type && r->type != icmptype + 1) {
r = TAILQ_NEXT(r, entries);
}
/* icmp only. type always 0 in other cases */
else if (r->code && r->code != icmpcode + 1) {
r = TAILQ_NEXT(r, entries);
} else if ((r->rule_flag & PFRULE_TOS) && r->tos &&
!(r->tos & pd->tos)) {
r = TAILQ_NEXT(r, entries);
} else if ((r->rule_flag & PFRULE_DSCP) && r->tos &&
!(r->tos & (pd->tos & DSCP_MASK))) {
r = TAILQ_NEXT(r, entries);
} else if ((r->rule_flag & PFRULE_SC) && r->tos &&
((r->tos & SCIDX_MASK) != pd->sc)) {
r = TAILQ_NEXT(r, entries);
} else if (r->rule_flag & PFRULE_FRAGMENT) {
r = TAILQ_NEXT(r, entries);
} else if (pd->proto == IPPROTO_TCP &&
(r->flagset & th->th_flags) != r->flags) {
r = TAILQ_NEXT(r, entries);
}
/* tcp/udp only. uid.op always 0 in other cases */
else if (r->uid.op && (pd->lookup.done || ((void)(pd->lookup.done =
pf_socket_lookup(direction, pd)), 1)) &&
!pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1],
pd->lookup.uid)) {
r = TAILQ_NEXT(r, entries);
}
/* tcp/udp only. gid.op always 0 in other cases */
else if (r->gid.op && (pd->lookup.done || ((void)(pd->lookup.done =
pf_socket_lookup(direction, pd)), 1)) &&
!pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1],
pd->lookup.gid)) {
r = TAILQ_NEXT(r, entries);
} else if (r->prob && r->prob <= (RandomULong() % (UINT_MAX - 1) + 1)) {
r = TAILQ_NEXT(r, entries);
} else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) {
r = TAILQ_NEXT(r, entries);
} else if (r->os_fingerprint != PF_OSFP_ANY &&
(pd->proto != IPPROTO_TCP || !pf_osfp_match(
pf_osfp_fingerprint(pd, pbuf, off, th),
r->os_fingerprint))) {
r = TAILQ_NEXT(r, entries);
} else {
if (r->tag) {
tag = r->tag;
}
if (PF_RTABLEID_IS_VALID(r->rtableid)) {
rtableid = r->rtableid;
}
if (r->anchor == NULL) {
match = 1;
*rm = r;
*am = a;
*rsm = ruleset;
if ((*rm)->quick) {
break;
}
r = TAILQ_NEXT(r, entries);
} else {
pf_step_into_anchor(&asd, &ruleset,
PF_RULESET_FILTER, &r, &a, &match);
}
}
if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset,
PF_RULESET_FILTER, &r, &a, &match)) {
break;
}
}
r = *rm;
a = *am;
ruleset = *rsm;
REASON_SET(&reason, PFRES_MATCH);
if (r->log || (nr != NULL && nr->log)) {
if (rewrite > 0) {
if (rewrite < off + hdrlen) {
rewrite = off + hdrlen;
}
if (pf_lazy_makewritable(pd, pbuf, rewrite) == NULL) {
REASON_SET(&reason, PFRES_MEMORY);
#if SKYWALK
netns_release(&nstoken);
#endif
return PF_DROP;
}
pbuf_copy_back(pbuf, off, hdrlen, pd->hdr.any);
}
PFLOG_PACKET(kif, h, pbuf, pd->af, direction, reason,
r->log ? r : nr, a, ruleset, pd);
}
if ((r->action == PF_DROP) &&
((r->rule_flag & PFRULE_RETURNRST) ||
(r->rule_flag & PFRULE_RETURNICMP) ||
(r->rule_flag & PFRULE_RETURN))) {
/* undo NAT changes, if they have taken place */
/* XXX For NAT64 we are not reverting the changes */
if (nr != NULL && nr->action != PF_NAT64) {
if (direction == PF_OUT) {
pd->af = af;
switch (pd->proto) {
case IPPROTO_TCP:
pf_change_ap(direction, pd->mp, saddr,
&th->th_sport, pd->ip_sum,
&th->th_sum, &pd->baddr,
bxport.port, 0, af, pd->af, 1);
sxport.port = th->th_sport;
rewrite++;
break;
case IPPROTO_UDP:
pf_change_ap(direction, pd->mp, saddr,
&pd->hdr.udp->uh_sport, pd->ip_sum,
&pd->hdr.udp->uh_sum, &pd->baddr,
bxport.port, 1, af, pd->af, 1);
sxport.port = pd->hdr.udp->uh_sport;
rewrite++;
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
/* nothing! */
break;
case IPPROTO_GRE:
PF_ACPY(&pd->baddr, saddr, af);
++rewrite;
switch (af) {
#if INET
case AF_INET:
pf_change_a(&saddr->v4addr.s_addr,
pd->ip_sum,
pd->baddr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(saddr, &pd->baddr,
AF_INET6);
break;
}
break;
case IPPROTO_ESP:
PF_ACPY(&pd->baddr, saddr, af);
switch (af) {
#if INET
case AF_INET:
pf_change_a(&saddr->v4addr.s_addr,
pd->ip_sum,
pd->baddr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(saddr, &pd->baddr,
AF_INET6);
break;
}
break;
default:
switch (af) {
case AF_INET:
pf_change_a(&saddr->v4addr.s_addr,
pd->ip_sum,
pd->baddr.v4addr.s_addr, 0);
break;
case AF_INET6:
PF_ACPY(saddr, &pd->baddr, af);
break;
}
}
} else {
switch (pd->proto) {
case IPPROTO_TCP:
pf_change_ap(direction, pd->mp, daddr,
&th->th_dport, pd->ip_sum,
&th->th_sum, &pd->bdaddr,
bdxport.port, 0, af, pd->af, 1);
dxport.port = th->th_dport;
rewrite++;
break;
case IPPROTO_UDP:
pf_change_ap(direction, pd->mp, daddr,
&pd->hdr.udp->uh_dport, pd->ip_sum,
&pd->hdr.udp->uh_sum, &pd->bdaddr,
bdxport.port, 1, af, pd->af, 1);
dxport.port = pd->hdr.udp->uh_dport;
rewrite++;
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
/* nothing! */
break;
case IPPROTO_GRE:
if (pd->proto_variant ==
PF_GRE_PPTP_VARIANT) {
grev1->call_id =
bdxport.call_id;
}
++rewrite;
switch (af) {
#if INET
case AF_INET:
pf_change_a(&daddr->v4addr.s_addr,
pd->ip_sum,
pd->bdaddr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(daddr, &pd->bdaddr,
AF_INET6);
break;
}
break;
case IPPROTO_ESP:
switch (af) {
#if INET
case AF_INET:
pf_change_a(&daddr->v4addr.s_addr,
pd->ip_sum,
pd->bdaddr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(daddr, &pd->bdaddr,
AF_INET6);
break;
}
break;
default:
switch (af) {
case AF_INET:
pf_change_a(&daddr->v4addr.s_addr,
pd->ip_sum,
pd->bdaddr.v4addr.s_addr, 0);
break;
case AF_INET6:
PF_ACPY(daddr, &pd->bdaddr, af);
break;
}
}
}
}
if (pd->proto == IPPROTO_TCP &&
((r->rule_flag & PFRULE_RETURNRST) ||
(r->rule_flag & PFRULE_RETURN)) &&
!(th->th_flags & TH_RST)) {
u_int32_t ack = ntohl(th->th_seq) + pd->p_len;
int len = 0;
struct ip *h4;
struct ip6_hdr *h6;
switch (pd->af) {
case AF_INET:
h4 = pbuf->pb_data;
len = ntohs(h4->ip_len) - off;
break;
case AF_INET6:
h6 = pbuf->pb_data;
len = ntohs(h6->ip6_plen) -
(off - sizeof(*h6));
break;
}
if (pf_check_proto_cksum(pbuf, off, len, IPPROTO_TCP,
pd->af)) {
REASON_SET(&reason, PFRES_PROTCKSUM);
} else {
if (th->th_flags & TH_SYN) {
ack++;
}
if (th->th_flags & TH_FIN) {
ack++;
}
pf_send_tcp(r, pd->af, pd->dst,
pd->src, th->th_dport, th->th_sport,
ntohl(th->th_ack), ack, TH_RST | TH_ACK, 0, 0,
r->return_ttl, 1, 0, pd->eh, kif->pfik_ifp);
}
} else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET &&
pd->proto != IPPROTO_ESP && pd->proto != IPPROTO_AH &&
r->return_icmp) {
pf_send_icmp(pbuf, r->return_icmp >> 8,
r->return_icmp & 255, pd->af, r);
} else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 &&
pd->proto != IPPROTO_ESP && pd->proto != IPPROTO_AH &&
r->return_icmp6) {
pf_send_icmp(pbuf, r->return_icmp6 >> 8,
r->return_icmp6 & 255, pd->af, r);
}
}
if (r->action == PF_DROP) {
#if SKYWALK
netns_release(&nstoken);
#endif
return PF_DROP;
}
/* prepare state key, for flowhash and/or the state (if created) */
bzero(&psk, sizeof(psk));
psk.proto = pd->proto;
psk.direction = direction;
if (pd->proto == IPPROTO_UDP) {
if (ntohs(pd->hdr.udp->uh_sport) == PF_IKE_PORT &&
ntohs(pd->hdr.udp->uh_dport) == PF_IKE_PORT) {
psk.proto_variant = PF_EXTFILTER_APD;
} else {
psk.proto_variant = nr ? nr->extfilter : r->extfilter;
if (psk.proto_variant < PF_EXTFILTER_APD) {
psk.proto_variant = PF_EXTFILTER_APD;
}
}
} else if (pd->proto == IPPROTO_GRE) {
psk.proto_variant = pd->proto_variant;
}
if (direction == PF_OUT) {
psk.af_gwy = af;
PF_ACPY(&psk.gwy.addr, saddr, af);
PF_ACPY(&psk.ext_gwy.addr, daddr, af);
switch (pd->proto) {
case IPPROTO_ESP:
psk.gwy.xport.spi = 0;
psk.ext_gwy.xport.spi = pd->hdr.esp->spi;
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
/*
* NAT64 requires protocol translation between ICMPv4
* and ICMPv6. TCP and UDP do not require protocol
* translation. To avoid adding complexity just to
* handle ICMP(v4addr/v6addr), we always lookup for
* proto = IPPROTO_ICMP on both LAN and WAN side
*/
psk.proto = IPPROTO_ICMP;
psk.gwy.xport.port = nxport.port;
psk.ext_gwy.xport.spi = 0;
break;
default:
psk.gwy.xport = sxport;
psk.ext_gwy.xport = dxport;
break;
}
psk.af_lan = af;
if (nr != NULL) {
PF_ACPY(&psk.lan.addr, &pd->baddr, af);
psk.lan.xport = bxport;
PF_ACPY(&psk.ext_lan.addr, &pd->bdaddr, af);
psk.ext_lan.xport = bdxport;
} else {
PF_ACPY(&psk.lan.addr, &psk.gwy.addr, af);
psk.lan.xport = psk.gwy.xport;
PF_ACPY(&psk.ext_lan.addr, &psk.ext_gwy.addr, af);
psk.ext_lan.xport = psk.ext_gwy.xport;
}
} else {
psk.af_lan = af;
if (nr && nr->action == PF_NAT64) {
PF_ACPY(&psk.lan.addr, &pd->baddr, af);
PF_ACPY(&psk.ext_lan.addr, &pd->bdaddr, af);
} else {
PF_ACPY(&psk.lan.addr, daddr, af);
PF_ACPY(&psk.ext_lan.addr, saddr, af);
}
switch (pd->proto) {
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
/*
* NAT64 requires protocol translation between ICMPv4
* and ICMPv6. TCP and UDP do not require protocol
* translation. To avoid adding complexity just to
* handle ICMP(v4addr/v6addr), we always lookup for
* proto = IPPROTO_ICMP on both LAN and WAN side
*/
psk.proto = IPPROTO_ICMP;
if (nr && nr->action == PF_NAT64) {
psk.lan.xport = bxport;
psk.ext_lan.xport = bxport;
} else {
psk.lan.xport = nxport;
psk.ext_lan.xport.spi = 0;
}
break;
case IPPROTO_ESP:
psk.ext_lan.xport.spi = 0;
psk.lan.xport.spi = pd->hdr.esp->spi;
break;
default:
if (nr != NULL) {
if (nr->action == PF_NAT64) {
psk.lan.xport = bxport;
psk.ext_lan.xport = bdxport;
} else {
psk.lan.xport = dxport;
psk.ext_lan.xport = sxport;
}
} else {
psk.lan.xport = dxport;
psk.ext_lan.xport = sxport;
}
break;
}
psk.af_gwy = pd->naf;
if (nr != NULL) {
if (nr->action == PF_NAT64) {
PF_ACPY(&psk.gwy.addr, &pd->naddr, pd->naf);
PF_ACPY(&psk.ext_gwy.addr, &pd->ndaddr,
pd->naf);
if ((pd->proto == IPPROTO_ICMPV6) ||
(pd->proto == IPPROTO_ICMP)) {
psk.gwy.xport = nxport;
psk.ext_gwy.xport = nxport;
} else {
psk.gwy.xport = sxport;
psk.ext_gwy.xport = dxport;
}
} else {
PF_ACPY(&psk.gwy.addr, &pd->bdaddr, af);
psk.gwy.xport = bdxport;
PF_ACPY(&psk.ext_gwy.addr, saddr, af);
psk.ext_gwy.xport = sxport;
}
} else {
PF_ACPY(&psk.gwy.addr, &psk.lan.addr, af);
psk.gwy.xport = psk.lan.xport;
PF_ACPY(&psk.ext_gwy.addr, &psk.ext_lan.addr, af);
psk.ext_gwy.xport = psk.ext_lan.xport;
}
}
if (pd->pktflags & PKTF_FLOW_ID) {
/* flow hash was already computed outside of PF */
psk.flowsrc = pd->flowsrc;
psk.flowhash = pd->flowhash;
} else {
/*
* Allocation of flow identifier is deferred until a PF state
* creation is needed for this flow.
*/
pd->pktflags &= ~PKTF_FLOW_ADV;
pd->flowhash = 0;
}
if (__improbable(pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, pd))) {
REASON_SET(&reason, PFRES_MEMORY);
#if SKYWALK
netns_release(&nstoken);
#endif
return PF_DROP;
}
if (!state_icmp && (r->keep_state || nr != NULL ||
(pd->flags & PFDESC_TCP_NORM))) {
/* create new state */
struct pf_state *s = NULL;
struct pf_state_key *sk = NULL;
struct pf_src_node *sn = NULL;
struct pf_ike_hdr ike;
if (pd->proto == IPPROTO_UDP) {
size_t plen = pbuf->pb_packet_len - off - sizeof(*uh);
if (ntohs(uh->uh_sport) == PF_IKE_PORT &&
ntohs(uh->uh_dport) == PF_IKE_PORT &&
plen >= PF_IKE_PACKET_MINSIZE) {
if (plen > PF_IKE_PACKET_MINSIZE) {
plen = PF_IKE_PACKET_MINSIZE;
}
pbuf_copy_data(pbuf, off + sizeof(*uh), plen,
&ike);
}
}
if (nr != NULL && pd->proto == IPPROTO_ESP &&
direction == PF_OUT) {
struct pf_state_key_cmp sk0;
struct pf_state *s0;
/*
* <jhw@apple.com>
* This squelches state creation if the external
* address matches an existing incomplete state with a
* different internal address. Only one 'blocking'
* partial state is allowed for each external address.
*/
#if SKYWALK
/*
* XXXSCW:
*
* It's not clear how this impacts netns. The original
* state will hold the port reservation token but what
* happens to other "Cone NAT" states when the first is
* torn down?
*/
#endif
memset(&sk0, 0, sizeof(sk0));
sk0.af_gwy = pd->af;
sk0.proto = IPPROTO_ESP;
PF_ACPY(&sk0.gwy.addr, saddr, sk0.af_gwy);
PF_ACPY(&sk0.ext_gwy.addr, daddr, sk0.af_gwy);
s0 = pf_find_state(kif, &sk0, PF_IN);
if (s0 && PF_ANEQ(&s0->state_key->lan.addr,
pd->src, pd->af)) {
nsn = 0;
goto cleanup;
}
}
/* check maximums */
if (r->max_states && (r->states >= r->max_states)) {
pf_status.lcounters[LCNT_STATES]++;
REASON_SET(&reason, PFRES_MAXSTATES);
goto cleanup;
}
/* src node for filter rule */
if ((r->rule_flag & PFRULE_SRCTRACK ||
r->rpool.opts & PF_POOL_STICKYADDR) &&
pf_insert_src_node(&sn, r, saddr, af) != 0) {
REASON_SET(&reason, PFRES_SRCLIMIT);
goto cleanup;
}
/* src node for translation rule */
if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) &&
((direction == PF_OUT &&
nr->action != PF_RDR &&
pf_insert_src_node(&nsn, nr, &pd->baddr, af) != 0) ||
(pf_insert_src_node(&nsn, nr, saddr, af) != 0))) {
REASON_SET(&reason, PFRES_SRCLIMIT);
goto cleanup;
}
s = pool_get(&pf_state_pl, PR_WAITOK);
if (s == NULL) {
REASON_SET(&reason, PFRES_MEMORY);
cleanup:
if (sn != NULL && sn->states == 0 && sn->expire == 0) {
RB_REMOVE(pf_src_tree, &tree_src_tracking, sn);
pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++;
pf_status.src_nodes--;
pool_put(&pf_src_tree_pl, sn);
}
if (nsn != sn && nsn != NULL && nsn->states == 0 &&
nsn->expire == 0) {
RB_REMOVE(pf_src_tree, &tree_src_tracking, nsn);
pf_status.scounters[SCNT_SRC_NODE_REMOVALS]++;
pf_status.src_nodes--;
pool_put(&pf_src_tree_pl, nsn);
}
if (s != NULL) {
pf_detach_state(s, 0);
} else if (sk != NULL) {
if (sk->app_state) {
pool_put(&pf_app_state_pl,
sk->app_state);
}
pf_state_key_release_flowid(sk);
pool_put(&pf_state_key_pl, sk);
}
#if SKYWALK
netns_release(&nstoken);
#endif
return PF_DROP;
}
bzero(s, sizeof(*s));
TAILQ_INIT(&s->unlink_hooks);
s->rule.ptr = r;
s->nat_rule.ptr = nr;
s->anchor.ptr = a;
STATE_INC_COUNTERS(s);
s->allow_opts = r->allow_opts;
s->log = r->log & PF_LOG_ALL;
if (nr != NULL) {
s->log |= nr->log & PF_LOG_ALL;
}
switch (pd->proto) {
case IPPROTO_TCP:
s->src.seqlo = ntohl(th->th_seq);
s->src.seqhi = s->src.seqlo + pd->p_len + 1;
if ((th->th_flags & (TH_SYN | TH_ACK)) ==
TH_SYN && r->keep_state == PF_STATE_MODULATE) {
/* Generate sequence number modulator */
if ((s->src.seqdiff = pf_tcp_iss(pd) -
s->src.seqlo) == 0) {
s->src.seqdiff = 1;
}
pf_change_a(&th->th_seq, &th->th_sum,
htonl(s->src.seqlo + s->src.seqdiff), 0);
rewrite = off + sizeof(*th);
} else {
s->src.seqdiff = 0;
}
if (th->th_flags & TH_SYN) {
s->src.seqhi++;
s->src.wscale = pf_get_wscale(pbuf, off,
th->th_off, af);
}
s->src.max_win = MAX(ntohs(th->th_win), 1);
if (s->src.wscale & PF_WSCALE_MASK) {
/* Remove scale factor from initial window */
int win = s->src.max_win;
win += 1 << (s->src.wscale & PF_WSCALE_MASK);
s->src.max_win = (win - 1) >>
(s->src.wscale & PF_WSCALE_MASK);
}
if (th->th_flags & TH_FIN) {
s->src.seqhi++;
}
s->dst.seqhi = 1;
s->dst.max_win = 1;
s->src.state = TCPS_SYN_SENT;
s->dst.state = TCPS_CLOSED;
s->timeout = PFTM_TCP_FIRST_PACKET;
break;
case IPPROTO_UDP:
s->src.state = PFUDPS_SINGLE;
s->dst.state = PFUDPS_NO_TRAFFIC;
s->timeout = PFTM_UDP_FIRST_PACKET;
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
s->timeout = PFTM_ICMP_FIRST_PACKET;
break;
case IPPROTO_GRE:
s->src.state = PFGRE1S_INITIATING;
s->dst.state = PFGRE1S_NO_TRAFFIC;
s->timeout = PFTM_GREv1_INITIATING;
break;
case IPPROTO_ESP:
s->src.state = PFESPS_INITIATING;
s->dst.state = PFESPS_NO_TRAFFIC;
s->timeout = PFTM_ESP_FIRST_PACKET;
break;
default:
s->src.state = PFOTHERS_SINGLE;
s->dst.state = PFOTHERS_NO_TRAFFIC;
s->timeout = PFTM_OTHER_FIRST_PACKET;
}
s->creation = pf_time_second();
s->expire = pf_time_second();
if (sn != NULL) {
s->src_node = sn;
s->src_node->states++;
VERIFY(s->src_node->states != 0);
}
if (nsn != NULL) {
PF_ACPY(&nsn->raddr, &pd->naddr, af);
s->nat_src_node = nsn;
s->nat_src_node->states++;
VERIFY(s->nat_src_node->states != 0);
}
if (pd->proto == IPPROTO_TCP) {
if ((pd->flags & PFDESC_TCP_NORM) &&
pf_normalize_tcp_init(pbuf, off, pd, th, &s->src,
&s->dst)) {
REASON_SET(&reason, PFRES_MEMORY);
pf_src_tree_remove_state(s);
STATE_DEC_COUNTERS(s);
#if SKYWALK
netns_release(&nstoken);
#endif
pool_put(&pf_state_pl, s);
return PF_DROP;
}
if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub &&
pf_normalize_tcp_stateful(pbuf, off, pd, &reason,
th, s, &s->src, &s->dst, &rewrite)) {
/* This really shouldn't happen!!! */
DPFPRINTF(PF_DEBUG_URGENT,
("pf_normalize_tcp_stateful failed on "
"first pkt"));
#if SKYWALK
netns_release(&nstoken);
#endif
pf_normalize_tcp_cleanup(s);
pf_src_tree_remove_state(s);
STATE_DEC_COUNTERS(s);
pool_put(&pf_state_pl, s);
return PF_DROP;
}
}
/* allocate state key and import values from psk */
if (__improbable((sk = pf_alloc_state_key(s, &psk)) == NULL)) {
REASON_SET(&reason, PFRES_MEMORY);
/*
* XXXSCW: This will leak the freshly-allocated
* state structure 's'. Although it should
* eventually be aged-out and removed.
*/
goto cleanup;
}
if (pd->flowhash == 0) {
ASSERT(sk->flowhash != 0);
ASSERT(sk->flowsrc != 0);
pd->flowsrc = sk->flowsrc;
pd->flowhash = sk->flowhash;
pd->pktflags |= PKTF_FLOW_ID;
pd->pktflags &= ~PKTF_FLOW_ADV;
if (__improbable(pf_tag_packet(pbuf, pd->pf_mtag,
tag, rtableid, pd))) {
/*
* this shouldn't fail as the packet tag has
* already been allocated.
*/
panic_plain("pf_tag_packet failed");
}
}
pf_set_rt_ifp(s, saddr, af); /* needs s->state_key set */
pbuf = pd->mp; // XXXSCW: Why?
if (sk->app_state == 0) {
switch (pd->proto) {
case IPPROTO_TCP: {
u_int16_t dport = (direction == PF_OUT) ?
sk->ext_gwy.xport.port : sk->gwy.xport.port;
if (nr != NULL &&
ntohs(dport) == PF_PPTP_PORT) {
struct pf_app_state *as;
as = pool_get(&pf_app_state_pl,
PR_WAITOK);
if (!as) {
REASON_SET(&reason,
PFRES_MEMORY);
goto cleanup;
}
bzero(as, sizeof(*as));
as->handler = pf_pptp_handler;
as->compare_lan_ext = 0;
as->compare_ext_gwy = 0;
as->u.pptp.grev1_state = 0;
sk->app_state = as;
(void) hook_establish(&s->unlink_hooks,
0, (hook_fn_t) pf_pptp_unlink, s);
}
break;
}
case IPPROTO_UDP: {
if (nr != NULL &&
ntohs(uh->uh_sport) == PF_IKE_PORT &&
ntohs(uh->uh_dport) == PF_IKE_PORT) {
struct pf_app_state *as;
as = pool_get(&pf_app_state_pl,
PR_WAITOK);
if (!as) {
REASON_SET(&reason,
PFRES_MEMORY);
goto cleanup;
}
bzero(as, sizeof(*as));
as->compare_lan_ext = pf_ike_compare;
as->compare_ext_gwy = pf_ike_compare;
as->u.ike.cookie = ike.initiator_cookie;
sk->app_state = as;
}
break;
}
default:
break;
}
}
if (__improbable(pf_insert_state(BOUND_IFACE(r, kif), s))) {
if (pd->proto == IPPROTO_TCP) {
pf_normalize_tcp_cleanup(s);
}
REASON_SET(&reason, PFRES_STATEINS);
pf_src_tree_remove_state(s);
STATE_DEC_COUNTERS(s);
#if SKYWALK
netns_release(&nstoken);
#endif
pool_put(&pf_state_pl, s);
return PF_DROP;
} else {
#if SKYWALK
s->nstoken = nstoken;
nstoken = NULL;
#endif
*sm = s;
}
if (tag > 0) {
pf_tag_ref(tag);
s->tag = tag;
}
if (pd->proto == IPPROTO_TCP &&
(th->th_flags & (TH_SYN | TH_ACK)) == TH_SYN &&
r->keep_state == PF_STATE_SYNPROXY) {
int ua = (sk->af_lan == sk->af_gwy) ? 1 : 0;
s->src.state = PF_TCPS_PROXY_SRC;
if (nr != NULL) {
if (direction == PF_OUT) {
pf_change_ap(direction, pd->mp, saddr,
&th->th_sport, pd->ip_sum,
&th->th_sum, &pd->baddr,
bxport.port, 0, af, pd->af, ua);
sxport.port = th->th_sport;
} else {
pf_change_ap(direction, pd->mp, daddr,
&th->th_dport, pd->ip_sum,
&th->th_sum, &pd->baddr,
bxport.port, 0, af, pd->af, ua);
sxport.port = th->th_dport;
}
}
s->src.seqhi = htonl(random());
/* Find mss option */
mss = pf_get_mss(pbuf, off, th->th_off, af);
mss = pf_calc_mss(saddr, af, mss);
mss = pf_calc_mss(daddr, af, mss);
s->src.mss = mss;
pf_send_tcp(r, af, daddr, saddr, th->th_dport,
th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1,
TH_SYN | TH_ACK, 0, s->src.mss, 0, 1, 0, NULL, NULL);
REASON_SET(&reason, PFRES_SYNPROXY);
return PF_SYNPROXY_DROP;
}
if (sk->app_state && sk->app_state->handler) {
int offx = off;
switch (pd->proto) {
case IPPROTO_TCP:
offx += th->th_off << 2;
break;
case IPPROTO_UDP:
offx += pd->hdr.udp->uh_ulen << 2;
break;
default:
/* ALG handlers only apply to TCP and UDP rules */
break;
}
if (offx > off) {
sk->app_state->handler(s, direction, offx,
pd, kif);
if (pd->lmw < 0) {
REASON_SET(&reason, PFRES_MEMORY);
return PF_DROP;
}
pbuf = pd->mp; // XXXSCW: Why?
}
}
}
#if SKYWALK
else {
netns_release(&nstoken);
}
#endif
/* copy back packet headers if we performed NAT operations */
if (rewrite) {
if (rewrite < off + hdrlen) {
rewrite = off + hdrlen;
}
if (pf_lazy_makewritable(pd, pd->mp, rewrite) == NULL) {
REASON_SET(&reason, PFRES_MEMORY);
return PF_DROP;
}
pbuf_copy_back(pbuf, off, hdrlen, pd->hdr.any);
if (af == AF_INET6 && pd->naf == AF_INET) {
return pf_nat64_ipv6(pbuf, off, pd);
} else if (af == AF_INET && pd->naf == AF_INET6) {
return pf_nat64_ipv4(pbuf, off, pd);
}
}
return PF_PASS;
}
boolean_t is_nlc_enabled_glb = FALSE;
static inline boolean_t
pf_is_dummynet_enabled(void)
{
#if DUMMYNET
if (__probable(!PF_IS_ENABLED)) {
return FALSE;
}
if (__probable(!DUMMYNET_LOADED)) {
return FALSE;
}
if (__probable(TAILQ_EMPTY(pf_main_ruleset.
rules[PF_RULESET_DUMMYNET].active.ptr))) {
return FALSE;
}
return TRUE;
#else
return FALSE;
#endif /* DUMMYNET */
}
#if DUMMYNET
/*
* When pf_test_dummynet() returns PF_PASS, the rule matching parameter "rm"
* remains unchanged, meaning the packet did not match a dummynet rule.
* when the packet does match a dummynet rule, pf_test_dummynet() returns
* PF_PASS and zero out the mbuf rule as the packet is effectively siphoned
* out by dummynet.
*/
static __attribute__((noinline)) int
pf_test_dummynet(struct pf_rule **rm, int direction, struct pfi_kif *kif,
pbuf_t **pbuf0, struct pf_pdesc *pd, struct ip_fw_args *fwa)
{
pbuf_t *pbuf = *pbuf0;
struct pf_rule *am = NULL;
struct pf_ruleset *rsm = NULL;
struct pf_addr *saddr = pd->src, *daddr = pd->dst;
sa_family_t af = pd->af;
struct pf_rule *r, *a = NULL;
struct pf_ruleset *ruleset = NULL;
struct tcphdr *th = pd->hdr.tcp;
u_short reason;
int hdrlen = 0;
int tag = -1;
unsigned int rtableid = IFSCOPE_NONE;
int asd = 0;
int match = 0;
u_int8_t icmptype = 0, icmpcode = 0;
struct ip_fw_args dnflow;
struct pf_rule *prev_matching_rule = fwa ? fwa->fwa_pf_rule : NULL;
int found_prev_rule = (prev_matching_rule) ? 0 : 1;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (!pf_is_dummynet_enabled()) {
return PF_PASS;
}
if (kif->pfik_ifp->if_xflags & IFXF_NO_TRAFFIC_SHAPING) {
return PF_PASS;
}
bzero(&dnflow, sizeof(dnflow));
hdrlen = 0;
/* Fragments don't gave protocol headers */
if (!(pd->flags & PFDESC_IP_FRAG)) {
switch (pd->proto) {
case IPPROTO_TCP:
dnflow.fwa_id.flags = pd->hdr.tcp->th_flags;
dnflow.fwa_id.dst_port = ntohs(pd->hdr.tcp->th_dport);
dnflow.fwa_id.src_port = ntohs(pd->hdr.tcp->th_sport);
hdrlen = sizeof(*th);
break;
case IPPROTO_UDP:
dnflow.fwa_id.dst_port = ntohs(pd->hdr.udp->uh_dport);
dnflow.fwa_id.src_port = ntohs(pd->hdr.udp->uh_sport);
hdrlen = sizeof(*pd->hdr.udp);
break;
#if INET
case IPPROTO_ICMP:
if (af != AF_INET) {
break;
}
hdrlen = ICMP_MINLEN;
icmptype = pd->hdr.icmp->icmp_type;
icmpcode = pd->hdr.icmp->icmp_code;
break;
#endif /* INET */
case IPPROTO_ICMPV6:
if (af != AF_INET6) {
break;
}
hdrlen = sizeof(*pd->hdr.icmp6);
icmptype = pd->hdr.icmp6->icmp6_type;
icmpcode = pd->hdr.icmp6->icmp6_code;
break;
case IPPROTO_GRE:
if (pd->proto_variant == PF_GRE_PPTP_VARIANT) {
hdrlen = sizeof(*pd->hdr.grev1);
}
break;
case IPPROTO_ESP:
hdrlen = sizeof(*pd->hdr.esp);
break;
}
}
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_DUMMYNET].active.ptr);
while (r != NULL) {
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != direction) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != af) {
r = r->skip[PF_SKIP_AF].ptr;
} else if (r->proto && r->proto != pd->proto) {
r = r->skip[PF_SKIP_PROTO].ptr;
} else if (PF_MISMATCHAW(&r->src.addr, saddr, af,
r->src.neg, kif)) {
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
}
/* tcp/udp only. port_op always 0 in other cases */
else if (r->proto == pd->proto &&
(r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) &&
((pd->flags & PFDESC_IP_FRAG) ||
((r->src.xport.range.op &&
!pf_match_port(r->src.xport.range.op,
r->src.xport.range.port[0], r->src.xport.range.port[1],
th->th_sport))))) {
r = r->skip[PF_SKIP_SRC_PORT].ptr;
} else if (PF_MISMATCHAW(&r->dst.addr, daddr, af,
r->dst.neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
}
/* tcp/udp only. port_op always 0 in other cases */
else if (r->proto == pd->proto &&
(r->proto == IPPROTO_TCP || r->proto == IPPROTO_UDP) &&
r->dst.xport.range.op &&
((pd->flags & PFDESC_IP_FRAG) ||
!pf_match_port(r->dst.xport.range.op,
r->dst.xport.range.port[0], r->dst.xport.range.port[1],
th->th_dport))) {
r = r->skip[PF_SKIP_DST_PORT].ptr;
}
/* icmp only. type always 0 in other cases */
else if (r->type &&
((pd->flags & PFDESC_IP_FRAG) ||
r->type != icmptype + 1)) {
r = TAILQ_NEXT(r, entries);
}
/* icmp only. type always 0 in other cases */
else if (r->code &&
((pd->flags & PFDESC_IP_FRAG) ||
r->code != icmpcode + 1)) {
r = TAILQ_NEXT(r, entries);
} else if (r->tos && !(r->tos == pd->tos)) {
r = TAILQ_NEXT(r, entries);
} else if (r->rule_flag & PFRULE_FRAGMENT) {
r = TAILQ_NEXT(r, entries);
} else if (pd->proto == IPPROTO_TCP &&
((pd->flags & PFDESC_IP_FRAG) ||
(r->flagset & th->th_flags) != r->flags)) {
r = TAILQ_NEXT(r, entries);
} else if (r->prob && r->prob <= (RandomULong() % (UINT_MAX - 1) + 1)) {
r = TAILQ_NEXT(r, entries);
} else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) {
r = TAILQ_NEXT(r, entries);
} else {
/*
* Need to go past the previous dummynet matching rule
*/
if (r->anchor == NULL) {
if (found_prev_rule) {
if (r->tag) {
tag = r->tag;
}
if (PF_RTABLEID_IS_VALID(r->rtableid)) {
rtableid = r->rtableid;
}
match = 1;
*rm = r;
am = a;
rsm = ruleset;
if ((*rm)->quick) {
break;
}
} else if (r == prev_matching_rule) {
found_prev_rule = 1;
}
r = TAILQ_NEXT(r, entries);
} else {
pf_step_into_anchor(&asd, &ruleset,
PF_RULESET_DUMMYNET, &r, &a, &match);
}
}
if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset,
PF_RULESET_DUMMYNET, &r, &a, &match)) {
break;
}
}
r = *rm;
a = am;
ruleset = rsm;
if (!match) {
return PF_PASS;
}
REASON_SET(&reason, PFRES_DUMMYNET);
if (r->log) {
PFLOG_PACKET(kif, h, pbuf, af, direction, reason, r,
a, ruleset, pd);
}
if (r->action == PF_NODUMMYNET) {
int dirndx = (direction == PF_OUT);
r->packets[dirndx]++;
r->bytes[dirndx] += pd->tot_len;
return PF_PASS;
}
if (pf_tag_packet(pbuf, pd->pf_mtag, tag, rtableid, pd)) {
REASON_SET(&reason, PFRES_MEMORY);
return PF_DROP;
}
if (r->dnpipe && ip_dn_io_ptr != NULL) {
struct mbuf *m;
int dirndx = (direction == PF_OUT);
r->packets[dirndx]++;
r->bytes[dirndx] += pd->tot_len;
dnflow.fwa_cookie = r->dnpipe;
dnflow.fwa_pf_rule = r;
dnflow.fwa_id.proto = pd->proto;
dnflow.fwa_flags = r->dntype;
switch (af) {
case AF_INET:
dnflow.fwa_id.addr_type = 4;
dnflow.fwa_id.src_ip = ntohl(saddr->v4addr.s_addr);
dnflow.fwa_id.dst_ip = ntohl(daddr->v4addr.s_addr);
break;
case AF_INET6:
dnflow.fwa_id.addr_type = 6;
dnflow.fwa_id.src_ip6 = saddr->v6addr;
dnflow.fwa_id.dst_ip6 = saddr->v6addr;
break;
}
if (fwa != NULL) {
dnflow.fwa_oif = fwa->fwa_oif;
dnflow.fwa_oflags = fwa->fwa_oflags;
/*
* Note that fwa_ro, fwa_dst and fwa_ipoa are
* actually in a union so the following does work
* for both IPv4 and IPv6
*/
dnflow.fwa_ro = fwa->fwa_ro;
dnflow.fwa_dst = fwa->fwa_dst;
dnflow.fwa_ipoa = fwa->fwa_ipoa;
dnflow.fwa_ro6_pmtu = fwa->fwa_ro6_pmtu;
dnflow.fwa_origifp = fwa->fwa_origifp;
dnflow.fwa_mtu = fwa->fwa_mtu;
dnflow.fwa_unfragpartlen = fwa->fwa_unfragpartlen;
dnflow.fwa_exthdrs = fwa->fwa_exthdrs;
}
if (af == AF_INET) {
struct ip *iphdr = pbuf->pb_data;
NTOHS(iphdr->ip_len);
NTOHS(iphdr->ip_off);
}
/*
* Don't need to unlock pf_lock as NET_THREAD_HELD_PF
* allows for recursive behavior
*/
m = pbuf_to_mbuf(pbuf, TRUE);
if (m != NULL) {
ip_dn_io_ptr(m,
dnflow.fwa_cookie, (af == AF_INET) ?
((direction == PF_IN) ? DN_TO_IP_IN : DN_TO_IP_OUT) :
((direction == PF_IN) ? DN_TO_IP6_IN : DN_TO_IP6_OUT),
&dnflow);
}
/*
* The packet is siphoned out by dummynet so return a NULL
* pbuf so the caller can still return success.
*/
*pbuf0 = NULL;
return PF_PASS;
}
return PF_PASS;
}
#endif /* DUMMYNET */
static __attribute__((noinline)) int
pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif,
pbuf_t *pbuf, void *h, struct pf_pdesc *pd, struct pf_rule **am,
struct pf_ruleset **rsm)
{
#pragma unused(h)
struct pf_rule *r, *a = NULL;
struct pf_ruleset *ruleset = NULL;
sa_family_t af = pd->af;
u_short reason;
int tag = -1;
int asd = 0;
int match = 0;
r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr);
while (r != NULL) {
r->evaluations++;
if (pfi_kif_match(r->kif, kif) == r->ifnot) {
r = r->skip[PF_SKIP_IFP].ptr;
} else if (r->direction && r->direction != direction) {
r = r->skip[PF_SKIP_DIR].ptr;
} else if (r->af && r->af != af) {
r = r->skip[PF_SKIP_AF].ptr;
} else if (r->proto && r->proto != pd->proto) {
r = r->skip[PF_SKIP_PROTO].ptr;
} else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
r->src.neg, kif)) {
r = r->skip[PF_SKIP_SRC_ADDR].ptr;
} else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
r->dst.neg, NULL)) {
r = r->skip[PF_SKIP_DST_ADDR].ptr;
} else if ((r->rule_flag & PFRULE_TOS) && r->tos &&
!(r->tos & pd->tos)) {
r = TAILQ_NEXT(r, entries);
} else if ((r->rule_flag & PFRULE_DSCP) && r->tos &&
!(r->tos & (pd->tos & DSCP_MASK))) {
r = TAILQ_NEXT(r, entries);
} else if ((r->rule_flag & PFRULE_SC) && r->tos &&
((r->tos & SCIDX_MASK) != pd->sc)) {
r = TAILQ_NEXT(r, entries);
} else if (r->os_fingerprint != PF_OSFP_ANY) {
r = TAILQ_NEXT(r, entries);
} else if (pd->proto == IPPROTO_UDP &&
(r->src.xport.range.op || r->dst.xport.range.op)) {
r = TAILQ_NEXT(r, entries);
} else if (pd->proto == IPPROTO_TCP &&
(r->src.xport.range.op || r->dst.xport.range.op ||
r->flagset)) {
r = TAILQ_NEXT(r, entries);
} else if ((pd->proto == IPPROTO_ICMP ||
pd->proto == IPPROTO_ICMPV6) &&
(r->type || r->code)) {
r = TAILQ_NEXT(r, entries);
} else if (r->prob && r->prob <= (RandomULong() % (UINT_MAX - 1) + 1)) {
r = TAILQ_NEXT(r, entries);
} else if (r->match_tag && !pf_match_tag(r, pd->pf_mtag, &tag)) {
r = TAILQ_NEXT(r, entries);
} else {
if (r->anchor == NULL) {
match = 1;
*rm = r;
*am = a;
*rsm = ruleset;
if ((*rm)->quick) {
break;
}
r = TAILQ_NEXT(r, entries);
} else {
pf_step_into_anchor(&asd, &ruleset,
PF_RULESET_FILTER, &r, &a, &match);
}
}
if (r == NULL && pf_step_out_of_anchor(&asd, &ruleset,
PF_RULESET_FILTER, &r, &a, &match)) {
break;
}
}
r = *rm;
a = *am;
ruleset = *rsm;
REASON_SET(&reason, PFRES_MATCH);
if (r->log) {
PFLOG_PACKET(kif, h, pbuf, af, direction, reason, r, a, ruleset,
pd);
}
if (r->action != PF_PASS) {
return PF_DROP;
}
if (pf_tag_packet(pbuf, pd->pf_mtag, tag, -1, NULL)) {
REASON_SET(&reason, PFRES_MEMORY);
return PF_DROP;
}
return PF_PASS;
}
static __attribute__((noinline)) void
pf_pptp_handler(struct pf_state *s, int direction, int off,
struct pf_pdesc *pd, struct pfi_kif *kif)
{
#pragma unused(direction)
struct tcphdr *th;
struct pf_pptp_state *pptps;
struct pf_pptp_ctrl_msg cm;
size_t plen, tlen;
struct pf_state *gs;
u_int16_t ct;
u_int16_t *pac_call_id;
u_int16_t *pns_call_id;
u_int16_t *spoof_call_id;
u_int8_t *pac_state;
u_int8_t *pns_state;
enum { PF_PPTP_PASS, PF_PPTP_INSERT_GRE, PF_PPTP_REMOVE_GRE } op;
pbuf_t *pbuf;
struct pf_state_key *sk;
struct pf_state_key *gsk;
struct pf_app_state *gas;
sk = s->state_key;
pptps = &sk->app_state->u.pptp;
gs = pptps->grev1_state;
if (gs) {
gs->expire = pf_time_second();
}
pbuf = pd->mp;
plen = min(sizeof(cm), pbuf->pb_packet_len - off);
if (plen < PF_PPTP_CTRL_MSG_MINSIZE) {
return;
}
tlen = plen - PF_PPTP_CTRL_MSG_MINSIZE;
pbuf_copy_data(pbuf, off, plen, &cm);
if (ntohl(cm.hdr.magic) != PF_PPTP_MAGIC_NUMBER) {
return;
}
if (ntohs(cm.hdr.type) != 1) {
return;
}
#define TYPE_LEN_CHECK(_type, _name) \
case PF_PPTP_CTRL_TYPE_##_type: \
if (tlen < sizeof(struct pf_pptp_ctrl_##_name)) \
return; \
break;
switch (cm.ctrl.type) {
TYPE_LEN_CHECK(START_REQ, start_req);
TYPE_LEN_CHECK(START_RPY, start_rpy);
TYPE_LEN_CHECK(STOP_REQ, stop_req);
TYPE_LEN_CHECK(STOP_RPY, stop_rpy);
TYPE_LEN_CHECK(ECHO_REQ, echo_req);
TYPE_LEN_CHECK(ECHO_RPY, echo_rpy);
TYPE_LEN_CHECK(CALL_OUT_REQ, call_out_req);
TYPE_LEN_CHECK(CALL_OUT_RPY, call_out_rpy);
TYPE_LEN_CHECK(CALL_IN_1ST, call_in_1st);
TYPE_LEN_CHECK(CALL_IN_2ND, call_in_2nd);
TYPE_LEN_CHECK(CALL_IN_3RD, call_in_3rd);
TYPE_LEN_CHECK(CALL_CLR, call_clr);
TYPE_LEN_CHECK(CALL_DISC, call_disc);
TYPE_LEN_CHECK(ERROR, error);
TYPE_LEN_CHECK(SET_LINKINFO, set_linkinfo);
default:
return;
}
#undef TYPE_LEN_CHECK
if (!gs) {
gs = pool_get(&pf_state_pl, PR_WAITOK);
if (!gs) {
return;
}
memcpy(gs, s, sizeof(*gs));
memset(&gs->entry_id, 0, sizeof(gs->entry_id));
memset(&gs->entry_list, 0, sizeof(gs->entry_list));
TAILQ_INIT(&gs->unlink_hooks);
gs->rt_kif = NULL;
gs->creation = 0;
gs->pfsync_time = 0;
gs->packets[0] = gs->packets[1] = 0;
gs->bytes[0] = gs->bytes[1] = 0;
gs->timeout = PFTM_UNLINKED;
gs->id = gs->creatorid = 0;
gs->src.state = gs->dst.state = PFGRE1S_NO_TRAFFIC;
gs->src.scrub = gs->dst.scrub = 0;
gas = pool_get(&pf_app_state_pl, PR_NOWAIT);
if (!gas) {
pool_put(&pf_state_pl, gs);
return;
}
gsk = pf_alloc_state_key(gs, NULL);
if (!gsk) {
pool_put(&pf_app_state_pl, gas);
pool_put(&pf_state_pl, gs);
return;
}
memcpy(&gsk->lan, &sk->lan, sizeof(gsk->lan));
memcpy(&gsk->gwy, &sk->gwy, sizeof(gsk->gwy));
memcpy(&gsk->ext_lan, &sk->ext_lan, sizeof(gsk->ext_lan));
memcpy(&gsk->ext_gwy, &sk->ext_gwy, sizeof(gsk->ext_gwy));
gsk->af_lan = sk->af_lan;
gsk->af_gwy = sk->af_gwy;
gsk->proto = IPPROTO_GRE;
gsk->proto_variant = PF_GRE_PPTP_VARIANT;
gsk->app_state = gas;
gsk->lan.xport.call_id = 0;
gsk->gwy.xport.call_id = 0;
gsk->ext_lan.xport.call_id = 0;
gsk->ext_gwy.xport.call_id = 0;
ASSERT(gsk->flowsrc == FLOWSRC_PF);
ASSERT(gsk->flowhash != 0);
memset(gas, 0, sizeof(*gas));
gas->u.grev1.pptp_state = s;
STATE_INC_COUNTERS(gs);
pptps->grev1_state = gs;
(void) hook_establish(&gs->unlink_hooks, 0,
(hook_fn_t) pf_grev1_unlink, gs);
} else {
gsk = gs->state_key;
}
switch (sk->direction) {
case PF_IN:
pns_call_id = &gsk->ext_lan.xport.call_id;
pns_state = &gs->dst.state;
pac_call_id = &gsk->lan.xport.call_id;
pac_state = &gs->src.state;
break;
case PF_OUT:
pns_call_id = &gsk->lan.xport.call_id;
pns_state = &gs->src.state;
pac_call_id = &gsk->ext_lan.xport.call_id;
pac_state = &gs->dst.state;
break;
default:
DPFPRINTF(PF_DEBUG_URGENT,
("pf_pptp_handler: bad directional!\n"));
return;
}
spoof_call_id = 0;
op = PF_PPTP_PASS;
ct = ntohs(cm.ctrl.type);
switch (ct) {
case PF_PPTP_CTRL_TYPE_CALL_OUT_REQ:
*pns_call_id = cm.msg.call_out_req.call_id;
*pns_state = PFGRE1S_INITIATING;
if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) {
spoof_call_id = &cm.msg.call_out_req.call_id;
}
break;
case PF_PPTP_CTRL_TYPE_CALL_OUT_RPY:
*pac_call_id = cm.msg.call_out_rpy.call_id;
if (s->nat_rule.ptr) {
spoof_call_id =
(pac_call_id == &gsk->lan.xport.call_id) ?
&cm.msg.call_out_rpy.call_id :
&cm.msg.call_out_rpy.peer_call_id;
}
if (gs->timeout == PFTM_UNLINKED) {
*pac_state = PFGRE1S_INITIATING;
op = PF_PPTP_INSERT_GRE;
}
break;
case PF_PPTP_CTRL_TYPE_CALL_IN_1ST:
*pns_call_id = cm.msg.call_in_1st.call_id;
*pns_state = PFGRE1S_INITIATING;
if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) {
spoof_call_id = &cm.msg.call_in_1st.call_id;
}
break;
case PF_PPTP_CTRL_TYPE_CALL_IN_2ND:
*pac_call_id = cm.msg.call_in_2nd.call_id;
*pac_state = PFGRE1S_INITIATING;
if (s->nat_rule.ptr) {
spoof_call_id =
(pac_call_id == &gsk->lan.xport.call_id) ?
&cm.msg.call_in_2nd.call_id :
&cm.msg.call_in_2nd.peer_call_id;
}
break;
case PF_PPTP_CTRL_TYPE_CALL_IN_3RD:
if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) {
spoof_call_id = &cm.msg.call_in_3rd.call_id;
}
if (cm.msg.call_in_3rd.call_id != *pns_call_id) {
break;
}
if (gs->timeout == PFTM_UNLINKED) {
op = PF_PPTP_INSERT_GRE;
}
break;
case PF_PPTP_CTRL_TYPE_CALL_CLR:
if (cm.msg.call_clr.call_id != *pns_call_id) {
op = PF_PPTP_REMOVE_GRE;
}
break;
case PF_PPTP_CTRL_TYPE_CALL_DISC:
if (cm.msg.call_clr.call_id != *pac_call_id) {
op = PF_PPTP_REMOVE_GRE;
}
break;
case PF_PPTP_CTRL_TYPE_ERROR:
if (s->nat_rule.ptr && pns_call_id == &gsk->lan.xport.call_id) {
spoof_call_id = &cm.msg.error.peer_call_id;
}
break;
case PF_PPTP_CTRL_TYPE_SET_LINKINFO:
if (s->nat_rule.ptr && pac_call_id == &gsk->lan.xport.call_id) {
spoof_call_id = &cm.msg.set_linkinfo.peer_call_id;
}
break;
default:
op = PF_PPTP_PASS;
break;
}
if (!gsk->gwy.xport.call_id && gsk->lan.xport.call_id) {
gsk->gwy.xport.call_id = gsk->lan.xport.call_id;
if (spoof_call_id) {
u_int16_t call_id = 0;
int n = 0;
struct pf_state_key_cmp key;
key.af_gwy = gsk->af_gwy;
key.proto = IPPROTO_GRE;
key.proto_variant = PF_GRE_PPTP_VARIANT;
PF_ACPY(&key.gwy.addr, &gsk->gwy.addr, key.af_gwy);
PF_ACPY(&key.ext_gwy.addr, &gsk->ext_gwy.addr, key.af_gwy);
key.gwy.xport.call_id = gsk->gwy.xport.call_id;
key.ext_gwy.xport.call_id = gsk->ext_gwy.xport.call_id;
do {
call_id = htonl(random());
} while (!call_id);
while (pf_find_state_all(&key, PF_IN, 0)) {
call_id = ntohs(call_id);
--call_id;
if (--call_id == 0) {
call_id = 0xffff;
}
call_id = htons(call_id);
key.gwy.xport.call_id = call_id;
if (++n > 65535) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_pptp_handler: failed to spoof "
"call id\n"));
key.gwy.xport.call_id = 0;
break;
}
}
gsk->gwy.xport.call_id = call_id;
}
}
th = pd->hdr.tcp;
if (spoof_call_id && gsk->lan.xport.call_id != gsk->gwy.xport.call_id) {
if (*spoof_call_id == gsk->gwy.xport.call_id) {
*spoof_call_id = gsk->lan.xport.call_id;
th->th_sum = pf_cksum_fixup(th->th_sum,
gsk->gwy.xport.call_id, gsk->lan.xport.call_id, 0);
} else {
*spoof_call_id = gsk->gwy.xport.call_id;
th->th_sum = pf_cksum_fixup(th->th_sum,
gsk->lan.xport.call_id, gsk->gwy.xport.call_id, 0);
}
if (pf_lazy_makewritable(pd, pbuf, off + plen) == NULL) {
pptps->grev1_state = NULL;
STATE_DEC_COUNTERS(gs);
pool_put(&pf_state_pl, gs);
return;
}
pbuf_copy_back(pbuf, off, plen, &cm);
}
switch (op) {
case PF_PPTP_REMOVE_GRE:
gs->timeout = PFTM_PURGE;
gs->src.state = gs->dst.state = PFGRE1S_NO_TRAFFIC;
gsk->lan.xport.call_id = 0;
gsk->gwy.xport.call_id = 0;
gsk->ext_lan.xport.call_id = 0;
gsk->ext_gwy.xport.call_id = 0;
gs->id = gs->creatorid = 0;
break;
case PF_PPTP_INSERT_GRE:
gs->creation = pf_time_second();
gs->expire = pf_time_second();
gs->timeout = PFTM_TCP_ESTABLISHED;
if (gs->src_node != NULL) {
++gs->src_node->states;
VERIFY(gs->src_node->states != 0);
}
if (gs->nat_src_node != NULL) {
++gs->nat_src_node->states;
VERIFY(gs->nat_src_node->states != 0);
}
pf_set_rt_ifp(gs, &sk->lan.addr, sk->af_lan);
if (pf_insert_state(BOUND_IFACE(s->rule.ptr, kif), gs)) {
/*
* <jhw@apple.com>
* FIX ME: insertion can fail when multiple PNS
* behind the same NAT open calls to the same PAC
* simultaneously because spoofed call ID numbers
* are chosen before states are inserted. This is
* hard to fix and happens infrequently enough that
* users will normally try again and this ALG will
* succeed. Failures are expected to be rare enough
* that fixing this is a low priority.
*/
pptps->grev1_state = NULL;
pd->lmw = -1; /* Force PF_DROP on PFRES_MEMORY */
pf_src_tree_remove_state(gs);
STATE_DEC_COUNTERS(gs);
pool_put(&pf_state_pl, gs);
DPFPRINTF(PF_DEBUG_URGENT, ("pf_pptp_handler: error "
"inserting GREv1 state.\n"));
}
break;
default:
break;
}
}
static __attribute__((noinline)) void
pf_pptp_unlink(struct pf_state *s)
{
struct pf_app_state *as = s->state_key->app_state;
struct pf_state *grev1s = as->u.pptp.grev1_state;
if (grev1s) {
struct pf_app_state *gas = grev1s->state_key->app_state;
if (grev1s->timeout < PFTM_MAX) {
grev1s->timeout = PFTM_PURGE;
}
gas->u.grev1.pptp_state = NULL;
as->u.pptp.grev1_state = NULL;
}
}
static __attribute__((noinline)) void
pf_grev1_unlink(struct pf_state *s)
{
struct pf_app_state *as = s->state_key->app_state;
struct pf_state *pptps = as->u.grev1.pptp_state;
if (pptps) {
struct pf_app_state *pas = pptps->state_key->app_state;
pas->u.pptp.grev1_state = NULL;
as->u.grev1.pptp_state = NULL;
}
}
static int
pf_ike_compare(struct pf_app_state *a, struct pf_app_state *b)
{
int64_t d = a->u.ike.cookie - b->u.ike.cookie;
return (d > 0) ? 1 : ((d < 0) ? -1 : 0);
}
static int
pf_do_nat64(struct pf_state_key *sk, struct pf_pdesc *pd, pbuf_t *pbuf,
int off)
{
if (pd->af == AF_INET) {
if (pd->af != sk->af_lan) {
pd->ndaddr = sk->lan.addr;
pd->naddr = sk->ext_lan.addr;
} else {
pd->naddr = sk->gwy.addr;
pd->ndaddr = sk->ext_gwy.addr;
}
return pf_nat64_ipv4(pbuf, off, pd);
} else if (pd->af == AF_INET6) {
if (pd->af != sk->af_lan) {
pd->ndaddr = sk->lan.addr;
pd->naddr = sk->ext_lan.addr;
} else {
pd->naddr = sk->gwy.addr;
pd->ndaddr = sk->ext_gwy.addr;
}
return pf_nat64_ipv6(pbuf, off, pd);
}
return PF_DROP;
}
static __attribute__((noinline)) int
pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif,
pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd,
u_short *reason)
{
#pragma unused(h)
struct pf_state_key_cmp key;
struct tcphdr *th = pd->hdr.tcp;
u_int16_t win = ntohs(th->th_win);
u_int32_t ack, end, seq, orig_seq;
u_int8_t sws, dws;
int ackskew;
int copyback = 0;
struct pf_state_peer *src, *dst;
struct pf_state_key *sk;
key.app_state = 0;
key.proto = IPPROTO_TCP;
key.af_lan = key.af_gwy = pd->af;
/*
* For NAT64 the first time rule search and state creation
* is done on the incoming side only.
* Once the state gets created, NAT64's LAN side (ipv6) will
* not be able to find the state in ext-gwy tree as that normally
* is intended to be looked up for incoming traffic from the
* WAN side.
* Therefore to handle NAT64 case we init keys here for both
* lan-ext as well as ext-gwy trees.
* In the state lookup we attempt a lookup on both trees if
* first one does not return any result and return a match if
* the match state's was created by NAT64 rule.
*/
PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy);
key.ext_gwy.xport.port = th->th_sport;
key.gwy.xport.port = th->th_dport;
PF_ACPY(&key.lan.addr, pd->src, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan);
key.lan.xport.port = th->th_sport;
key.ext_lan.xport.port = th->th_dport;
STATE_LOOKUP();
sk = (*state)->state_key;
/*
* In case of NAT64 the translation is first applied on the LAN
* side. Therefore for stack's address family comparison
* we use sk->af_lan.
*/
if ((direction == sk->direction) && (pd->af == sk->af_lan)) {
src = &(*state)->src;
dst = &(*state)->dst;
} else {
src = &(*state)->dst;
dst = &(*state)->src;
}
if (src->state == PF_TCPS_PROXY_SRC) {
if (direction != sk->direction) {
REASON_SET(reason, PFRES_SYNPROXY);
return PF_SYNPROXY_DROP;
}
if (th->th_flags & TH_SYN) {
if (ntohl(th->th_seq) != src->seqlo) {
REASON_SET(reason, PFRES_SYNPROXY);
return PF_DROP;
}
pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst,
pd->src, th->th_dport, th->th_sport,
src->seqhi, ntohl(th->th_seq) + 1,
TH_SYN | TH_ACK, 0, src->mss, 0, 1,
0, NULL, NULL);
REASON_SET(reason, PFRES_SYNPROXY);
return PF_SYNPROXY_DROP;
} else if (!(th->th_flags & TH_ACK) ||
(ntohl(th->th_ack) != src->seqhi + 1) ||
(ntohl(th->th_seq) != src->seqlo + 1)) {
REASON_SET(reason, PFRES_SYNPROXY);
return PF_DROP;
} else if ((*state)->src_node != NULL &&
pf_src_connlimit(state)) {
REASON_SET(reason, PFRES_SRCLIMIT);
return PF_DROP;
} else {
src->state = PF_TCPS_PROXY_DST;
}
}
if (src->state == PF_TCPS_PROXY_DST) {
struct pf_state_host *psrc, *pdst;
if (direction == PF_OUT) {
psrc = &sk->gwy;
pdst = &sk->ext_gwy;
} else {
psrc = &sk->ext_lan;
pdst = &sk->lan;
}
if (direction == sk->direction) {
if (((th->th_flags & (TH_SYN | TH_ACK)) != TH_ACK) ||
(ntohl(th->th_ack) != src->seqhi + 1) ||
(ntohl(th->th_seq) != src->seqlo + 1)) {
REASON_SET(reason, PFRES_SYNPROXY);
return PF_DROP;
}
src->max_win = MAX(ntohs(th->th_win), 1);
if (dst->seqhi == 1) {
dst->seqhi = htonl(random());
}
pf_send_tcp((*state)->rule.ptr, pd->af, &psrc->addr,
&pdst->addr, psrc->xport.port, pdst->xport.port,
dst->seqhi, 0, TH_SYN, 0,
src->mss, 0, 0, (*state)->tag, NULL, NULL);
REASON_SET(reason, PFRES_SYNPROXY);
return PF_SYNPROXY_DROP;
} else if (((th->th_flags & (TH_SYN | TH_ACK)) !=
(TH_SYN | TH_ACK)) ||
(ntohl(th->th_ack) != dst->seqhi + 1)) {
REASON_SET(reason, PFRES_SYNPROXY);
return PF_DROP;
} else {
dst->max_win = MAX(ntohs(th->th_win), 1);
dst->seqlo = ntohl(th->th_seq);
pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst,
pd->src, th->th_dport, th->th_sport,
ntohl(th->th_ack), ntohl(th->th_seq) + 1,
TH_ACK, src->max_win, 0, 0, 0,
(*state)->tag, NULL, NULL);
pf_send_tcp((*state)->rule.ptr, pd->af, &psrc->addr,
&pdst->addr, psrc->xport.port, pdst->xport.port,
src->seqhi + 1, src->seqlo + 1,
TH_ACK, dst->max_win, 0, 0, 1,
0, NULL, NULL);
src->seqdiff = dst->seqhi -
src->seqlo;
dst->seqdiff = src->seqhi -
dst->seqlo;
src->seqhi = src->seqlo +
dst->max_win;
dst->seqhi = dst->seqlo +
src->max_win;
src->wscale = dst->wscale = 0;
src->state = dst->state =
TCPS_ESTABLISHED;
REASON_SET(reason, PFRES_SYNPROXY);
return PF_SYNPROXY_DROP;
}
}
if (((th->th_flags & (TH_SYN | TH_ACK)) == TH_SYN) &&
dst->state >= TCPS_FIN_WAIT_2 &&
src->state >= TCPS_FIN_WAIT_2) {
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: state reuse ");
pf_print_state(*state);
pf_print_flags(th->th_flags);
printf("\n");
}
/* XXX make sure it's the same direction ?? */
src->state = dst->state = TCPS_CLOSED;
pf_unlink_state(*state);
*state = NULL;
return PF_DROP;
}
if ((th->th_flags & TH_SYN) == 0) {
sws = (src->wscale & PF_WSCALE_FLAG) ?
(src->wscale & PF_WSCALE_MASK) : TCP_MAX_WINSHIFT;
dws = (dst->wscale & PF_WSCALE_FLAG) ?
(dst->wscale & PF_WSCALE_MASK) : TCP_MAX_WINSHIFT;
} else {
sws = dws = 0;
}
/*
* Sequence tracking algorithm from Guido van Rooij's paper:
* http://www.madison-gurkha.com/publications/tcp_filtering/
* tcp_filtering.ps
*/
orig_seq = seq = ntohl(th->th_seq);
if (src->seqlo == 0) {
/* First packet from this end. Set its state */
if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) &&
src->scrub == NULL) {
if (pf_normalize_tcp_init(pbuf, off, pd, th, src, dst)) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
}
/* Deferred generation of sequence number modulator */
if (dst->seqdiff && !src->seqdiff) {
/* use random iss for the TCP server */
while ((src->seqdiff = random() - seq) == 0) {
;
}
ack = ntohl(th->th_ack) - dst->seqdiff;
pf_change_a(&th->th_seq, &th->th_sum, htonl(seq +
src->seqdiff), 0);
pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0);
copyback = off + sizeof(*th);
} else {
ack = ntohl(th->th_ack);
}
end = seq + pd->p_len;
if (th->th_flags & TH_SYN) {
end++;
if (dst->wscale & PF_WSCALE_FLAG) {
src->wscale = pf_get_wscale(pbuf, off,
th->th_off, pd->af);
if (src->wscale & PF_WSCALE_FLAG) {
/*
* Remove scale factor from initial
* window
*/
sws = src->wscale & PF_WSCALE_MASK;
win = ((u_int32_t)win + (1 << sws) - 1)
>> sws;
dws = dst->wscale & PF_WSCALE_MASK;
} else {
/*
* Window scale negotiation has failed,
* therefore we must restore the window
* scale in the state record that we
* optimistically removed in
* pf_test_rule(). Care is required to
* prevent arithmetic overflow from
* zeroing the window when it's
* truncated down to 16-bits.
*/
u_int32_t max_win = dst->max_win;
max_win <<=
dst->wscale & PF_WSCALE_MASK;
dst->max_win = MIN(0xffff, max_win);
/* in case of a retrans SYN|ACK */
dst->wscale = 0;
}
}
}
if (th->th_flags & TH_FIN) {
end++;
}
src->seqlo = seq;
if (src->state < TCPS_SYN_SENT) {
src->state = TCPS_SYN_SENT;
}
/*
* May need to slide the window (seqhi may have been set by
* the crappy stack check or if we picked up the connection
* after establishment)
*/
if (src->seqhi == 1 ||
SEQ_GEQ(end + MAX(1, (u_int32_t)dst->max_win << dws),
src->seqhi)) {
src->seqhi = end + MAX(1, (u_int32_t)dst->max_win << dws);
}
if (win > src->max_win) {
src->max_win = win;
}
} else {
ack = ntohl(th->th_ack) - dst->seqdiff;
if (src->seqdiff) {
/* Modulate sequence numbers */
pf_change_a(&th->th_seq, &th->th_sum, htonl(seq +
src->seqdiff), 0);
pf_change_a(&th->th_ack, &th->th_sum, htonl(ack), 0);
copyback = off + sizeof(*th);
}
end = seq + pd->p_len;
if (th->th_flags & TH_SYN) {
end++;
}
if (th->th_flags & TH_FIN) {
end++;
}
}
if ((th->th_flags & TH_ACK) == 0) {
/* Let it pass through the ack skew check */
ack = dst->seqlo;
} else if ((ack == 0 &&
(th->th_flags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) ||
/* broken tcp stacks do not set ack */
(dst->state < TCPS_SYN_SENT)) {
/*
* Many stacks (ours included) will set the ACK number in an
* FIN|ACK if the SYN times out -- no sequence to ACK.
*/
ack = dst->seqlo;
}
if (seq == end) {
/* Ease sequencing restrictions on no data packets */
seq = src->seqlo;
end = seq;
}
ackskew = dst->seqlo - ack;
/*
* Need to demodulate the sequence numbers in any TCP SACK options
* (Selective ACK). We could optionally validate the SACK values
* against the current ACK window, either forwards or backwards, but
* I'm not confident that SACK has been implemented properly
* everywhere. It wouldn't surprise me if several stacks accidently
* SACK too far backwards of previously ACKed data. There really aren't
* any security implications of bad SACKing unless the target stack
* doesn't validate the option length correctly. Someone trying to
* spoof into a TCP connection won't bother blindly sending SACK
* options anyway.
*/
if (dst->seqdiff && (th->th_off << 2) > (int)sizeof(struct tcphdr)) {
copyback = pf_modulate_sack(pbuf, off, pd, th, dst);
if (copyback == -1) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
pbuf = pd->mp; // XXXSCW: Why?
}
#define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */
if (SEQ_GEQ(src->seqhi, end) &&
/* Last octet inside other's window space */
SEQ_GEQ(seq, src->seqlo - ((u_int32_t)dst->max_win << dws)) &&
/* Retrans: not more than one window back */
(ackskew >= -MAXACKWINDOW) &&
/* Acking not more than one reassembled fragment backwards */
(ackskew <= (MAXACKWINDOW << sws)) &&
/* Acking not more than one window forward */
((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo ||
(orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) ||
(pd->flags & PFDESC_IP_REAS) == 0)) {
/* Require an exact/+1 sequence match on resets when possible */
if (dst->scrub || src->scrub) {
if (pf_normalize_tcp_stateful(pbuf, off, pd, reason, th,
*state, src, dst, &copyback)) {
return PF_DROP;
}
pbuf = pd->mp; // XXXSCW: Why?
}
/* update max window */
if (src->max_win < win) {
src->max_win = win;
}
/* synchronize sequencing */
if (SEQ_GT(end, src->seqlo)) {
src->seqlo = end;
}
/* slide the window of what the other end can send */
if (SEQ_GEQ(ack + ((u_int32_t)win << sws), dst->seqhi)) {
dst->seqhi = ack + MAX(((u_int32_t)win << sws), 1);
}
/* update states */
if (th->th_flags & TH_SYN) {
if (src->state < TCPS_SYN_SENT) {
src->state = TCPS_SYN_SENT;
}
}
if (th->th_flags & TH_FIN) {
if (src->state < TCPS_CLOSING) {
src->state = TCPS_CLOSING;
}
}
if (th->th_flags & TH_ACK) {
if (dst->state == TCPS_SYN_SENT) {
dst->state = TCPS_ESTABLISHED;
if (src->state == TCPS_ESTABLISHED &&
(*state)->src_node != NULL &&
pf_src_connlimit(state)) {
REASON_SET(reason, PFRES_SRCLIMIT);
return PF_DROP;
}
} else if (dst->state == TCPS_CLOSING) {
dst->state = TCPS_FIN_WAIT_2;
}
}
if (th->th_flags & TH_RST) {
src->state = dst->state = TCPS_TIME_WAIT;
}
/* update expire time */
(*state)->expire = pf_time_second();
if (src->state >= TCPS_FIN_WAIT_2 &&
dst->state >= TCPS_FIN_WAIT_2) {
(*state)->timeout = PFTM_TCP_CLOSED;
} else if (src->state >= TCPS_CLOSING &&
dst->state >= TCPS_CLOSING) {
(*state)->timeout = PFTM_TCP_FIN_WAIT;
} else if (src->state < TCPS_ESTABLISHED ||
dst->state < TCPS_ESTABLISHED) {
(*state)->timeout = PFTM_TCP_OPENING;
} else if (src->state >= TCPS_CLOSING ||
dst->state >= TCPS_CLOSING) {
(*state)->timeout = PFTM_TCP_CLOSING;
} else {
(*state)->timeout = PFTM_TCP_ESTABLISHED;
}
/* Fall through to PASS packet */
} else if ((dst->state < TCPS_SYN_SENT ||
dst->state >= TCPS_FIN_WAIT_2 || src->state >= TCPS_FIN_WAIT_2) &&
SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) &&
/* Within a window forward of the originating packet */
SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) {
/* Within a window backward of the originating packet */
/*
* This currently handles three situations:
* 1) Stupid stacks will shotgun SYNs before their peer
* replies.
* 2) When PF catches an already established stream (the
* firewall rebooted, the state table was flushed, routes
* changed...)
* 3) Packets get funky immediately after the connection
* closes (this should catch Solaris spurious ACK|FINs
* that web servers like to spew after a close)
*
* This must be a little more careful than the above code
* since packet floods will also be caught here. We don't
* update the TTL here to mitigate the damage of a packet
* flood and so the same code can handle awkward establishment
* and a loosened connection close.
* In the establishment case, a correct peer response will
* validate the connection, go through the normal state code
* and keep updating the state TTL.
*/
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: loose state match: ");
pf_print_state(*state);
pf_print_flags(th->th_flags);
printf(" seq=%u (%u) ack=%u len=%u ackskew=%d "
"pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack,
pd->p_len, ackskew, (*state)->packets[0],
(*state)->packets[1],
direction == PF_IN ? "in" : "out",
direction == sk->direction ?
"fwd" : "rev");
}
if (dst->scrub || src->scrub) {
if (pf_normalize_tcp_stateful(pbuf, off, pd, reason, th,
*state, src, dst, &copyback)) {
return PF_DROP;
}
pbuf = pd->mp; // XXXSCW: Why?
}
/* update max window */
if (src->max_win < win) {
src->max_win = win;
}
/* synchronize sequencing */
if (SEQ_GT(end, src->seqlo)) {
src->seqlo = end;
}
/* slide the window of what the other end can send */
if (SEQ_GEQ(ack + ((u_int32_t)win << sws), dst->seqhi)) {
dst->seqhi = ack + MAX(((u_int32_t)win << sws), 1);
}
/*
* Cannot set dst->seqhi here since this could be a shotgunned
* SYN and not an already established connection.
*/
if (th->th_flags & TH_FIN) {
if (src->state < TCPS_CLOSING) {
src->state = TCPS_CLOSING;
}
}
if (th->th_flags & TH_RST) {
src->state = dst->state = TCPS_TIME_WAIT;
}
/* Fall through to PASS packet */
} else {
if (dst->state == TCPS_SYN_SENT &&
src->state == TCPS_SYN_SENT) {
/* Send RST for state mismatches during handshake */
if (!(th->th_flags & TH_RST)) {
pf_send_tcp((*state)->rule.ptr, pd->af,
pd->dst, pd->src, th->th_dport,
th->th_sport, ntohl(th->th_ack), 0,
TH_RST, 0, 0,
(*state)->rule.ptr->return_ttl, 1, 0,
pd->eh, kif->pfik_ifp);
}
src->seqlo = 0;
src->seqhi = 1;
src->max_win = 1;
} else if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: BAD state: ");
pf_print_state(*state);
pf_print_flags(th->th_flags);
printf("\n seq=%u (%u) ack=%u len=%u ackskew=%d "
"sws=%u dws=%u pkts=%llu:%llu dir=%s,%s\n",
seq, orig_seq, ack, pd->p_len, ackskew,
(unsigned int)sws, (unsigned int)dws,
(*state)->packets[0], (*state)->packets[1],
direction == PF_IN ? "in" : "out",
direction == sk->direction ?
"fwd" : "rev");
printf("pf: State failure on: %c %c %c %c | %c %c\n",
SEQ_GEQ(src->seqhi, end) ? ' ' : '1',
SEQ_GEQ(seq,
src->seqlo - ((u_int32_t)dst->max_win << dws)) ?
' ': '2',
(ackskew >= -MAXACKWINDOW) ? ' ' : '3',
(ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4',
SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5',
SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6');
}
REASON_SET(reason, PFRES_BADSTATE);
return PF_DROP;
}
/* Any packets which have gotten here are to be passed */
if (sk->app_state &&
sk->app_state->handler) {
sk->app_state->handler(*state, direction,
off + (th->th_off << 2), pd, kif);
if (pd->lmw < 0) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
pbuf = pd->mp; // XXXSCW: Why?
}
/* translate source/destination address, if necessary */
if (STATE_TRANSLATE(sk)) {
pd->naf = (pd->af == sk->af_lan) ? sk->af_gwy : sk->af_lan;
if (direction == PF_OUT) {
pf_change_ap(direction, pd->mp, pd->src, &th->th_sport,
pd->ip_sum, &th->th_sum, &sk->gwy.addr,
sk->gwy.xport.port, 0, pd->af, pd->naf, 1);
} else {
if (pd->af != pd->naf) {
if (pd->af == sk->af_gwy) {
pf_change_ap(direction, pd->mp, pd->dst,
&th->th_dport, pd->ip_sum,
&th->th_sum, &sk->lan.addr,
sk->lan.xport.port, 0,
pd->af, pd->naf, 0);
pf_change_ap(direction, pd->mp, pd->src,
&th->th_sport, pd->ip_sum,
&th->th_sum, &sk->ext_lan.addr,
th->th_sport, 0, pd->af,
pd->naf, 0);
} else {
pf_change_ap(direction, pd->mp, pd->dst,
&th->th_dport, pd->ip_sum,
&th->th_sum, &sk->ext_gwy.addr,
th->th_dport, 0, pd->af,
pd->naf, 0);
pf_change_ap(direction, pd->mp, pd->src,
&th->th_sport, pd->ip_sum,
&th->th_sum, &sk->gwy.addr,
sk->gwy.xport.port, 0, pd->af,
pd->naf, 0);
}
} else {
pf_change_ap(direction, pd->mp, pd->dst,
&th->th_dport, pd->ip_sum,
&th->th_sum, &sk->lan.addr,
sk->lan.xport.port, 0, pd->af,
pd->naf, 1);
}
}
copyback = off + sizeof(*th);
}
if (copyback) {
if (pf_lazy_makewritable(pd, pbuf, copyback) == NULL) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
/* Copyback sequence modulation or stateful scrub changes */
pbuf_copy_back(pbuf, off, sizeof(*th), th);
if (sk->af_lan != sk->af_gwy) {
return pf_do_nat64(sk, pd, pbuf, off);
}
}
return PF_PASS;
}
static __attribute__((noinline)) int
pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif,
pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd, u_short *reason)
{
#pragma unused(h)
struct pf_state_peer *src, *dst;
struct pf_state_key_cmp key;
struct pf_state_key *sk;
struct udphdr *uh = pd->hdr.udp;
struct pf_app_state as;
int action, extfilter;
key.app_state = 0;
key.proto_variant = PF_EXTFILTER_APD;
key.proto = IPPROTO_UDP;
key.af_lan = key.af_gwy = pd->af;
/*
* For NAT64 the first time rule search and state creation
* is done on the incoming side only.
* Once the state gets created, NAT64's LAN side (ipv6) will
* not be able to find the state in ext-gwy tree as that normally
* is intended to be looked up for incoming traffic from the
* WAN side.
* Therefore to handle NAT64 case we init keys here for both
* lan-ext as well as ext-gwy trees.
* In the state lookup we attempt a lookup on both trees if
* first one does not return any result and return a match if
* the match state's was created by NAT64 rule.
*/
PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy);
key.ext_gwy.xport.port = uh->uh_sport;
key.gwy.xport.port = uh->uh_dport;
PF_ACPY(&key.lan.addr, pd->src, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan);
key.lan.xport.port = uh->uh_sport;
key.ext_lan.xport.port = uh->uh_dport;
if (ntohs(uh->uh_sport) == PF_IKE_PORT &&
ntohs(uh->uh_dport) == PF_IKE_PORT) {
struct pf_ike_hdr ike;
size_t plen = pbuf->pb_packet_len - off - sizeof(*uh);
if (plen < PF_IKE_PACKET_MINSIZE) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: IKE message too small.\n"));
return PF_DROP;
}
if (plen > sizeof(ike)) {
plen = sizeof(ike);
}
pbuf_copy_data(pbuf, off + sizeof(*uh), plen, &ike);
if (ike.initiator_cookie) {
key.app_state = &as;
as.compare_lan_ext = pf_ike_compare;
as.compare_ext_gwy = pf_ike_compare;
as.u.ike.cookie = ike.initiator_cookie;
} else {
/*
* <http://tools.ietf.org/html/\
* draft-ietf-ipsec-nat-t-ike-01>
* Support non-standard NAT-T implementations that
* push the ESP packet over the top of the IKE packet.
* Do not drop packet.
*/
DPFPRINTF(PF_DEBUG_MISC,
("pf: IKE initiator cookie = 0.\n"));
}
}
*state = pf_find_state(kif, &key, direction);
if (!key.app_state && *state == 0) {
key.proto_variant = PF_EXTFILTER_AD;
*state = pf_find_state(kif, &key, direction);
}
if (!key.app_state && *state == 0) {
key.proto_variant = PF_EXTFILTER_EI;
*state = pf_find_state(kif, &key, direction);
}
/* similar to STATE_LOOKUP() */
if (*state != NULL && pd != NULL && !(pd->pktflags & PKTF_FLOW_ID)) {
pd->flowsrc = (*state)->state_key->flowsrc;
pd->flowhash = (*state)->state_key->flowhash;
if (pd->flowhash != 0) {
pd->pktflags |= PKTF_FLOW_ID;
pd->pktflags &= ~PKTF_FLOW_ADV;
}
}
if (pf_state_lookup_aux(state, kif, direction, &action)) {
return action;
}
sk = (*state)->state_key;
/*
* In case of NAT64 the translation is first applied on the LAN
* side. Therefore for stack's address family comparison
* we use sk->af_lan.
*/
if ((direction == sk->direction) && (pd->af == sk->af_lan)) {
src = &(*state)->src;
dst = &(*state)->dst;
} else {
src = &(*state)->dst;
dst = &(*state)->src;
}
/* update states */
if (src->state < PFUDPS_SINGLE) {
src->state = PFUDPS_SINGLE;
}
if (dst->state == PFUDPS_SINGLE) {
dst->state = PFUDPS_MULTIPLE;
}
/* update expire time */
(*state)->expire = pf_time_second();
if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) {
(*state)->timeout = PFTM_UDP_MULTIPLE;
} else {
(*state)->timeout = PFTM_UDP_SINGLE;
}
extfilter = sk->proto_variant;
if (extfilter > PF_EXTFILTER_APD) {
if (direction == PF_OUT) {
sk->ext_lan.xport.port = key.ext_lan.xport.port;
if (extfilter > PF_EXTFILTER_AD) {
PF_ACPY(&sk->ext_lan.addr, &key.ext_lan.addr,
key.af_lan);
}
} else {
sk->ext_gwy.xport.port = key.ext_gwy.xport.port;
if (extfilter > PF_EXTFILTER_AD) {
PF_ACPY(&sk->ext_gwy.addr, &key.ext_gwy.addr,
key.af_gwy);
}
}
}
if (sk->app_state && sk->app_state->handler) {
sk->app_state->handler(*state, direction, off + uh->uh_ulen,
pd, kif);
if (pd->lmw < 0) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
pbuf = pd->mp; // XXXSCW: Why?
}
/* translate source/destination address, if necessary */
if (STATE_TRANSLATE(sk)) {
if (pf_lazy_makewritable(pd, pbuf, off + sizeof(*uh)) == NULL) {
REASON_SET(reason, PFRES_MEMORY);
return PF_DROP;
}
pd->naf = (pd->af == sk->af_lan) ? sk->af_gwy : sk->af_lan;
if (direction == PF_OUT) {
pf_change_ap(direction, pd->mp, pd->src, &uh->uh_sport,
pd->ip_sum, &uh->uh_sum, &sk->gwy.addr,
sk->gwy.xport.port, 1, pd->af, pd->naf, 1);
} else {
if (pd->af != pd->naf) {
if (pd->af == sk->af_gwy) {
pf_change_ap(direction, pd->mp, pd->dst,
&uh->uh_dport, pd->ip_sum,
&uh->uh_sum, &sk->lan.addr,
sk->lan.xport.port, 1,
pd->af, pd->naf, 0);
pf_change_ap(direction, pd->mp, pd->src,
&uh->uh_sport, pd->ip_sum,
&uh->uh_sum, &sk->ext_lan.addr,
uh->uh_sport, 1, pd->af,
pd->naf, 0);
} else {
pf_change_ap(direction, pd->mp, pd->dst,
&uh->uh_dport, pd->ip_sum,
&uh->uh_sum, &sk->ext_gwy.addr,
uh->uh_dport, 1, pd->af,
pd->naf, 0);
pf_change_ap(direction, pd->mp, pd->src,
&uh->uh_sport, pd->ip_sum,
&uh->uh_sum, &sk->gwy.addr,
sk->gwy.xport.port, 1, pd->af,
pd->naf, 0);
}
} else {
pf_change_ap(direction, pd->mp, pd->dst,
&uh->uh_dport, pd->ip_sum,
&uh->uh_sum, &sk->lan.addr,
sk->lan.xport.port, 1,
pd->af, pd->naf, 1);
}
}
pbuf_copy_back(pbuf, off, sizeof(*uh), uh);
if (sk->af_lan != sk->af_gwy) {
return pf_do_nat64(sk, pd, pbuf, off);
}
}
return PF_PASS;
}
static u_int32_t
pf_compute_packet_icmp_gencnt(uint32_t af, u_int32_t type, u_int32_t code)
{
if (af == PF_INET) {
if (type != ICMP_UNREACH && type != ICMP_TIMXCEED) {
return 0;
}
} else {
if (type != ICMP6_DST_UNREACH && type != ICMP6_PARAM_PROB &&
type != ICMP6_TIME_EXCEEDED) {
return 0;
}
}
return (af << 24) | (type << 16) | (code << 8);
}
static __attribute__((noinline)) int
pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif,
pbuf_t *pbuf, int off, void *h, struct pf_pdesc *pd, u_short *reason)
{
#pragma unused(h)
struct pf_addr *saddr = pd->src, *daddr = pd->dst;
struct in_addr srcv4_inaddr = saddr->v4addr;
u_int16_t icmpid = 0, *icmpsum = NULL;
u_int8_t icmptype = 0;
u_int32_t icmpcode = 0;
int state_icmp = 0;
struct pf_state_key_cmp key;
struct pf_state_key *sk;
struct pf_app_state as;
key.app_state = 0;
pd->off = off;
switch (pd->proto) {
#if INET
case IPPROTO_ICMP:
icmptype = pd->hdr.icmp->icmp_type;
icmpid = pd->hdr.icmp->icmp_id;
icmpsum = &pd->hdr.icmp->icmp_cksum;
icmpcode = pd->hdr.icmp->icmp_code;
if (ICMP_ERRORTYPE(icmptype)) {
state_icmp++;
}
break;
#endif /* INET */
case IPPROTO_ICMPV6:
icmptype = pd->hdr.icmp6->icmp6_type;
icmpid = pd->hdr.icmp6->icmp6_id;
icmpsum = &pd->hdr.icmp6->icmp6_cksum;
icmpcode = pd->hdr.icmp6->icmp6_code;
if (ICMP6_ERRORTYPE(icmptype)) {
state_icmp++;
}
break;
}
if (pbuf != NULL && pbuf->pb_flow_gencnt != NULL &&
*pbuf->pb_flow_gencnt == 0) {
u_int32_t af = pd->proto == IPPROTO_ICMP ? PF_INET : PF_INET6;
*pbuf->pb_flow_gencnt = pf_compute_packet_icmp_gencnt(af, icmptype, icmpcode);
}
if (!state_icmp) {
/*
* ICMP query/reply message not related to a TCP/UDP packet.
* Search for an ICMP state.
*/
/*
* NAT64 requires protocol translation between ICMPv4
* and ICMPv6. TCP and UDP do not require protocol
* translation. To avoid adding complexity just to
* handle ICMP(v4addr/v6addr), we always lookup for
* proto = IPPROTO_ICMP on both LAN and WAN side
*/
key.proto = IPPROTO_ICMP;
key.af_lan = key.af_gwy = pd->af;
PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy);
key.ext_gwy.xport.port = 0;
key.gwy.xport.port = icmpid;
PF_ACPY(&key.lan.addr, pd->src, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan);
key.lan.xport.port = icmpid;
key.ext_lan.xport.port = 0;
STATE_LOOKUP();
sk = (*state)->state_key;
(*state)->expire = pf_time_second();
(*state)->timeout = PFTM_ICMP_ERROR_REPLY;
/* translate source/destination address, if necessary */
if (STATE_TRANSLATE(sk)) {
pd->naf = (pd->af == sk->af_lan) ?
sk->af_gwy : sk->af_lan;
if (direction == PF_OUT) {
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&saddr->v4addr.s_addr,
pd->ip_sum,
sk->gwy.addr.v4addr.s_addr, 0);
pd->hdr.icmp->icmp_cksum =
pf_cksum_fixup(
pd->hdr.icmp->icmp_cksum, icmpid,
sk->gwy.xport.port, 0);
pd->hdr.icmp->icmp_id =
sk->gwy.xport.port;
if (pf_lazy_makewritable(pd, pbuf,
off + ICMP_MINLEN) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off, ICMP_MINLEN,
pd->hdr.icmp);
break;
#endif /* INET */
case AF_INET6:
pf_change_a6(saddr,
&pd->hdr.icmp6->icmp6_cksum,
&sk->gwy.addr, 0);
if (pf_lazy_makewritable(pd, pbuf,
off + sizeof(struct icmp6_hdr)) ==
NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
break;
}
} else {
switch (pd->af) {
#if INET
case AF_INET:
if (pd->naf != AF_INET) {
if (pf_translate_icmp_af(
AF_INET6, pd->hdr.icmp)) {
return PF_DROP;
}
pd->proto = IPPROTO_ICMPV6;
} else {
pf_change_a(&daddr->v4addr.s_addr,
pd->ip_sum,
sk->lan.addr.v4addr.s_addr, 0);
pd->hdr.icmp->icmp_cksum =
pf_cksum_fixup(
pd->hdr.icmp->icmp_cksum,
icmpid, sk->lan.xport.port, 0);
pd->hdr.icmp->icmp_id =
sk->lan.xport.port;
}
if (pf_lazy_makewritable(pd, pbuf,
off + ICMP_MINLEN) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off, ICMP_MINLEN,
pd->hdr.icmp);
if (sk->af_lan != sk->af_gwy) {
return pf_do_nat64(sk, pd,
pbuf, off);
}
break;
#endif /* INET */
case AF_INET6:
if (pd->naf != AF_INET6) {
if (pf_translate_icmp_af(
AF_INET, pd->hdr.icmp6)) {
return PF_DROP;
}
pd->proto = IPPROTO_ICMP;
} else {
pf_change_a6(daddr,
&pd->hdr.icmp6->icmp6_cksum,
&sk->lan.addr, 0);
}
if (pf_lazy_makewritable(pd, pbuf,
off + sizeof(struct icmp6_hdr)) ==
NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
if (sk->af_lan != sk->af_gwy) {
return pf_do_nat64(sk, pd,
pbuf, off);
}
break;
}
}
}
return PF_PASS;
} else {
/*
* ICMP error message in response to a TCP/UDP packet.
* Extract the inner TCP/UDP header and search for that state.
*/
struct pf_pdesc pd2; /* For inner (original) header */
#if INET
struct ip h2;
#endif /* INET */
struct ip6_hdr h2_6;
int terminal = 0;
int ipoff2 = 0;
int off2 = 0;
memset(&pd2, 0, sizeof(pd2));
pd2.af = pd->af;
switch (pd->af) {
#if INET
case AF_INET:
/* offset of h2 in mbuf chain */
ipoff2 = off + ICMP_MINLEN;
if (!pf_pull_hdr(pbuf, ipoff2, &h2, sizeof(h2),
NULL, reason, pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMP error message too short "
"(ip)\n"));
return PF_DROP;
}
/*
* ICMP error messages don't refer to non-first
* fragments
*/
if (h2.ip_off & htons(IP_OFFMASK)) {
REASON_SET(reason, PFRES_FRAG);
return PF_DROP;
}
/* offset of protocol header that follows h2 */
off2 = ipoff2 + (h2.ip_hl << 2);
/* TODO */
pd2.off = ipoff2 + (h2.ip_hl << 2);
pd2.proto = h2.ip_p;
pd2.src = (struct pf_addr *)&h2.ip_src;
pd2.dst = (struct pf_addr *)&h2.ip_dst;
pd2.ip_sum = &h2.ip_sum;
break;
#endif /* INET */
case AF_INET6:
ipoff2 = off + sizeof(struct icmp6_hdr);
if (!pf_pull_hdr(pbuf, ipoff2, &h2_6, sizeof(h2_6),
NULL, reason, pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMP error message too short "
"(ip6)\n"));
return PF_DROP;
}
pd2.proto = h2_6.ip6_nxt;
pd2.src = (struct pf_addr *)(uintptr_t)&h2_6.ip6_src;
pd2.dst = (struct pf_addr *)(uintptr_t)&h2_6.ip6_dst;
pd2.ip_sum = NULL;
off2 = ipoff2 + sizeof(h2_6);
do {
switch (pd2.proto) {
case IPPROTO_FRAGMENT:
/*
* ICMPv6 error messages for
* non-first fragments
*/
REASON_SET(reason, PFRES_FRAG);
return PF_DROP;
case IPPROTO_AH:
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS: {
/* get next header and header length */
struct ip6_ext opt6;
if (!pf_pull_hdr(pbuf, off2, &opt6,
sizeof(opt6), NULL, reason,
pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMPv6 short opt\n"));
return PF_DROP;
}
if (pd2.proto == IPPROTO_AH) {
off2 += (opt6.ip6e_len + 2) * 4;
} else {
off2 += (opt6.ip6e_len + 1) * 8;
}
pd2.proto = opt6.ip6e_nxt;
/* goto the next header */
break;
}
default:
terminal++;
break;
}
} while (!terminal);
/* TODO */
pd2.off = ipoff2;
break;
}
switch (pd2.proto) {
case IPPROTO_TCP: {
struct tcphdr th;
u_int32_t seq;
struct pf_state_peer *src, *dst;
u_int8_t dws;
int copyback = 0;
/*
* Only the first 8 bytes of the TCP header can be
* expected. Don't access any TCP header fields after
* th_seq, an ackskew test is not possible.
*/
if (!pf_pull_hdr(pbuf, off2, &th, 8, NULL, reason,
pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMP error message too short "
"(tcp)\n"));
return PF_DROP;
}
key.proto = IPPROTO_TCP;
key.af_gwy = pd2.af;
PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy);
key.ext_gwy.xport.port = th.th_dport;
key.gwy.xport.port = th.th_sport;
key.af_lan = pd2.af;
PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan);
key.lan.xport.port = th.th_dport;
key.ext_lan.xport.port = th.th_sport;
STATE_LOOKUP();
sk = (*state)->state_key;
if ((direction == sk->direction) &&
((sk->af_lan == sk->af_gwy) ||
(pd2.af == sk->af_lan))) {
src = &(*state)->dst;
dst = &(*state)->src;
} else {
src = &(*state)->src;
dst = &(*state)->dst;
}
if (src->wscale && (dst->wscale & PF_WSCALE_FLAG)) {
dws = dst->wscale & PF_WSCALE_MASK;
} else {
dws = TCP_MAX_WINSHIFT;
}
/* Demodulate sequence number */
seq = ntohl(th.th_seq) - src->seqdiff;
if (src->seqdiff) {
pf_change_a(&th.th_seq, icmpsum,
htonl(seq), 0);
copyback = 1;
}
if (!SEQ_GEQ(src->seqhi, seq) ||
!SEQ_GEQ(seq,
src->seqlo - ((u_int32_t)dst->max_win << dws))) {
if (pf_status.debug >= PF_DEBUG_MISC) {
printf("pf: BAD ICMP %d:%d ",
icmptype, pd->hdr.icmp->icmp_code);
pf_print_host(pd->src, 0, pd->af);
printf(" -> ");
pf_print_host(pd->dst, 0, pd->af);
printf(" state: ");
pf_print_state(*state);
printf(" seq=%u\n", seq);
}
REASON_SET(reason, PFRES_BADSTATE);
return PF_DROP;
}
pd->naf = pd2.naf = (pd2.af == sk->af_lan) ?
sk->af_gwy : sk->af_lan;
if (STATE_TRANSLATE(sk)) {
/* NAT64 case */
if (sk->af_lan != sk->af_gwy) {
struct pf_state_host *saddr2, *daddr2;
if (pd2.naf == sk->af_lan) {
saddr2 = &sk->lan;
daddr2 = &sk->ext_lan;
} else {
saddr2 = &sk->ext_gwy;
daddr2 = &sk->gwy;
}
/* translate ICMP message types and codes */
if (pf_translate_icmp_af(pd->naf,
pd->hdr.icmp)) {
return PF_DROP;
}
if (pf_lazy_makewritable(pd, pbuf,
off2 + 8) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, pd->off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
/*
* translate inner ip header within the
* ICMP message
*/
if (pf_change_icmp_af(pbuf, ipoff2, pd,
&pd2, &saddr2->addr, &daddr2->addr,
pd->af, pd->naf)) {
return PF_DROP;
}
if (pd->naf == AF_INET) {
pd->proto = IPPROTO_ICMP;
} else {
pd->proto = IPPROTO_ICMPV6;
}
/*
* translate inner tcp header within
* the ICMP message
*/
pf_change_ap(direction, NULL, pd2.src,
&th.th_sport, pd2.ip_sum,
&th.th_sum, &daddr2->addr,
saddr2->xport.port, 0, pd2.af,
pd2.naf, 0);
pf_change_ap(direction, NULL, pd2.dst,
&th.th_dport, pd2.ip_sum,
&th.th_sum, &saddr2->addr,
daddr2->xport.port, 0, pd2.af,
pd2.naf, 0);
pbuf_copy_back(pbuf, pd2.off, 8, &th);
/* translate outer ip header */
PF_ACPY(&pd->naddr, &daddr2->addr,
pd->naf);
PF_ACPY(&pd->ndaddr, &saddr2->addr,
pd->naf);
if (pd->af == AF_INET) {
memcpy(&pd->naddr.addr32[3],
&srcv4_inaddr,
sizeof(pd->naddr.addr32[3]));
return pf_nat64_ipv4(pbuf, off,
pd);
} else {
return pf_nat64_ipv6(pbuf, off,
pd);
}
}
if (direction == PF_IN) {
pf_change_icmp(pd2.src, &th.th_sport,
daddr, &sk->lan.addr,
sk->lan.xport.port, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, pd2.af);
} else {
pf_change_icmp(pd2.dst, &th.th_dport,
saddr, &sk->gwy.addr,
sk->gwy.xport.port, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, pd2.af);
}
copyback = 1;
}
if (copyback) {
if (pf_lazy_makewritable(pd, pbuf, off2 + 8) ==
NULL) {
return PF_DROP;
}
switch (pd2.af) {
#if INET
case AF_INET:
pbuf_copy_back(pbuf, off, ICMP_MINLEN,
pd->hdr.icmp);
pbuf_copy_back(pbuf, ipoff2, sizeof(h2),
&h2);
break;
#endif /* INET */
case AF_INET6:
pbuf_copy_back(pbuf, off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
pbuf_copy_back(pbuf, ipoff2,
sizeof(h2_6), &h2_6);
break;
}
pbuf_copy_back(pbuf, off2, 8, &th);
}
return PF_PASS;
}
case IPPROTO_UDP: {
struct udphdr uh;
int dx, action;
if (!pf_pull_hdr(pbuf, off2, &uh, sizeof(uh),
NULL, reason, pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMP error message too short "
"(udp)\n"));
return PF_DROP;
}
key.af_gwy = pd2.af;
PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy);
key.ext_gwy.xport.port = uh.uh_dport;
key.gwy.xport.port = uh.uh_sport;
key.af_lan = pd2.af;
PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan);
key.lan.xport.port = uh.uh_dport;
key.ext_lan.xport.port = uh.uh_sport;
key.proto = IPPROTO_UDP;
key.proto_variant = PF_EXTFILTER_APD;
dx = direction;
if (ntohs(uh.uh_sport) == PF_IKE_PORT &&
ntohs(uh.uh_dport) == PF_IKE_PORT) {
struct pf_ike_hdr ike;
size_t plen = pbuf->pb_packet_len - off2 -
sizeof(uh);
if (direction == PF_IN &&
plen < 8 /* PF_IKE_PACKET_MINSIZE */) {
DPFPRINTF(PF_DEBUG_MISC, ("pf: "
"ICMP error, embedded IKE message "
"too small.\n"));
return PF_DROP;
}
if (plen > sizeof(ike)) {
plen = sizeof(ike);
}
pbuf_copy_data(pbuf, off + sizeof(uh), plen,
&ike);
key.app_state = &as;
as.compare_lan_ext = pf_ike_compare;
as.compare_ext_gwy = pf_ike_compare;
as.u.ike.cookie = ike.initiator_cookie;
}
*state = pf_find_state(kif, &key, dx);
if (key.app_state && *state == 0) {
key.app_state = 0;
*state = pf_find_state(kif, &key, dx);
}
if (*state == 0) {
key.proto_variant = PF_EXTFILTER_AD;
*state = pf_find_state(kif, &key, dx);
}
if (*state == 0) {
key.proto_variant = PF_EXTFILTER_EI;
*state = pf_find_state(kif, &key, dx);
}
/* similar to STATE_LOOKUP() */
if (*state != NULL && pd != NULL &&
!(pd->pktflags & PKTF_FLOW_ID)) {
pd->flowsrc = (*state)->state_key->flowsrc;
pd->flowhash = (*state)->state_key->flowhash;
if (pd->flowhash != 0) {
pd->pktflags |= PKTF_FLOW_ID;
pd->pktflags &= ~PKTF_FLOW_ADV;
}
}
if (pf_state_lookup_aux(state, kif, direction, &action)) {
return action;
}
sk = (*state)->state_key;
pd->naf = pd2.naf = (pd2.af == sk->af_lan) ?
sk->af_gwy : sk->af_lan;
if (STATE_TRANSLATE(sk)) {
/* NAT64 case */
if (sk->af_lan != sk->af_gwy) {
struct pf_state_host *saddr2, *daddr2;
if (pd2.naf == sk->af_lan) {
saddr2 = &sk->lan;
daddr2 = &sk->ext_lan;
} else {
saddr2 = &sk->ext_gwy;
daddr2 = &sk->gwy;
}
/* translate ICMP message */
if (pf_translate_icmp_af(pd->naf,
pd->hdr.icmp)) {
return PF_DROP;
}
if (pf_lazy_makewritable(pd, pbuf,
off2 + 8) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, pd->off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
/*
* translate inner ip header within the
* ICMP message
*/
if (pf_change_icmp_af(pbuf, ipoff2, pd,
&pd2, &saddr2->addr, &daddr2->addr,
pd->af, pd->naf)) {
return PF_DROP;
}
if (pd->naf == AF_INET) {
pd->proto = IPPROTO_ICMP;
} else {
pd->proto = IPPROTO_ICMPV6;
}
/*
* translate inner udp header within
* the ICMP message
*/
pf_change_ap(direction, NULL, pd2.src,
&uh.uh_sport, pd2.ip_sum,
&uh.uh_sum, &daddr2->addr,
saddr2->xport.port, 0, pd2.af,
pd2.naf, 0);
pf_change_ap(direction, NULL, pd2.dst,
&uh.uh_dport, pd2.ip_sum,
&uh.uh_sum, &saddr2->addr,
daddr2->xport.port, 0, pd2.af,
pd2.naf, 0);
pbuf_copy_back(pbuf, pd2.off,
sizeof(uh), &uh);
/* translate outer ip header */
PF_ACPY(&pd->naddr, &daddr2->addr,
pd->naf);
PF_ACPY(&pd->ndaddr, &saddr2->addr,
pd->naf);
if (pd->af == AF_INET) {
memcpy(&pd->naddr.addr32[3],
&srcv4_inaddr,
sizeof(pd->naddr.addr32[3]));
return pf_nat64_ipv4(pbuf, off,
pd);
} else {
return pf_nat64_ipv6(pbuf, off,
pd);
}
}
if (direction == PF_IN) {
pf_change_icmp(pd2.src, &uh.uh_sport,
daddr, &sk->lan.addr,
sk->lan.xport.port, &uh.uh_sum,
pd2.ip_sum, icmpsum,
pd->ip_sum, 1, pd2.af);
} else {
pf_change_icmp(pd2.dst, &uh.uh_dport,
saddr, &sk->gwy.addr,
sk->gwy.xport.port, &uh.uh_sum,
pd2.ip_sum, icmpsum,
pd->ip_sum, 1, pd2.af);
}
if (pf_lazy_makewritable(pd, pbuf,
off2 + sizeof(uh)) == NULL) {
return PF_DROP;
}
switch (pd2.af) {
#if INET
case AF_INET:
pbuf_copy_back(pbuf, off, ICMP_MINLEN,
pd->hdr.icmp);
pbuf_copy_back(pbuf, ipoff2,
sizeof(h2), &h2);
break;
#endif /* INET */
case AF_INET6:
pbuf_copy_back(pbuf, off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
pbuf_copy_back(pbuf, ipoff2,
sizeof(h2_6), &h2_6);
break;
}
pbuf_copy_back(pbuf, off2, sizeof(uh), &uh);
}
return PF_PASS;
}
#if INET
case IPPROTO_ICMP: {
struct icmp iih;
if (!pf_pull_hdr(pbuf, off2, &iih, ICMP_MINLEN,
NULL, reason, pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMP error message too short i"
"(icmp)\n"));
return PF_DROP;
}
key.proto = IPPROTO_ICMP;
if (direction == PF_IN) {
key.af_gwy = pd2.af;
PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy);
key.ext_gwy.xport.port = 0;
key.gwy.xport.port = iih.icmp_id;
} else {
key.af_lan = pd2.af;
PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan);
key.lan.xport.port = iih.icmp_id;
key.ext_lan.xport.port = 0;
}
STATE_LOOKUP();
sk = (*state)->state_key;
if (STATE_TRANSLATE(sk)) {
if (direction == PF_IN) {
pf_change_icmp(pd2.src, &iih.icmp_id,
daddr, &sk->lan.addr,
sk->lan.xport.port, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, AF_INET);
} else {
pf_change_icmp(pd2.dst, &iih.icmp_id,
saddr, &sk->gwy.addr,
sk->gwy.xport.port, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, AF_INET);
}
if (pf_lazy_makewritable(pd, pbuf,
off2 + ICMP_MINLEN) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off, ICMP_MINLEN,
pd->hdr.icmp);
pbuf_copy_back(pbuf, ipoff2, sizeof(h2), &h2);
pbuf_copy_back(pbuf, off2, ICMP_MINLEN, &iih);
}
return PF_PASS;
}
#endif /* INET */
case IPPROTO_ICMPV6: {
struct icmp6_hdr iih;
if (!pf_pull_hdr(pbuf, off2, &iih,
sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: ICMP error message too short "
"(icmp6)\n"));
return PF_DROP;
}
key.proto = IPPROTO_ICMPV6;
if (direction == PF_IN) {
key.af_gwy = pd2.af;
PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy);
key.ext_gwy.xport.port = 0;
key.gwy.xport.port = iih.icmp6_id;
} else {
key.af_lan = pd2.af;
PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan);
key.lan.xport.port = iih.icmp6_id;
key.ext_lan.xport.port = 0;
}
STATE_LOOKUP();
sk = (*state)->state_key;
if (STATE_TRANSLATE(sk)) {
if (direction == PF_IN) {
pf_change_icmp(pd2.src, &iih.icmp6_id,
daddr, &sk->lan.addr,
sk->lan.xport.port, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, AF_INET6);
} else {
pf_change_icmp(pd2.dst, &iih.icmp6_id,
saddr, &sk->gwy.addr,
sk->gwy.xport.port, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, AF_INET6);
}
if (pf_lazy_makewritable(pd, pbuf, off2 +
sizeof(struct icmp6_hdr)) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off,
sizeof(struct icmp6_hdr), pd->hdr.icmp6);
pbuf_copy_back(pbuf, ipoff2, sizeof(h2_6),
&h2_6);
pbuf_copy_back(pbuf, off2,
sizeof(struct icmp6_hdr), &iih);
}
return PF_PASS;
}
default: {
key.proto = pd2.proto;
if (direction == PF_IN) {
key.af_gwy = pd2.af;
PF_ACPY(&key.ext_gwy.addr, pd2.dst, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd2.src, key.af_gwy);
key.ext_gwy.xport.port = 0;
key.gwy.xport.port = 0;
} else {
key.af_lan = pd2.af;
PF_ACPY(&key.lan.addr, pd2.dst, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd2.src, key.af_lan);
key.lan.xport.port = 0;
key.ext_lan.xport.port = 0;
}
STATE_LOOKUP();
sk = (*state)->state_key;
if (STATE_TRANSLATE(sk)) {
if (direction == PF_IN) {
pf_change_icmp(pd2.src, NULL, daddr,
&sk->lan.addr, 0, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, pd2.af);
} else {
pf_change_icmp(pd2.dst, NULL, saddr,
&sk->gwy.addr, 0, NULL,
pd2.ip_sum, icmpsum,
pd->ip_sum, 0, pd2.af);
}
switch (pd2.af) {
#if INET
case AF_INET:
if (pf_lazy_makewritable(pd, pbuf,
ipoff2 + sizeof(h2)) == NULL) {
return PF_DROP;
}
/*
* <XXXSCW>
* Xnu was missing the following...
*/
pbuf_copy_back(pbuf, off, ICMP_MINLEN,
pd->hdr.icmp);
pbuf_copy_back(pbuf, ipoff2,
sizeof(h2), &h2);
break;
/*
* </XXXSCW>
*/
#endif /* INET */
case AF_INET6:
if (pf_lazy_makewritable(pd, pbuf,
ipoff2 + sizeof(h2_6)) == NULL) {
return PF_DROP;
}
pbuf_copy_back(pbuf, off,
sizeof(struct icmp6_hdr),
pd->hdr.icmp6);
pbuf_copy_back(pbuf, ipoff2,
sizeof(h2_6), &h2_6);
break;
}
}
return PF_PASS;
}
}
}
}
static __attribute__((noinline)) int
pf_test_state_grev1(struct pf_state **state, int direction,
struct pfi_kif *kif, int off, struct pf_pdesc *pd)
{
struct pf_state_peer *src;
struct pf_state_peer *dst;
struct pf_state_key_cmp key = {};
struct pf_grev1_hdr *grev1 = pd->hdr.grev1;
key.app_state = 0;
key.proto = IPPROTO_GRE;
key.proto_variant = PF_GRE_PPTP_VARIANT;
if (direction == PF_IN) {
key.af_gwy = pd->af;
PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy);
key.gwy.xport.call_id = grev1->call_id;
} else {
key.af_lan = pd->af;
PF_ACPY(&key.lan.addr, pd->src, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan);
key.ext_lan.xport.call_id = grev1->call_id;
}
STATE_LOOKUP();
if (direction == (*state)->state_key->direction) {
src = &(*state)->src;
dst = &(*state)->dst;
} else {
src = &(*state)->dst;
dst = &(*state)->src;
}
/* update states */
if (src->state < PFGRE1S_INITIATING) {
src->state = PFGRE1S_INITIATING;
}
/* update expire time */
(*state)->expire = pf_time_second();
if (src->state >= PFGRE1S_INITIATING &&
dst->state >= PFGRE1S_INITIATING) {
if ((*state)->timeout != PFTM_TCP_ESTABLISHED) {
(*state)->timeout = PFTM_GREv1_ESTABLISHED;
}
src->state = PFGRE1S_ESTABLISHED;
dst->state = PFGRE1S_ESTABLISHED;
} else {
(*state)->timeout = PFTM_GREv1_INITIATING;
}
if ((*state)->state_key->app_state) {
(*state)->state_key->app_state->u.grev1.pptp_state->expire =
pf_time_second();
}
/* translate source/destination address, if necessary */
if (STATE_GRE_TRANSLATE((*state)->state_key)) {
if (direction == PF_OUT) {
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&pd->src->v4addr.s_addr,
pd->ip_sum,
(*state)->state_key->gwy.addr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(pd->src, &(*state)->state_key->gwy.addr,
pd->af);
break;
}
} else {
grev1->call_id = (*state)->state_key->lan.xport.call_id;
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&pd->dst->v4addr.s_addr,
pd->ip_sum,
(*state)->state_key->lan.addr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(pd->dst, &(*state)->state_key->lan.addr,
pd->af);
break;
}
}
if (pf_lazy_makewritable(pd, pd->mp, off + sizeof(*grev1)) ==
NULL) {
return PF_DROP;
}
pbuf_copy_back(pd->mp, off, sizeof(*grev1), grev1);
}
return PF_PASS;
}
static __attribute__((noinline)) int
pf_test_state_esp(struct pf_state **state, int direction, struct pfi_kif *kif,
int off, struct pf_pdesc *pd)
{
#pragma unused(off)
struct pf_state_peer *src;
struct pf_state_peer *dst;
struct pf_state_key_cmp key;
struct pf_esp_hdr *esp = pd->hdr.esp;
int action;
memset(&key, 0, sizeof(key));
key.proto = IPPROTO_ESP;
if (direction == PF_IN) {
key.af_gwy = pd->af;
PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy);
key.gwy.xport.spi = esp->spi;
} else {
key.af_lan = pd->af;
PF_ACPY(&key.lan.addr, pd->src, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan);
key.ext_lan.xport.spi = esp->spi;
}
*state = pf_find_state(kif, &key, direction);
if (*state == 0) {
struct pf_state *s;
/*
* <jhw@apple.com>
* No matching state. Look for a blocking state. If we find
* one, then use that state and move it so that it's keyed to
* the SPI in the current packet.
*/
if (direction == PF_IN) {
key.gwy.xport.spi = 0;
s = pf_find_state(kif, &key, direction);
if (s) {
struct pf_state_key *sk = s->state_key;
pf_remove_state_key_ext_gwy(sk);
sk->lan.xport.spi = sk->gwy.xport.spi =
esp->spi;
if (pf_insert_state_key_ext_gwy(sk)) {
pf_detach_state(s, PF_DT_SKIP_EXTGWY);
} else {
*state = s;
}
}
} else {
key.ext_lan.xport.spi = 0;
s = pf_find_state(kif, &key, direction);
if (s) {
struct pf_state_key *sk = s->state_key;
RB_REMOVE(pf_state_tree_lan_ext,
&pf_statetbl_lan_ext, sk);
sk->ext_lan.xport.spi = esp->spi;
if (RB_INSERT(pf_state_tree_lan_ext,
&pf_statetbl_lan_ext, sk)) {
pf_detach_state(s, PF_DT_SKIP_LANEXT);
} else {
*state = s;
}
}
}
if (s) {
if (*state == 0) {
#if NPFSYNC
if (s->creatorid == pf_status.hostid) {
pfsync_delete_state(s);
}
#endif
s->timeout = PFTM_UNLINKED;
hook_runloop(&s->unlink_hooks,
HOOK_REMOVE | HOOK_FREE);
pf_src_tree_remove_state(s);
pf_free_state(s);
return PF_DROP;
}
}
}
/* similar to STATE_LOOKUP() */
if (*state != NULL && pd != NULL && !(pd->pktflags & PKTF_FLOW_ID)) {
pd->flowsrc = (*state)->state_key->flowsrc;
pd->flowhash = (*state)->state_key->flowhash;
if (pd->flowhash != 0) {
pd->pktflags |= PKTF_FLOW_ID;
pd->pktflags &= ~PKTF_FLOW_ADV;
}
}
if (pf_state_lookup_aux(state, kif, direction, &action)) {
return action;
}
if (direction == (*state)->state_key->direction) {
src = &(*state)->src;
dst = &(*state)->dst;
} else {
src = &(*state)->dst;
dst = &(*state)->src;
}
/* update states */
if (src->state < PFESPS_INITIATING) {
src->state = PFESPS_INITIATING;
}
/* update expire time */
(*state)->expire = pf_time_second();
if (src->state >= PFESPS_INITIATING &&
dst->state >= PFESPS_INITIATING) {
(*state)->timeout = PFTM_ESP_ESTABLISHED;
src->state = PFESPS_ESTABLISHED;
dst->state = PFESPS_ESTABLISHED;
} else {
(*state)->timeout = PFTM_ESP_INITIATING;
}
/* translate source/destination address, if necessary */
if (STATE_ADDR_TRANSLATE((*state)->state_key)) {
if (direction == PF_OUT) {
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&pd->src->v4addr.s_addr,
pd->ip_sum,
(*state)->state_key->gwy.addr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(pd->src, &(*state)->state_key->gwy.addr,
pd->af);
break;
}
} else {
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&pd->dst->v4addr.s_addr,
pd->ip_sum,
(*state)->state_key->lan.addr.v4addr.s_addr, 0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(pd->dst, &(*state)->state_key->lan.addr,
pd->af);
break;
}
}
}
return PF_PASS;
}
static __attribute__((noinline)) int
pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif,
struct pf_pdesc *pd)
{
struct pf_state_peer *src, *dst;
struct pf_state_key_cmp key = {};
key.app_state = 0;
key.proto = pd->proto;
if (direction == PF_IN) {
key.af_gwy = pd->af;
PF_ACPY(&key.ext_gwy.addr, pd->src, key.af_gwy);
PF_ACPY(&key.gwy.addr, pd->dst, key.af_gwy);
key.ext_gwy.xport.port = 0;
key.gwy.xport.port = 0;
} else {
key.af_lan = pd->af;
PF_ACPY(&key.lan.addr, pd->src, key.af_lan);
PF_ACPY(&key.ext_lan.addr, pd->dst, key.af_lan);
key.lan.xport.port = 0;
key.ext_lan.xport.port = 0;
}
STATE_LOOKUP();
if (direction == (*state)->state_key->direction) {
src = &(*state)->src;
dst = &(*state)->dst;
} else {
src = &(*state)->dst;
dst = &(*state)->src;
}
/* update states */
if (src->state < PFOTHERS_SINGLE) {
src->state = PFOTHERS_SINGLE;
}
if (dst->state == PFOTHERS_SINGLE) {
dst->state = PFOTHERS_MULTIPLE;
}
/* update expire time */
(*state)->expire = pf_time_second();
if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) {
(*state)->timeout = PFTM_OTHER_MULTIPLE;
} else {
(*state)->timeout = PFTM_OTHER_SINGLE;
}
/* translate source/destination address, if necessary */
if (STATE_ADDR_TRANSLATE((*state)->state_key)) {
if (direction == PF_OUT) {
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&pd->src->v4addr.s_addr,
pd->ip_sum,
(*state)->state_key->gwy.addr.v4addr.s_addr,
0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(pd->src,
&(*state)->state_key->gwy.addr, pd->af);
break;
}
} else {
switch (pd->af) {
#if INET
case AF_INET:
pf_change_a(&pd->dst->v4addr.s_addr,
pd->ip_sum,
(*state)->state_key->lan.addr.v4addr.s_addr,
0);
break;
#endif /* INET */
case AF_INET6:
PF_ACPY(pd->dst,
&(*state)->state_key->lan.addr, pd->af);
break;
}
}
}
return PF_PASS;
}
/*
* ipoff and off are measured from the start of the mbuf chain.
* h must be at "ipoff" on the mbuf chain.
*/
void *
pf_pull_hdr(pbuf_t *pbuf, int off, void *p, int len,
u_short *actionp, u_short *reasonp, sa_family_t af)
{
switch (af) {
#if INET
case AF_INET: {
struct ip *h = pbuf->pb_data;
u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
if (fragoff) {
if (fragoff >= len) {
ACTION_SET(actionp, PF_PASS);
} else {
ACTION_SET(actionp, PF_DROP);
REASON_SET(reasonp, PFRES_FRAG);
}
return NULL;
}
if (pbuf->pb_packet_len < (unsigned)(off + len) ||
ntohs(h->ip_len) < off + len) {
ACTION_SET(actionp, PF_DROP);
REASON_SET(reasonp, PFRES_SHORT);
return NULL;
}
break;
}
#endif /* INET */
case AF_INET6: {
struct ip6_hdr *h = pbuf->pb_data;
if (pbuf->pb_packet_len < (unsigned)(off + len) ||
(ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) <
(unsigned)(off + len)) {
ACTION_SET(actionp, PF_DROP);
REASON_SET(reasonp, PFRES_SHORT);
return NULL;
}
break;
}
}
pbuf_copy_data(pbuf, off, len, p);
return p;
}
int
pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif)
{
#pragma unused(kif)
struct sockaddr_in *dst;
int ret = 1;
struct sockaddr_in6 *dst6;
struct route_in6 ro;
bzero(&ro, sizeof(ro));
switch (af) {
case AF_INET:
dst = satosin(&ro.ro_dst);
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = addr->v4addr;
break;
case AF_INET6:
dst6 = (struct sockaddr_in6 *)&ro.ro_dst;
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(*dst6);
dst6->sin6_addr = addr->v6addr;
break;
default:
return 0;
}
/* XXX: IFT_ENC is not currently used by anything*/
/* Skip checks for ipsec interfaces */
if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) {
goto out;
}
/* XXX: what is the point of this? */
rtalloc((struct route *)&ro);
out:
ROUTE_RELEASE(&ro);
return ret;
}
int
pf_rtlabel_match(struct pf_addr *addr, sa_family_t af, struct pf_addr_wrap *aw)
{
#pragma unused(aw)
struct sockaddr_in *dst;
struct sockaddr_in6 *dst6;
struct route_in6 ro;
int ret = 0;
bzero(&ro, sizeof(ro));
switch (af) {
case AF_INET:
dst = satosin(&ro.ro_dst);
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = addr->v4addr;
break;
case AF_INET6:
dst6 = (struct sockaddr_in6 *)&ro.ro_dst;
dst6->sin6_family = AF_INET6;
dst6->sin6_len = sizeof(*dst6);
dst6->sin6_addr = addr->v6addr;
break;
default:
return 0;
}
/* XXX: what is the point of this? */
rtalloc((struct route *)&ro);
ROUTE_RELEASE(&ro);
return ret;
}
#if INET
static __attribute__((noinline)) void
pf_route(pbuf_t **pbufp, struct pf_rule *r, int dir, struct ifnet *oifp,
struct pf_state *s, struct pf_pdesc *pd)
{
#pragma unused(pd)
struct mbuf *m0, *m1;
struct route iproute;
struct route *ro = &iproute;
struct sockaddr_in *dst;
struct ip *ip;
struct ifnet *ifp = NULL;
struct pf_addr naddr;
struct pf_src_node *sn = NULL;
int error = 0;
uint32_t sw_csum;
int interface_mtu = 0;
bzero(&iproute, sizeof(iproute));
if (pbufp == NULL || !pbuf_is_valid(*pbufp) || r == NULL ||
(dir != PF_IN && dir != PF_OUT) || oifp == NULL) {
panic("pf_route: invalid parameters");
}
if (pd->pf_mtag->pftag_routed++ > 3) {
pbuf_destroy(*pbufp);
*pbufp = NULL;
m0 = NULL;
goto bad;
}
/*
* Since this is something of an edge case and may involve the
* host stack (for routing, at least for now), we convert the
* incoming pbuf into an mbuf.
*/
if (r->rt == PF_DUPTO) {
m0 = pbuf_clone_to_mbuf(*pbufp);
} else if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
return;
} else {
/* We're going to consume this packet */
m0 = pbuf_to_mbuf(*pbufp, TRUE);
*pbufp = NULL;
}
if (m0 == NULL) {
goto bad;
}
/* We now have the packet in an mbuf (m0) */
if (m0->m_len < (int)sizeof(struct ip)) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_route: packet length < sizeof (struct ip)\n"));
goto bad;
}
ip = mtod(m0, struct ip *);
dst = satosin((void *)&ro->ro_dst);
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = ip->ip_dst;
if (r->rt == PF_FASTROUTE) {
rtalloc(ro);
if (ro->ro_rt == NULL) {
ipstat.ips_noroute++;
goto bad;
}
ifp = ro->ro_rt->rt_ifp;
RT_LOCK(ro->ro_rt);
ro->ro_rt->rt_use++;
if (ro->ro_rt->rt_flags & RTF_GATEWAY) {
dst = satosin((void *)ro->ro_rt->rt_gateway);
}
RT_UNLOCK(ro->ro_rt);
} else {
if (TAILQ_EMPTY(&r->rpool.list)) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_route: TAILQ_EMPTY(&r->rpool.list)\n"));
goto bad;
}
if (s == NULL) {
pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src,
&naddr, NULL, &sn);
if (!PF_AZERO(&naddr, AF_INET)) {
dst->sin_addr.s_addr = naddr.v4addr.s_addr;
}
ifp = r->rpool.cur->kif ?
r->rpool.cur->kif->pfik_ifp : NULL;
} else {
if (!PF_AZERO(&s->rt_addr, AF_INET)) {
dst->sin_addr.s_addr =
s->rt_addr.v4addr.s_addr;
}
ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
}
}
if (ifp == NULL) {
goto bad;
}
if (oifp != ifp) {
if (pf_test_mbuf(PF_OUT, ifp, &m0, NULL, NULL) != PF_PASS) {
goto bad;
} else if (m0 == NULL) {
goto done;
}
if (m0->m_len < (int)sizeof(struct ip)) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_route: packet length < sizeof (struct ip)\n"));
goto bad;
}
ip = mtod(m0, struct ip *);
}
/* Catch routing changes wrt. hardware checksumming for TCP or UDP. */
ip_output_checksum(ifp, m0, ((ip->ip_hl) << 2), ntohs(ip->ip_len),
&sw_csum);
interface_mtu = ifp->if_mtu;
if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
interface_mtu = IN6_LINKMTU(ifp);
/* Further adjust the size for CLAT46 expansion */
interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
}
if (ntohs(ip->ip_len) <= interface_mtu || TSO_IPV4_OK(ifp, m0) ||
(!(ip->ip_off & htons(IP_DF)) &&
(ifp->if_hwassist & CSUM_FRAGMENT))) {
ip->ip_sum = 0;
if (sw_csum & CSUM_DELAY_IP) {
ip->ip_sum = in_cksum(m0, ip->ip_hl << 2);
sw_csum &= ~CSUM_DELAY_IP;
m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
}
error = ifnet_output(ifp, PF_INET, m0, ro->ro_rt, sintosa(dst));
goto done;
}
/*
* Too large for interface; fragment if possible.
* Must be able to put at least 8 bytes per fragment.
* Balk when DF bit is set or the interface didn't support TSO.
*/
if ((ip->ip_off & htons(IP_DF)) ||
(m0->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) {
ipstat.ips_cantfrag++;
if (r->rt != PF_DUPTO) {
icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0,
interface_mtu);
goto done;
} else {
goto bad;
}
}
m1 = m0;
/* PR-8933605: send ip_len,ip_off to ip_fragment in host byte order */
#if BYTE_ORDER != BIG_ENDIAN
NTOHS(ip->ip_off);
NTOHS(ip->ip_len);
#endif
error = ip_fragment(m0, ifp, interface_mtu, sw_csum);
if (error) {
m0 = NULL;
goto bad;
}
for (m0 = m1; m0; m0 = m1) {
m1 = m0->m_nextpkt;
m0->m_nextpkt = 0;
if (error == 0) {
error = ifnet_output(ifp, PF_INET, m0, ro->ro_rt,
sintosa(dst));
} else {
m_freem(m0);
}
}
if (error == 0) {
ipstat.ips_fragmented++;
}
done:
ROUTE_RELEASE(&iproute);
return;
bad:
if (m0) {
m_freem(m0);
}
goto done;
}
#endif /* INET */
static __attribute__((noinline)) void
pf_route6(pbuf_t **pbufp, struct pf_rule *r, int dir, struct ifnet *oifp,
struct pf_state *s, struct pf_pdesc *pd)
{
#pragma unused(pd)
struct mbuf *m0;
struct route_in6 ip6route;
struct route_in6 *ro;
struct sockaddr_in6 *dst;
struct ip6_hdr *ip6;
struct ifnet *ifp = NULL;
struct pf_addr naddr;
struct pf_src_node *sn = NULL;
int error = 0;
struct pf_mtag *pf_mtag;
if (pbufp == NULL || !pbuf_is_valid(*pbufp) || r == NULL ||
(dir != PF_IN && dir != PF_OUT) || oifp == NULL) {
panic("pf_route6: invalid parameters");
}
if (pd->pf_mtag->pftag_routed++ > 3) {
pbuf_destroy(*pbufp);
*pbufp = NULL;
m0 = NULL;
goto bad;
}
/*
* Since this is something of an edge case and may involve the
* host stack (for routing, at least for now), we convert the
* incoming pbuf into an mbuf.
*/
if (r->rt == PF_DUPTO) {
m0 = pbuf_clone_to_mbuf(*pbufp);
} else if ((r->rt == PF_REPLYTO) == (r->direction == dir)) {
return;
} else {
/* We're about to consume this packet */
m0 = pbuf_to_mbuf(*pbufp, TRUE);
*pbufp = NULL;
}
if (m0 == NULL) {
goto bad;
}
if (m0->m_len < (int)sizeof(struct ip6_hdr)) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_route6: m0->m_len < sizeof (struct ip6_hdr)\n"));
goto bad;
}
ip6 = mtod(m0, struct ip6_hdr *);
ro = &ip6route;
bzero((caddr_t)ro, sizeof(*ro));
dst = (struct sockaddr_in6 *)&ro->ro_dst;
dst->sin6_family = AF_INET6;
dst->sin6_len = sizeof(*dst);
dst->sin6_addr = ip6->ip6_dst;
/* Cheat. XXX why only in the v6addr case??? */
if (r->rt == PF_FASTROUTE) {
pf_mtag = pf_get_mtag(m0);
ASSERT(pf_mtag != NULL);
pf_mtag->pftag_flags |= PF_TAG_GENERATED;
ip6_output_setsrcifscope(m0, oifp->if_index, NULL);
ip6_output_setdstifscope(m0, oifp->if_index, NULL);
ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
return;
}
if (TAILQ_EMPTY(&r->rpool.list)) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_route6: TAILQ_EMPTY(&r->rpool.list)\n"));
goto bad;
}
if (s == NULL) {
pf_map_addr(AF_INET6, r, (struct pf_addr *)(uintptr_t)&ip6->ip6_src,
&naddr, NULL, &sn);
if (!PF_AZERO(&naddr, AF_INET6)) {
PF_ACPY((struct pf_addr *)&dst->sin6_addr,
&naddr, AF_INET6);
}
ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL;
} else {
if (!PF_AZERO(&s->rt_addr, AF_INET6)) {
PF_ACPY((struct pf_addr *)&dst->sin6_addr,
&s->rt_addr, AF_INET6);
}
ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL;
}
if (ifp == NULL) {
goto bad;
}
if (oifp != ifp) {
if (pf_test6_mbuf(PF_OUT, ifp, &m0, NULL, NULL) != PF_PASS) {
goto bad;
} else if (m0 == NULL) {
goto done;
}
if (m0->m_len < (int)sizeof(struct ip6_hdr)) {
DPFPRINTF(PF_DEBUG_URGENT, ("pf_route6: m0->m_len "
"< sizeof (struct ip6_hdr)\n"));
goto bad;
}
pf_mtag = pf_get_mtag(m0);
/*
* send refragmented packets.
*/
if ((pf_mtag->pftag_flags & PF_TAG_REFRAGMENTED) != 0) {
pf_mtag->pftag_flags &= ~PF_TAG_REFRAGMENTED;
/*
* nd6_output() frees packet chain in both success and
* failure cases.
*/
error = nd6_output(ifp, ifp, m0, dst, NULL, NULL);
m0 = NULL;
if (error) {
DPFPRINTF(PF_DEBUG_URGENT, ("pf_route6:"
"dropped refragmented packet\n"));
}
goto done;
}
ip6 = mtod(m0, struct ip6_hdr *);
}
/*
* If the packet is too large for the outgoing interface,
* send back an icmp6 error.
*/
if (in6_embedded_scope && IN6_IS_SCOPE_EMBED(&dst->sin6_addr)) {
dst->sin6_addr.s6_addr16[1] = htons(ifp->if_index);
}
if ((unsigned)m0->m_pkthdr.len <= ifp->if_mtu) {
error = nd6_output(ifp, ifp, m0, dst, NULL, NULL);
} else {
in6_ifstat_inc(ifp, ifs6_in_toobig);
if (r->rt != PF_DUPTO) {
icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu);
} else {
goto bad;
}
}
done:
return;
bad:
if (m0) {
m_freem(m0);
m0 = NULL;
}
goto done;
}
/*
* check protocol (tcp/udp/icmp/icmp6) checksum and set mbuf flag
* off is the offset where the protocol header starts
* len is the total length of protocol header plus payload
* returns 0 when the checksum is valid, otherwise returns 1.
*/
static int
pf_check_proto_cksum(pbuf_t *pbuf, int off, int len, u_int8_t p,
sa_family_t af)
{
u_int16_t sum;
switch (p) {
case IPPROTO_TCP:
case IPPROTO_UDP:
/*
* Optimize for the common case; if the hardware calculated
* value doesn't include pseudo-header checksum, or if it
* is partially-computed (only 16-bit summation), do it in
* software below.
*/
if ((*pbuf->pb_csum_flags &
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR) &&
(*pbuf->pb_csum_data ^ 0xffff) == 0) {
return 0;
}
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
break;
default:
return 1;
}
if (off < (int)sizeof(struct ip) || len < (int)sizeof(struct udphdr)) {
return 1;
}
if (pbuf->pb_packet_len < (unsigned)(off + len)) {
return 1;
}
switch (af) {
#if INET
case AF_INET:
if (p == IPPROTO_ICMP) {
if (pbuf->pb_contig_len < (unsigned)off) {
return 1;
}
sum = pbuf_inet_cksum(pbuf, 0, off, len);
} else {
if (pbuf->pb_contig_len < (int)sizeof(struct ip)) {
return 1;
}
sum = pbuf_inet_cksum(pbuf, p, off, len);
}
break;
#endif /* INET */
case AF_INET6:
if (pbuf->pb_contig_len < (int)sizeof(struct ip6_hdr)) {
return 1;
}
sum = pbuf_inet6_cksum(pbuf, p, off, len);
break;
default:
return 1;
}
if (sum) {
switch (p) {
case IPPROTO_TCP:
tcpstat.tcps_rcvbadsum++;
break;
case IPPROTO_UDP:
udpstat.udps_badsum++;
break;
case IPPROTO_ICMP:
icmpstat.icps_checksum++;
break;
case IPPROTO_ICMPV6:
icmp6stat.icp6s_checksum++;
break;
}
return 1;
}
return 0;
}
#if INET
#define PF_APPLE_UPDATE_PDESC_IPv4() \
do { \
if (pbuf && pd.mp && pbuf != pd.mp) { \
pbuf = pd.mp; \
h = pbuf->pb_data; \
pd.pf_mtag = pf_get_mtag_pbuf(pbuf); \
} \
} while (0)
int
pf_test_mbuf(int dir, struct ifnet *ifp, struct mbuf **m0,
struct ether_header *eh, struct ip_fw_args *fwa)
{
pbuf_t pbuf_store, *pbuf;
int rv;
pbuf_init_mbuf(&pbuf_store, *m0, (*m0)->m_pkthdr.rcvif);
pbuf = &pbuf_store;
rv = pf_test(dir, ifp, &pbuf, eh, fwa);
if (pbuf_is_valid(pbuf)) {
*m0 = pbuf->pb_mbuf;
pbuf->pb_mbuf = NULL;
pbuf_destroy(pbuf);
} else {
*m0 = NULL;
}
return rv;
}
static __attribute__((noinline)) int
pf_test(int dir, struct ifnet *ifp, pbuf_t **pbufp,
struct ether_header *eh, struct ip_fw_args *fwa)
{
#if !DUMMYNET
#pragma unused(fwa)
#endif
struct pfi_kif *kif;
u_short action = PF_PASS, reason = 0, log = 0;
pbuf_t *pbuf = *pbufp;
struct ip *h = 0;
struct pf_rule *a = NULL, *r = &pf_default_rule, *tr, *nr;
struct pf_state *s = NULL;
struct pf_state_key *sk = NULL;
struct pf_ruleset *ruleset = NULL;
struct pf_pdesc pd;
int off, dirndx, pqid = 0;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (!pf_status.running) {
return PF_PASS;
}
memset(&pd, 0, sizeof(pd));
if ((pd.pf_mtag = pf_get_mtag_pbuf(pbuf)) == NULL) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_test: pf_get_mtag_pbuf returned NULL\n"));
return PF_DROP;
}
if (pd.pf_mtag->pftag_flags & PF_TAG_GENERATED) {
return PF_PASS;
}
kif = (struct pfi_kif *)ifp->if_pf_kif;
if (kif == NULL) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_test: kif == NULL, if_name %s\n", ifp->if_name));
return PF_DROP;
}
if (kif->pfik_flags & PFI_IFLAG_SKIP) {
return PF_PASS;
}
if (pbuf->pb_packet_len < (int)sizeof(*h)) {
REASON_SET(&reason, PFRES_SHORT);
return PF_DROP;
}
/* initialize enough of pd for the done label */
h = pbuf->pb_data;
pd.mp = pbuf;
pd.lmw = 0;
pd.pf_mtag = pf_get_mtag_pbuf(pbuf);
pd.src = (struct pf_addr *)&h->ip_src;
pd.dst = (struct pf_addr *)&h->ip_dst;
PF_ACPY(&pd.baddr, pd.src, AF_INET);
PF_ACPY(&pd.bdaddr, pd.dst, AF_INET);
pd.ip_sum = &h->ip_sum;
pd.proto = h->ip_p;
pd.proto_variant = 0;
pd.af = AF_INET;
pd.tos = h->ip_tos;
pd.ttl = h->ip_ttl;
pd.tot_len = ntohs(h->ip_len);
pd.eh = eh;
#if DUMMYNET
if (fwa != NULL && fwa->fwa_pf_rule != NULL) {
goto nonormalize;
}
#endif /* DUMMYNET */
/* We do IP header normalization and packet reassembly here */
action = pf_normalize_ip(pbuf, dir, kif, &reason, &pd);
if (action != PF_PASS || pd.lmw < 0) {
action = PF_DROP;
goto done;
}
#if DUMMYNET
nonormalize:
#endif /* DUMMYNET */
/* pf_normalize can mess with pb_data */
h = pbuf->pb_data;
off = h->ip_hl << 2;
if (off < (int)sizeof(*h)) {
action = PF_DROP;
REASON_SET(&reason, PFRES_SHORT);
log = 1;
goto done;
}
pd.src = (struct pf_addr *)&h->ip_src;
pd.dst = (struct pf_addr *)&h->ip_dst;
PF_ACPY(&pd.baddr, pd.src, AF_INET);
PF_ACPY(&pd.bdaddr, pd.dst, AF_INET);
pd.ip_sum = &h->ip_sum;
pd.proto = h->ip_p;
pd.proto_variant = 0;
pd.mp = pbuf;
pd.lmw = 0;
pd.pf_mtag = pf_get_mtag_pbuf(pbuf);
pd.af = AF_INET;
pd.tos = h->ip_tos;
pd.ttl = h->ip_ttl;
pd.sc = MBUF_SCIDX(pbuf_get_service_class(pbuf));
pd.tot_len = ntohs(h->ip_len);
pd.eh = eh;
if (*pbuf->pb_flags & PKTF_FLOW_ID) {
pd.flowsrc = *pbuf->pb_flowsrc;
pd.flowhash = *pbuf->pb_flowid;
pd.pktflags = *pbuf->pb_flags & PKTF_FLOW_MASK;
}
/* handle fragments that didn't get reassembled by normalization */
if (h->ip_off & htons(IP_MF | IP_OFFMASK)) {
pd.flags |= PFDESC_IP_FRAG;
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_fragment(&r, dir, kif, pbuf, h,
&pd, &a, &ruleset);
goto done;
}
switch (h->ip_p) {
case IPPROTO_TCP: {
struct tcphdr th;
pd.hdr.tcp = &th;
if (!pf_pull_hdr(pbuf, off, &th, sizeof(th),
&action, &reason, AF_INET)) {
log = action != PF_PASS;
goto done;
}
pd.p_len = pd.tot_len - off - (th.th_off << 2);
if ((th.th_flags & TH_ACK) && pd.p_len == 0) {
pqid = 1;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_normalize_tcp(dir, kif, pbuf, 0, off, h, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_DROP) {
goto done;
}
if (th.th_sport == 0 || th.th_dport == 0) {
action = PF_DROP;
REASON_SET(&reason, PFRES_INVPORT);
goto done;
}
action = pf_test_state_tcp(&s, dir, kif, pbuf, off, h, &pd,
&reason);
if (action == PF_NAT64) {
goto done;
}
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_UDP: {
struct udphdr uh;
pd.hdr.udp = &uh;
if (!pf_pull_hdr(pbuf, off, &uh, sizeof(uh),
&action, &reason, AF_INET)) {
log = action != PF_PASS;
goto done;
}
if (uh.uh_sport == 0 || uh.uh_dport == 0) {
action = PF_DROP;
REASON_SET(&reason, PFRES_INVPORT);
goto done;
}
if (ntohs(uh.uh_ulen) > pbuf->pb_packet_len - off ||
ntohs(uh.uh_ulen) < sizeof(struct udphdr)) {
action = PF_DROP;
REASON_SET(&reason, PFRES_SHORT);
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_udp(&s, dir, kif, pbuf, off, h, &pd,
&reason);
if (action == PF_NAT64) {
goto done;
}
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_ICMP: {
struct icmp ih;
pd.hdr.icmp = &ih;
if (!pf_pull_hdr(pbuf, off, &ih, ICMP_MINLEN,
&action, &reason, AF_INET)) {
log = action != PF_PASS;
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_icmp(&s, dir, kif, pbuf, off, h, &pd,
&reason);
if (action == PF_NAT64) {
goto done;
}
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_ESP: {
struct pf_esp_hdr esp;
pd.hdr.esp = &esp;
if (!pf_pull_hdr(pbuf, off, &esp, sizeof(esp), &action, &reason,
AF_INET)) {
log = action != PF_PASS;
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_esp(&s, dir, kif, off, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_GRE: {
struct pf_grev1_hdr grev1;
pd.hdr.grev1 = &grev1;
if (!pf_pull_hdr(pbuf, off, &grev1, sizeof(grev1), &action,
&reason, AF_INET)) {
log = (action != PF_PASS);
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
if ((ntohs(grev1.flags) & PF_GRE_FLAG_VERSION_MASK) == 1 &&
ntohs(grev1.protocol_type) == PF_GRE_PPP_ETHERTYPE) {
if (ntohs(grev1.payload_length) >
pbuf->pb_packet_len - off) {
action = PF_DROP;
REASON_SET(&reason, PFRES_SHORT);
goto done;
}
pd.proto_variant = PF_GRE_PPTP_VARIANT;
action = pf_test_state_grev1(&s, dir, kif, off, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
break;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif, pbuf,
off, h, &pd, &a, &ruleset, NULL);
if (action == PF_PASS) {
break;
}
}
}
/* not GREv1/PPTP, so treat as ordinary GRE... */
OS_FALLTHROUGH;
}
default:
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_other(&s, dir, kif, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv4();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h,
&pd, &a, &ruleset, NULL);
}
break;
}
done:
if (action == PF_NAT64) {
*pbufp = NULL;
return action;
}
*pbufp = pd.mp;
PF_APPLE_UPDATE_PDESC_IPv4();
if (action != PF_DROP) {
if (action == PF_PASS && h->ip_hl > 5 &&
!((s && s->allow_opts) || r->allow_opts)) {
action = PF_DROP;
REASON_SET(&reason, PFRES_IPOPTIONS);
log = 1;
DPFPRINTF(PF_DEBUG_MISC,
("pf: dropping packet with ip options [hlen=%u]\n",
(unsigned int) h->ip_hl));
}
if ((s && s->tag) || PF_RTABLEID_IS_VALID(r->rtableid) ||
(pd.pktflags & PKTF_FLOW_ID)) {
(void) pf_tag_packet(pbuf, pd.pf_mtag, s ? s->tag : 0,
r->rtableid, &pd);
}
if (action == PF_PASS) {
#if PF_ECN
/* add hints for ecn */
pd.pf_mtag->pftag_hdr = h;
/* record address family */
pd.pf_mtag->pftag_flags &= ~PF_TAG_HDR_INET6;
pd.pf_mtag->pftag_flags |= PF_TAG_HDR_INET;
#endif /* PF_ECN */
/* record protocol */
*pbuf->pb_proto = pd.proto;
/*
* connections redirected to loopback should not match sockets
* bound specifically to loopback due to security implications,
* see tcp_input() and in_pcblookup_listen().
*/
if (dir == PF_IN && (pd.proto == IPPROTO_TCP ||
pd.proto == IPPROTO_UDP) && s != NULL &&
s->nat_rule.ptr != NULL &&
(s->nat_rule.ptr->action == PF_RDR ||
s->nat_rule.ptr->action == PF_BINAT) &&
(ntohl(pd.dst->v4addr.s_addr) >> IN_CLASSA_NSHIFT)
== IN_LOOPBACKNET) {
pd.pf_mtag->pftag_flags |= PF_TAG_TRANSLATE_LOCALHOST;
}
}
}
if (log) {
struct pf_rule *lr;
if (s != NULL && s->nat_rule.ptr != NULL &&
s->nat_rule.ptr->log & PF_LOG_ALL) {
lr = s->nat_rule.ptr;
} else {
lr = r;
}
PFLOG_PACKET(kif, h, pbuf, AF_INET, dir, reason, lr, a, ruleset,
&pd);
}
kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len;
kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++;
if (action == PF_PASS || r->action == PF_DROP) {
dirndx = (dir == PF_OUT);
r->packets[dirndx]++;
r->bytes[dirndx] += pd.tot_len;
if (a != NULL) {
a->packets[dirndx]++;
a->bytes[dirndx] += pd.tot_len;
}
if (s != NULL) {
sk = s->state_key;
if (s->nat_rule.ptr != NULL) {
s->nat_rule.ptr->packets[dirndx]++;
s->nat_rule.ptr->bytes[dirndx] += pd.tot_len;
}
if (s->src_node != NULL) {
s->src_node->packets[dirndx]++;
s->src_node->bytes[dirndx] += pd.tot_len;
}
if (s->nat_src_node != NULL) {
s->nat_src_node->packets[dirndx]++;
s->nat_src_node->bytes[dirndx] += pd.tot_len;
}
dirndx = (dir == sk->direction) ? 0 : 1;
s->packets[dirndx]++;
s->bytes[dirndx] += pd.tot_len;
}
tr = r;
nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
if (nr != NULL) {
struct pf_addr *x;
/*
* XXX: we need to make sure that the addresses
* passed to pfr_update_stats() are the same than
* the addresses used during matching (pfr_match)
*/
if (r == &pf_default_rule) {
tr = nr;
x = (sk == NULL || sk->direction == dir) ?
&pd.baddr : &pd.naddr;
} else {
x = (sk == NULL || sk->direction == dir) ?
&pd.naddr : &pd.baddr;
}
if (x == &pd.baddr || s == NULL) {
/* we need to change the address */
if (dir == PF_OUT) {
pd.src = x;
} else {
pd.dst = x;
}
}
}
if (tr->src.addr.type == PF_ADDR_TABLE) {
pfr_update_stats(tr->src.addr.p.tbl, (sk == NULL ||
sk->direction == dir) ?
pd.src : pd.dst, pd.af,
pd.tot_len, dir == PF_OUT, r->action == PF_PASS,
tr->src.neg);
}
if (tr->dst.addr.type == PF_ADDR_TABLE) {
pfr_update_stats(tr->dst.addr.p.tbl, (sk == NULL ||
sk->direction == dir) ? pd.dst : pd.src, pd.af,
pd.tot_len, dir == PF_OUT, r->action == PF_PASS,
tr->dst.neg);
}
}
VERIFY(pbuf == NULL || pd.mp == NULL || pd.mp == pbuf);
if (*pbufp) {
if (pd.lmw < 0) {
REASON_SET(&reason, PFRES_MEMORY);
action = PF_DROP;
}
if (action == PF_DROP) {
pbuf_destroy(*pbufp);
*pbufp = NULL;
return PF_DROP;
}
*pbufp = pbuf;
}
if (action == PF_SYNPROXY_DROP) {
pbuf_destroy(*pbufp);
*pbufp = NULL;
action = PF_PASS;
} else if (r->rt) {
/* pf_route can free the pbuf causing *pbufp to become NULL */
pf_route(pbufp, r, dir, kif->pfik_ifp, s, &pd);
}
return action;
}
#endif /* INET */
#define PF_APPLE_UPDATE_PDESC_IPv6() \
do { \
if (pbuf && pd.mp && pbuf != pd.mp) { \
pbuf = pd.mp; \
} \
h = pbuf->pb_data; \
} while (0)
int
pf_test6_mbuf(int dir, struct ifnet *ifp, struct mbuf **m0,
struct ether_header *eh, struct ip_fw_args *fwa)
{
pbuf_t pbuf_store, *pbuf;
int rv;
pbuf_init_mbuf(&pbuf_store, *m0, (*m0)->m_pkthdr.rcvif);
pbuf = &pbuf_store;
rv = pf_test6(dir, ifp, &pbuf, eh, fwa);
if (pbuf_is_valid(pbuf)) {
*m0 = pbuf->pb_mbuf;
pbuf->pb_mbuf = NULL;
pbuf_destroy(pbuf);
} else {
*m0 = NULL;
}
return rv;
}
static __attribute__((noinline)) int
pf_test6(int dir, struct ifnet *ifp, pbuf_t **pbufp,
struct ether_header *eh, struct ip_fw_args *fwa)
{
#if !DUMMYNET
#pragma unused(fwa)
#endif
struct pfi_kif *kif;
u_short action = PF_PASS, reason = 0, log = 0;
pbuf_t *pbuf = *pbufp;
struct ip6_hdr *h;
struct pf_rule *a = NULL, *r = &pf_default_rule, *tr, *nr;
struct pf_state *s = NULL;
struct pf_state_key *sk = NULL;
struct pf_ruleset *ruleset = NULL;
struct pf_pdesc pd;
int off, terminal = 0, dirndx, rh_cnt = 0;
u_int8_t nxt;
boolean_t fwd = FALSE;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
ASSERT(ifp != NULL);
if ((dir == PF_OUT) && (pbuf->pb_ifp) && (ifp != pbuf->pb_ifp)) {
fwd = TRUE;
}
if (!pf_status.running) {
return PF_PASS;
}
memset(&pd, 0, sizeof(pd));
if ((pd.pf_mtag = pf_get_mtag_pbuf(pbuf)) == NULL) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_test6: pf_get_mtag_pbuf returned NULL\n"));
return PF_DROP;
}
if (pd.pf_mtag->pftag_flags & PF_TAG_GENERATED) {
return PF_PASS;
}
kif = (struct pfi_kif *)ifp->if_pf_kif;
if (kif == NULL) {
DPFPRINTF(PF_DEBUG_URGENT,
("pf_test6: kif == NULL, if_name %s\n", ifp->if_name));
return PF_DROP;
}
if (kif->pfik_flags & PFI_IFLAG_SKIP) {
return PF_PASS;
}
if (pbuf->pb_packet_len < (int)sizeof(*h)) {
REASON_SET(&reason, PFRES_SHORT);
return PF_DROP;
}
h = pbuf->pb_data;
nxt = h->ip6_nxt;
off = ((caddr_t)h - (caddr_t)pbuf->pb_data) + sizeof(struct ip6_hdr);
pd.mp = pbuf;
pd.lmw = 0;
pd.pf_mtag = pf_get_mtag_pbuf(pbuf);
pd.src = (struct pf_addr *)(uintptr_t)&h->ip6_src;
pd.dst = (struct pf_addr *)(uintptr_t)&h->ip6_dst;
PF_ACPY(&pd.baddr, pd.src, AF_INET6);
PF_ACPY(&pd.bdaddr, pd.dst, AF_INET6);
pd.ip_sum = NULL;
pd.af = AF_INET6;
pd.proto = nxt;
pd.proto_variant = 0;
pd.tos = 0;
pd.ttl = h->ip6_hlim;
pd.sc = MBUF_SCIDX(pbuf_get_service_class(pbuf));
pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
pd.eh = eh;
if (*pbuf->pb_flags & PKTF_FLOW_ID) {
pd.flowsrc = *pbuf->pb_flowsrc;
pd.flowhash = *pbuf->pb_flowid;
pd.pktflags = (*pbuf->pb_flags & PKTF_FLOW_MASK);
}
#if DUMMYNET
if (fwa != NULL && fwa->fwa_pf_rule != NULL) {
goto nonormalize;
}
#endif /* DUMMYNET */
/* We do IP header normalization and packet reassembly here */
action = pf_normalize_ip6(pbuf, dir, kif, &reason, &pd);
if (action != PF_PASS || pd.lmw < 0) {
action = PF_DROP;
goto done;
}
#if DUMMYNET
nonormalize:
#endif /* DUMMYNET */
h = pbuf->pb_data;
/*
* we do not support jumbogram yet. if we keep going, zero ip6_plen
* will do something bad, so drop the packet for now.
*/
if (htons(h->ip6_plen) == 0) {
action = PF_DROP;
REASON_SET(&reason, PFRES_NORM); /*XXX*/
goto done;
}
pd.src = (struct pf_addr *)(uintptr_t)&h->ip6_src;
pd.dst = (struct pf_addr *)(uintptr_t)&h->ip6_dst;
PF_ACPY(&pd.baddr, pd.src, AF_INET6);
PF_ACPY(&pd.bdaddr, pd.dst, AF_INET6);
pd.ip_sum = NULL;
pd.af = AF_INET6;
pd.tos = 0;
pd.ttl = h->ip6_hlim;
pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
pd.eh = eh;
off = ((caddr_t)h - (caddr_t)pbuf->pb_data) + sizeof(struct ip6_hdr);
pd.proto = h->ip6_nxt;
pd.proto_variant = 0;
pd.mp = pbuf;
pd.lmw = 0;
pd.pf_mtag = pf_get_mtag_pbuf(pbuf);
do {
switch (pd.proto) {
case IPPROTO_FRAGMENT: {
struct ip6_frag ip6f;
pd.flags |= PFDESC_IP_FRAG;
if (!pf_pull_hdr(pbuf, off, &ip6f, sizeof ip6f, NULL,
&reason, pd.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: IPv6 short fragment header\n"));
action = PF_DROP;
REASON_SET(&reason, PFRES_SHORT);
log = 1;
goto done;
}
pd.proto = ip6f.ip6f_nxt;
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd,
fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_fragment(&r, dir, kif, pbuf, h, &pd,
&a, &ruleset);
if (action == PF_DROP) {
REASON_SET(&reason, PFRES_FRAG);
log = 1;
}
goto done;
}
case IPPROTO_ROUTING:
++rh_cnt;
OS_FALLTHROUGH;
case IPPROTO_AH:
case IPPROTO_HOPOPTS:
case IPPROTO_DSTOPTS: {
/* get next header and header length */
struct ip6_ext opt6;
if (!pf_pull_hdr(pbuf, off, &opt6, sizeof(opt6),
NULL, &reason, pd.af)) {
DPFPRINTF(PF_DEBUG_MISC,
("pf: IPv6 short opt\n"));
action = PF_DROP;
log = 1;
goto done;
}
if (pd.proto == IPPROTO_AH) {
off += (opt6.ip6e_len + 2) * 4;
} else {
off += (opt6.ip6e_len + 1) * 8;
}
pd.proto = opt6.ip6e_nxt;
/* goto the next header */
break;
}
default:
terminal++;
break;
}
} while (!terminal);
switch (pd.proto) {
case IPPROTO_TCP: {
struct tcphdr th;
pd.hdr.tcp = &th;
if (!pf_pull_hdr(pbuf, off, &th, sizeof(th),
&action, &reason, AF_INET6)) {
log = action != PF_PASS;
goto done;
}
pd.p_len = pd.tot_len - off - (th.th_off << 2);
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_normalize_tcp(dir, kif, pbuf, 0, off, h, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_DROP) {
goto done;
}
if (th.th_sport == 0 || th.th_dport == 0) {
action = PF_DROP;
REASON_SET(&reason, PFRES_INVPORT);
goto done;
}
action = pf_test_state_tcp(&s, dir, kif, pbuf, off, h, &pd,
&reason);
if (action == PF_NAT64) {
goto done;
}
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_UDP: {
struct udphdr uh;
pd.hdr.udp = &uh;
if (!pf_pull_hdr(pbuf, off, &uh, sizeof(uh),
&action, &reason, AF_INET6)) {
log = action != PF_PASS;
goto done;
}
if (uh.uh_sport == 0 || uh.uh_dport == 0) {
action = PF_DROP;
REASON_SET(&reason, PFRES_INVPORT);
goto done;
}
if (ntohs(uh.uh_ulen) > pbuf->pb_packet_len - off ||
ntohs(uh.uh_ulen) < sizeof(struct udphdr)) {
action = PF_DROP;
REASON_SET(&reason, PFRES_SHORT);
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_udp(&s, dir, kif, pbuf, off, h, &pd,
&reason);
if (action == PF_NAT64) {
goto done;
}
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_ICMPV6: {
struct icmp6_hdr ih;
pd.hdr.icmp6 = &ih;
if (!pf_pull_hdr(pbuf, off, &ih, sizeof(ih),
&action, &reason, AF_INET6)) {
log = action != PF_PASS;
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_icmp(&s, dir, kif,
pbuf, off, h, &pd, &reason);
if (action == PF_NAT64) {
goto done;
}
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_ESP: {
struct pf_esp_hdr esp;
pd.hdr.esp = &esp;
if (!pf_pull_hdr(pbuf, off, &esp, sizeof(esp), &action,
&reason, AF_INET6)) {
log = action != PF_PASS;
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_esp(&s, dir, kif, off, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif,
pbuf, off, h, &pd, &a, &ruleset, NULL);
}
break;
}
case IPPROTO_GRE: {
struct pf_grev1_hdr grev1;
pd.hdr.grev1 = &grev1;
if (!pf_pull_hdr(pbuf, off, &grev1, sizeof(grev1), &action,
&reason, AF_INET6)) {
log = (action != PF_PASS);
goto done;
}
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
if ((ntohs(grev1.flags) & PF_GRE_FLAG_VERSION_MASK) == 1 &&
ntohs(grev1.protocol_type) == PF_GRE_PPP_ETHERTYPE) {
if (ntohs(grev1.payload_length) >
pbuf->pb_packet_len - off) {
action = PF_DROP;
REASON_SET(&reason, PFRES_SHORT);
goto done;
}
action = pf_test_state_grev1(&s, dir, kif, off, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
break;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif, pbuf,
off, h, &pd, &a, &ruleset, NULL);
if (action == PF_PASS) {
break;
}
}
}
/* not GREv1/PPTP, so treat as ordinary GRE... */
OS_FALLTHROUGH; /* XXX is this correct? */
}
default:
#if DUMMYNET
/* Traffic goes through dummynet first */
action = pf_test_dummynet(&r, dir, kif, &pbuf, &pd, fwa);
if (action == PF_DROP || pbuf == NULL) {
*pbufp = NULL;
return action;
}
#endif /* DUMMYNET */
action = pf_test_state_other(&s, dir, kif, &pd);
if (pd.lmw < 0) {
goto done;
}
PF_APPLE_UPDATE_PDESC_IPv6();
if (action == PF_PASS) {
#if NPFSYNC
pfsync_update_state(s);
#endif /* NPFSYNC */
r = s->rule.ptr;
a = s->anchor.ptr;
log = s->log;
} else if (s == NULL) {
action = pf_test_rule(&r, &s, dir, kif, pbuf, off, h,
&pd, &a, &ruleset, NULL);
}
break;
}
done:
if (action == PF_NAT64) {
*pbufp = NULL;
return action;
}
*pbufp = pd.mp;
PF_APPLE_UPDATE_PDESC_IPv6();
/* handle dangerous IPv6 extension headers. */
if (action != PF_DROP) {
if (action == PF_PASS && rh_cnt &&
!((s && s->allow_opts) || r->allow_opts)) {
action = PF_DROP;
REASON_SET(&reason, PFRES_IPOPTIONS);
log = 1;
DPFPRINTF(PF_DEBUG_MISC,
("pf: dropping packet with dangerous v6addr headers\n"));
}
if ((s && s->tag) || PF_RTABLEID_IS_VALID(r->rtableid) ||
(pd.pktflags & PKTF_FLOW_ID)) {
(void) pf_tag_packet(pbuf, pd.pf_mtag, s ? s->tag : 0,
r->rtableid, &pd);
}
if (action == PF_PASS) {
#if PF_ECN
/* add hints for ecn */
pd.pf_mtag->pftag_hdr = h;
/* record address family */
pd.pf_mtag->pftag_flags &= ~PF_TAG_HDR_INET;
pd.pf_mtag->pftag_flags |= PF_TAG_HDR_INET6;
#endif /* PF_ECN */
/* record protocol */
*pbuf->pb_proto = pd.proto;
if (dir == PF_IN && (pd.proto == IPPROTO_TCP ||
pd.proto == IPPROTO_UDP) && s != NULL &&
s->nat_rule.ptr != NULL &&
(s->nat_rule.ptr->action == PF_RDR ||
s->nat_rule.ptr->action == PF_BINAT) &&
IN6_IS_ADDR_LOOPBACK(&pd.dst->v6addr)) {
pd.pf_mtag->pftag_flags |= PF_TAG_TRANSLATE_LOCALHOST;
}
}
}
if (log) {
struct pf_rule *lr;
if (s != NULL && s->nat_rule.ptr != NULL &&
s->nat_rule.ptr->log & PF_LOG_ALL) {
lr = s->nat_rule.ptr;
} else {
lr = r;
}
PFLOG_PACKET(kif, h, pbuf, AF_INET6, dir, reason, lr, a, ruleset,
&pd);
}
kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len;
kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++;
if (action == PF_PASS || r->action == PF_DROP) {
dirndx = (dir == PF_OUT);
r->packets[dirndx]++;
r->bytes[dirndx] += pd.tot_len;
if (a != NULL) {
a->packets[dirndx]++;
a->bytes[dirndx] += pd.tot_len;
}
if (s != NULL) {
sk = s->state_key;
if (s->nat_rule.ptr != NULL) {
s->nat_rule.ptr->packets[dirndx]++;
s->nat_rule.ptr->bytes[dirndx] += pd.tot_len;
}
if (s->src_node != NULL) {
s->src_node->packets[dirndx]++;
s->src_node->bytes[dirndx] += pd.tot_len;
}
if (s->nat_src_node != NULL) {
s->nat_src_node->packets[dirndx]++;
s->nat_src_node->bytes[dirndx] += pd.tot_len;
}
dirndx = (dir == sk->direction) ? 0 : 1;
s->packets[dirndx]++;
s->bytes[dirndx] += pd.tot_len;
}
tr = r;
nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule;
if (nr != NULL) {
struct pf_addr *x;
/*
* XXX: we need to make sure that the addresses
* passed to pfr_update_stats() are the same than
* the addresses used during matching (pfr_match)
*/
if (r == &pf_default_rule) {
tr = nr;
x = (s == NULL || sk->direction == dir) ?
&pd.baddr : &pd.naddr;
} else {
x = (s == NULL || sk->direction == dir) ?
&pd.naddr : &pd.baddr;
}
if (x == &pd.baddr || s == NULL) {
if (dir == PF_OUT) {
pd.src = x;
} else {
pd.dst = x;
}
}
}
if (tr->src.addr.type == PF_ADDR_TABLE) {
pfr_update_stats(tr->src.addr.p.tbl, (sk == NULL ||
sk->direction == dir) ? pd.src : pd.dst, pd.af,
pd.tot_len, dir == PF_OUT, r->action == PF_PASS,
tr->src.neg);
}
if (tr->dst.addr.type == PF_ADDR_TABLE) {
pfr_update_stats(tr->dst.addr.p.tbl, (sk == NULL ||
sk->direction == dir) ? pd.dst : pd.src, pd.af,
pd.tot_len, dir == PF_OUT, r->action == PF_PASS,
tr->dst.neg);
}
}
VERIFY(pbuf == NULL || pd.mp == NULL || pd.mp == pbuf);
if (*pbufp) {
if (pd.lmw < 0) {
REASON_SET(&reason, PFRES_MEMORY);
action = PF_DROP;
}
if (action == PF_DROP) {
pbuf_destroy(*pbufp);
*pbufp = NULL;
return PF_DROP;
}
*pbufp = pbuf;
}
if (action == PF_SYNPROXY_DROP) {
pbuf_destroy(*pbufp);
*pbufp = NULL;
action = PF_PASS;
} else if (r->rt) {
/* pf_route6 can free the mbuf causing *pbufp to become NULL */
pf_route6(pbufp, r, dir, kif->pfik_ifp, s, &pd);
}
/* if reassembled packet passed, create new fragments */
struct pf_fragment_tag *ftag = NULL;
if ((action == PF_PASS) && (*pbufp != NULL) && (fwd) &&
((ftag = pf_find_fragment_tag_pbuf(*pbufp)) != NULL)) {
action = pf_refragment6(ifp, pbufp, ftag);
}
return action;
}
static int
pf_check_congestion(struct ifqueue *ifq)
{
#pragma unused(ifq)
return 0;
}
void
pool_init(struct pool *pp, size_t size, unsigned int align, unsigned int ioff,
int flags, const char *wchan, void *palloc)
{
#pragma unused(align, ioff, flags, palloc)
bzero(pp, sizeof(*pp));
pp->pool_zone = zone_create(wchan, size,
ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM);
pp->pool_hiwat = pp->pool_limit = (unsigned int)-1;
pp->pool_name = wchan;
}
/* Zones cannot be currently destroyed */
void
pool_destroy(struct pool *pp)
{
#pragma unused(pp)
}
void
pool_sethiwat(struct pool *pp, int n)
{
pp->pool_hiwat = n; /* Currently unused */
}
void
pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
{
#pragma unused(warnmess, ratecap)
pp->pool_limit = n;
}
void *
pool_get(struct pool *pp, int flags)
{
void *buf;
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
if (pp->pool_count > pp->pool_limit) {
DPFPRINTF(PF_DEBUG_NOISY,
("pf: pool %s hard limit reached (%d)\n",
pp->pool_name != NULL ? pp->pool_name : "unknown",
pp->pool_limit));
pp->pool_fails++;
return NULL;
}
buf = zalloc_flags(pp->pool_zone,
(flags & PR_WAITOK) ? Z_WAITOK : Z_NOWAIT);
if (buf != NULL) {
pp->pool_count++;
VERIFY(pp->pool_count != 0);
}
return buf;
}
void
pool_put(struct pool *pp, void *v)
{
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
zfree(pp->pool_zone, v);
VERIFY(pp->pool_count != 0);
pp->pool_count--;
}
struct pf_mtag *
pf_find_mtag_pbuf(pbuf_t *pbuf)
{
return pbuf->pb_pftag;
}
struct pf_mtag *
pf_find_mtag(struct mbuf *m)
{
return m_pftag(m);
}
struct pf_mtag *
pf_get_mtag(struct mbuf *m)
{
return pf_find_mtag(m);
}
struct pf_mtag *
pf_get_mtag_pbuf(pbuf_t *pbuf)
{
return pf_find_mtag_pbuf(pbuf);
}
struct pf_fragment_tag *
pf_copy_fragment_tag(struct mbuf *m, struct pf_fragment_tag *ftag, int how)
{
struct m_tag *tag;
struct pf_mtag *pftag = pf_find_mtag(m);
tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_PF_REASS,
sizeof(*ftag), how, m);
if (tag == NULL) {
return NULL;
}
m_tag_prepend(m, tag);
bcopy(ftag, tag->m_tag_data, sizeof(*ftag));
pftag->pftag_flags |= PF_TAG_REASSEMBLED;
return (struct pf_fragment_tag *)tag->m_tag_data;
}
struct pf_fragment_tag *
pf_find_fragment_tag(struct mbuf *m)
{
struct m_tag *tag;
struct pf_fragment_tag *ftag = NULL;
struct pf_mtag *pftag = pf_find_mtag(m);
tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_PF_REASS);
VERIFY((tag == NULL) || (pftag->pftag_flags & PF_TAG_REASSEMBLED));
if (tag != NULL) {
ftag = (struct pf_fragment_tag *)tag->m_tag_data;
}
return ftag;
}
struct pf_fragment_tag *
pf_find_fragment_tag_pbuf(pbuf_t *pbuf)
{
struct pf_mtag *mtag = pf_find_mtag_pbuf(pbuf);
return (mtag->pftag_flags & PF_TAG_REASSEMBLED) ?
pbuf->pb_pf_fragtag : NULL;
}
uint64_t
pf_time_second(void)
{
struct timeval t;
microuptime(&t);
return t.tv_sec;
}
uint64_t
pf_calendar_time_second(void)
{
struct timeval t;
getmicrotime(&t);
return t.tv_sec;
}
static void *
hook_establish(struct hook_desc_head *head, int tail, hook_fn_t fn, void *arg)
{
struct hook_desc *hd;
hd = kalloc_type(struct hook_desc, Z_WAITOK | Z_NOFAIL);
hd->hd_fn = fn;
hd->hd_arg = arg;
if (tail) {
TAILQ_INSERT_TAIL(head, hd, hd_list);
} else {
TAILQ_INSERT_HEAD(head, hd, hd_list);
}
return hd;
}
static void
hook_runloop(struct hook_desc_head *head, int flags)
{
struct hook_desc *hd;
if (!(flags & HOOK_REMOVE)) {
if (!(flags & HOOK_ABORT)) {
TAILQ_FOREACH(hd, head, hd_list)
hd->hd_fn(hd->hd_arg);
}
} else {
while (!!(hd = TAILQ_FIRST(head))) {
TAILQ_REMOVE(head, hd, hd_list);
if (!(flags & HOOK_ABORT)) {
hd->hd_fn(hd->hd_arg);
}
if (flags & HOOK_FREE) {
kfree_type(struct hook_desc, hd);
}
}
}
}
#if SKYWALK && defined(XNU_TARGET_OS_OSX)
static uint32_t
pf_check_compatible_anchor(struct pf_anchor const * a)
{
const char *anchor_path = a->path;
uint32_t result = 0;
if (strncmp(anchor_path, PF_RESERVED_ANCHOR, MAXPATHLEN) == 0) {
goto done;
}
if (strncmp(anchor_path, "com.apple", MAXPATHLEN) == 0) {
goto done;
}
for (int i = 0; i < sizeof(compatible_anchors) / sizeof(compatible_anchors[0]); i++) {
const char *ptr = strnstr(anchor_path, compatible_anchors[i], MAXPATHLEN);
if (ptr != NULL && ptr == anchor_path) {
goto done;
}
}
result |= PF_COMPATIBLE_FLAGS_CUSTOM_ANCHORS_PRESENT;
for (int i = PF_RULESET_SCRUB; i < PF_RULESET_MAX; ++i) {
if (a->ruleset.rules[i].active.rcount != 0) {
result |= PF_COMPATIBLE_FLAGS_CUSTOM_RULES_PRESENT;
}
}
done:
return result;
}
uint32_t
pf_check_compatible_rules(void)
{
LCK_RW_ASSERT(&pf_perim_lock, LCK_RW_ASSERT_HELD);
LCK_MTX_ASSERT(&pf_lock, LCK_MTX_ASSERT_OWNED);
struct pf_anchor *anchor = NULL;
struct pf_rule *rule = NULL;
uint32_t compat_bitmap = 0;
if (PF_IS_ENABLED) {
compat_bitmap |= PF_COMPATIBLE_FLAGS_PF_ENABLED;
}
RB_FOREACH(anchor, pf_anchor_global, &pf_anchors) {
compat_bitmap |= pf_check_compatible_anchor(anchor);
#define _CHECK_FLAGS (PF_COMPATIBLE_FLAGS_CUSTOM_ANCHORS_PRESENT | PF_COMPATIBLE_FLAGS_CUSTOM_RULES_PRESENT)
if ((compat_bitmap & _CHECK_FLAGS) == _CHECK_FLAGS) {
goto done;
}
#undef _CHECK_FLAGS
}
for (int i = PF_RULESET_SCRUB; i < PF_RULESET_MAX; i++) {
TAILQ_FOREACH(rule, pf_main_ruleset.rules[i].active.ptr, entries) {
if (rule->anchor == NULL) {
compat_bitmap |= PF_COMPATIBLE_FLAGS_CUSTOM_RULES_PRESENT;
goto done;
}
}
}
done:
return compat_bitmap;
}
#endif // SKYWALK && defined(XNU_TARGET_OS_OSX)