gems-kernel/source/THIRDPARTY/xnu/bsd/net/radix.c
2024-06-03 11:29:39 -05:00

1288 lines
33 KiB
C

/*
* Copyright (c) 2000-2013 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.4 (Berkeley) 11/2/94
* $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
*/
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#ifndef _RADIX_H_
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domain.h>
#include <sys/syslog.h>
#include <net/radix.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <kern/locks.h>
#endif
static int rn_walktree_from(struct radix_node_head *h, void *a,
void *m, walktree_f_t *f, void *w);
static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
static struct radix_node *rn_insert(void *, struct radix_node_head *, int *, struct radix_node[2]);
static struct radix_node *rn_newpair(void *, int, struct radix_node[2]);
static struct radix_node *rn_search(void *, struct radix_node *);
static struct radix_node *rn_search_m(void *, struct radix_node *, void *);
static int max_keylen;
static struct radix_mask *rn_mkfreelist;
static struct radix_node_head *mask_rnhead;
static char *addmask_key;
static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
static char *rn_zeros, *rn_ones;
static zone_t radix_node_zone;
KALLOC_TYPE_DEFINE(radix_node_head_zone, struct radix_node_head, KT_DEFAULT);
#define rn_masktop (mask_rnhead->rnh_treetop)
#undef Bcmp
#define Bcmp(a, b, l) \
(l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l))
static int rn_lexobetter(void *m_arg, void *n_arg);
static struct radix_mask *
rn_new_radix_mask(struct radix_node *tt,
struct radix_mask *next);
static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
rn_matchf_t *f, void *w);
#define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg))
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_bit at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_bit - 1.
* (We say the index of n is rn_bit.)
*
* There is at least one descendant which has a one bit at position rn_bit,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_bit, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explict mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
static struct radix_node *
rn_search(void *v_arg, struct radix_node *head)
{
struct radix_node *x;
caddr_t v;
for (x = head, v = v_arg; x->rn_bit >= 0;) {
if (x->rn_bmask & v[x->rn_offset]) {
x = x->rn_right;
} else {
x = x->rn_left;
}
}
return x;
}
static struct radix_node *
rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
{
struct radix_node *x;
caddr_t v = v_arg, m = m_arg;
for (x = head; x->rn_bit >= 0;) {
if ((x->rn_bmask & m[x->rn_offset]) &&
(x->rn_bmask & v[x->rn_offset])) {
x = x->rn_right;
} else {
x = x->rn_left;
}
}
return x;
}
int
rn_refines(void *m_arg, void *n_arg)
{
caddr_t m = m_arg, n = n_arg;
caddr_t lim, lim2 = lim = n + *(u_char *)n;
int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
int masks_are_equal = 1;
if (longer > 0) {
lim -= longer;
}
while (n < lim) {
if (*n & ~(*m)) {
return 0;
}
if (*n++ != *m++) {
masks_are_equal = 0;
}
}
while (n < lim2) {
if (*n++) {
return 0;
}
}
if (masks_are_equal && (longer < 0)) {
for (lim2 = m - longer; m < lim2;) {
if (*m++) {
return 1;
}
}
}
return !masks_are_equal;
}
struct radix_node *
rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
{
return rn_lookup_args(v_arg, m_arg, head, NULL, NULL);
}
struct radix_node *
rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head,
rn_matchf_t *f, void *w)
{
struct radix_node *x;
caddr_t netmask = NULL;
if (m_arg) {
x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
if (x == 0) {
return NULL;
}
/*
* Note: the auxillary mask is stored as a "key".
*/
netmask = rn_get_key(x);
}
x = rn_match_args(v_arg, head, f, w);
if (x && netmask) {
while (x && rn_get_mask(x) != netmask) {
x = x->rn_dupedkey;
}
}
return x;
}
/*
* Returns true if address 'trial' has no bits differing from the
* leaf's key when compared under the leaf's mask. In other words,
* returns true when 'trial' matches leaf. If a leaf-matching
* routine is passed in, it is also used to find a match on the
* conditions defined by the caller of rn_match.
*/
static int
rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
rn_matchf_t *f, void *w)
{
char *cp = trial;
char *cp2 = rn_get_key(leaf);
char *cp3 = rn_get_mask(leaf);
char *cplim;
int length = min(*(u_char *)cp, *(u_char *)cp2);
if (cp3 == 0) {
cp3 = rn_ones;
} else {
length = min(length, *(u_char *)cp3);
}
cplim = cp + length; cp3 += skip; cp2 += skip;
for (cp += skip; cp < cplim; cp++, cp2++, cp3++) {
if ((*cp ^ *cp2) & *cp3) {
return 0;
}
}
return RN_MATCHF(leaf, f, w);
}
struct radix_node *
rn_match(void *v_arg, struct radix_node_head *head)
{
return rn_match_args(v_arg, head, NULL, NULL);
}
struct radix_node *
rn_match_args(void *v_arg, struct radix_node_head *head,
rn_matchf_t *f, void *w)
{
caddr_t v = v_arg;
struct radix_node *t = head->rnh_treetop, *x;
caddr_t cp = v, cp2;
caddr_t cplim;
struct radix_node *saved_t, *top = t;
int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
int test, b, rn_bit;
/*
* Open code rn_search(v, top) to avoid overhead of extra
* subroutine call.
*/
for (; t->rn_bit >= 0;) {
if (t->rn_bmask & cp[t->rn_offset]) {
t = t->rn_right;
} else {
t = t->rn_left;
}
}
/*
* See if we match exactly as a host destination
* or at least learn how many bits match, for normal mask finesse.
*
* It doesn't hurt us to limit how many bytes to check
* to the length of the mask, since if it matches we had a genuine
* match and the leaf we have is the most specific one anyway;
* if it didn't match with a shorter length it would fail
* with a long one. This wins big for class B&C netmasks which
* are probably the most common case...
*/
if (rn_get_mask(t)) {
vlen = *(u_char *)rn_get_mask(t);
}
cp += off;
cp2 = rn_get_key(t) + off;
cplim = v + vlen;
for (; cp < cplim; cp++, cp2++) {
if (*cp != *cp2) {
goto on1;
}
}
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*
* Never return the root node itself, it seems to cause a
* lot of confusion.
*/
if (t->rn_flags & RNF_ROOT) {
t = t->rn_dupedkey;
}
if (t == NULL || RN_MATCHF(t, f, w)) {
return t;
} else {
/*
* Although we found an exact match on the key,
* f() is looking for some other criteria as well.
* Continue looking as if the exact match failed.
*/
if (t->rn_parent->rn_flags & RNF_ROOT) {
/* Hit the top; have to give up */
return NULL;
}
b = 0;
goto keeplooking;
}
on1:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0;) {
b--;
}
keeplooking:
matched_off = (int)(cp - v);
b += matched_off << 3;
rn_bit = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
saved_t = t;
if (rn_get_mask(t) == 0) {
t = t->rn_dupedkey;
}
for (; t; t = t->rn_dupedkey) {
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w)) {
return t;
}
} else if (rn_satisfies_leaf(v, t, matched_off, f, w)) {
return t;
}
}
t = saved_t;
/* start searching up the tree */
do {
struct radix_mask *m;
t = t->rn_parent;
m = t->rn_mklist;
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
while (m) {
if (m->rm_flags & RNF_NORMAL) {
if ((rn_bit <= m->rm_bit) &&
RN_MATCHF(m->rm_leaf, f, w)) {
return m->rm_leaf;
}
} else {
off = min(t->rn_offset, matched_off);
x = rn_search_m(v, t, rm_get_mask(m));
while (x && rn_get_mask(x) != rm_get_mask(m)) {
x = x->rn_dupedkey;
}
if (x && rn_satisfies_leaf(v, x, off, f, w)) {
return x;
}
}
m = m->rm_mklist;
}
} while (t != top);
return NULL;
}
#ifdef RN_DEBUG
int rn_nodenum;
struct radix_node *rn_clist;
int rn_saveinfo;
int rn_debug = 1;
#endif
static struct radix_node *
rn_newpair(void *v, int b, struct radix_node nodes[2])
{
struct radix_node *tt = nodes, *t = tt + 1;
t->rn_bit = (short)b;
t->rn_bmask = 0x80 >> (b & 7);
t->rn_left = tt;
t->rn_offset = b >> 3;
tt->rn_bit = -1;
tt->rn_key = (caddr_t)v;
tt->rn_parent = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
tt->rn_mklist = t->rn_mklist = NULL;
#ifdef RN_DEBUG
tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
tt->rn_twin = t;
tt->rn_ybro = rn_clist;
rn_clist = tt;
#endif
return t;
}
static struct radix_node *
rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
struct radix_node nodes[2])
{
caddr_t v = v_arg;
struct radix_node *top = head->rnh_treetop;
int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
struct radix_node *t = rn_search(v_arg, top);
caddr_t cp = v + head_off;
int b;
struct radix_node *tt;
/*
* Find first bit at which v and t->rn_key differ
*/
{
caddr_t cp2 = rn_get_key(t) + head_off;
int cmp_res;
caddr_t cplim = v + vlen;
while (cp < cplim) {
if (*cp2++ != *cp++) {
goto on1;
}
}
*dupentry = 1;
return t;
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (int)(cp - v) << 3; cmp_res; b--) {
cmp_res >>= 1;
}
}
{
struct radix_node *p, *x = top;
cp = v;
do {
p = x;
if (cp[x->rn_offset] & x->rn_bmask) {
x = x->rn_right;
} else {
x = x->rn_left;
}
} while (b > (unsigned) x->rn_bit);
/* x->rn_bit < b && x->rn_bit >= 0 */
#ifdef RN_DEBUG
if (rn_debug) {
log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
}
#endif
t = rn_newpair(v_arg, b, nodes);
tt = t->rn_left;
if ((cp[p->rn_offset] & p->rn_bmask) == 0) {
p->rn_left = t;
} else {
p->rn_right = t;
}
x->rn_parent = t;
t->rn_parent = p; /* frees x, p as temp vars below */
if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
t->rn_right = x;
} else {
t->rn_right = tt;
t->rn_left = x;
}
#ifdef RN_DEBUG
if (rn_debug) {
log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
}
#endif
}
return tt;
}
struct radix_node *
rn_addmask(void *n_arg, int search, int skip)
{
caddr_t netmask = (caddr_t)n_arg;
struct radix_node *x;
caddr_t cp, cplim;
int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
struct radix_node *saved_x;
static int last_zeroed = 0;
if ((mlen = *(u_char *)netmask) > max_keylen) {
mlen = max_keylen;
}
if (skip == 0) {
skip = 1;
}
if (mlen <= skip) {
return mask_rnhead->rnh_nodes;
}
if (skip > 1) {
Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
}
if ((m0 = mlen) > skip) {
Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
}
/*
* Trim trailing zeroes.
*/
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) {
cp--;
}
mlen = (int)(cp - addmask_key);
if (mlen <= skip) {
if (m0 >= last_zeroed) {
last_zeroed = mlen;
}
return mask_rnhead->rnh_nodes;
}
if (m0 < last_zeroed) {
Bzero(addmask_key + m0, last_zeroed - m0);
}
*addmask_key = last_zeroed = (char)mlen;
x = rn_search(addmask_key, rn_masktop);
if (Bcmp(addmask_key, rn_get_key(x), mlen) != 0) {
x = NULL;
}
if (x || search) {
return x;
}
x = saved_x = zalloc_flags(radix_node_zone, Z_WAITOK_ZERO_NOFAIL);
netmask = cp = (caddr_t)(x + 2);
Bcopy(addmask_key, cp, mlen);
x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
if (maskduplicated) {
log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
zfree(radix_node_zone, saved_x);
return x;
}
mask_rnhead->rnh_cnt++;
/*
* Calculate index of mask, and check for normalcy.
*/
cplim = netmask + mlen; isnormal = 1;
for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) {
cp++;
}
if (cp != cplim) {
for (j = 0x80; (j & *cp) != 0; j >>= 1) {
b++;
}
if (*cp != normal_chars[b] || cp != (cplim - 1)) {
isnormal = 0;
}
}
b += (cp - netmask) << 3;
x->rn_bit = (short)(-1 - b);
if (isnormal) {
x->rn_flags |= RNF_NORMAL;
}
return x;
}
static int
/* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void *m_arg, void *n_arg)
{
u_char *mp = m_arg, *np = n_arg, *lim;
if (*mp > *np) {
return 1; /* not really, but need to check longer one first */
}
if (*mp == *np) {
for (lim = mp + *mp; mp < lim;) {
if (*mp++ > *np++) {
return 1;
}
}
}
return 0;
}
static struct radix_mask *
rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
{
struct radix_mask *m;
MKGet(m);
m->rm_bit = tt->rn_bit;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL) {
m->rm_leaf = tt;
} else {
m->rm_mask = rn_get_mask(tt);
}
m->rm_mklist = next;
tt->rn_mklist = m;
return m;
}
struct radix_node *
rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
struct radix_node treenodes[2])
{
caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
struct radix_node *t, *x = NULL, *tt;
struct radix_node *saved_tt, *top = head->rnh_treetop;
short b = 0, b_leaf = 0;
int keyduplicated;
caddr_t mmask;
struct radix_mask *m, **mp;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (netmask) {
if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) {
return NULL;
}
b_leaf = x->rn_bit;
b = -1 - x->rn_bit;
/*
* Note: the auxillary mask is stored as a "key".
*/
netmask = rn_get_key(x);
}
/*
* Deal with duplicated keys: attach node to previous instance
*/
saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
if (rn_get_mask(tt) == netmask) {
return NULL;
}
if (netmask == 0 ||
(rn_get_mask(tt) != NULL &&
((b_leaf < tt->rn_bit) /* index(netmask) > node */
|| rn_refines(netmask, rn_get_mask(tt))
|| rn_lexobetter(netmask, rn_get_mask(tt))))) {
break;
}
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*/
if (tt == saved_tt) {
struct radix_node *xx = x;
/* link in at head of list */
(tt = treenodes)->rn_dupedkey = t;
tt->rn_flags = t->rn_flags;
tt->rn_parent = x = t->rn_parent;
t->rn_parent = tt; /* parent */
if (x->rn_left == t) {
x->rn_left = tt;
} else {
x->rn_right = tt;
}
saved_tt = tt; x = xx;
} else {
(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
t->rn_dupedkey = tt;
tt->rn_parent = t; /* parent */
if (tt->rn_dupedkey) { /* parent */
tt->rn_dupedkey->rn_parent = tt; /* parent */
}
}
#ifdef RN_DEBUG
t = tt + 1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
#endif
tt->rn_key = (caddr_t) v;
tt->rn_bit = -1;
tt->rn_flags = RNF_ACTIVE;
}
head->rnh_cnt++;
/*
* Put mask in tree.
*/
if (netmask) {
tt->rn_mask = netmask;
tt->rn_bit = x->rn_bit;
tt->rn_flags |= x->rn_flags & RNF_NORMAL;
}
t = saved_tt->rn_parent;
if (keyduplicated) {
goto on2;
}
b_leaf = -1 - t->rn_bit;
if (t->rn_right == saved_tt) {
x = t->rn_left;
} else {
x = t->rn_right;
}
/* Promote general routes from below */
if (x->rn_bit < 0) {
for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) {
if (rn_get_mask(x) != NULL && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
*mp = m = rn_new_radix_mask(x, NULL);
if (m) {
mp = &m->rm_mklist;
}
}
}
} else if (x->rn_mklist) {
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
if (m->rm_bit >= b_leaf) {
break;
}
}
t->rn_mklist = m; *mp = NULL;
}
on2:
/* Add new route to highest possible ancestor's list */
if ((netmask == 0) || (b > t->rn_bit)) {
return tt; /* can't lift at all */
}
b_leaf = tt->rn_bit;
do {
x = t;
t = t->rn_parent;
} while (b <= t->rn_bit && x != top);
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
if (m->rm_bit < b_leaf) {
continue;
}
if (m->rm_bit > b_leaf) {
break;
}
if (m->rm_flags & RNF_NORMAL) {
mmask = rn_get_mask(m->rm_leaf);
if (tt->rn_flags & RNF_NORMAL) {
log(LOG_ERR,
"Non-unique normal route, mask not entered");
return tt;
}
} else {
mmask = rm_get_mask(m);
}
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return tt;
}
if (rn_refines(netmask, mmask)
|| rn_lexobetter(netmask, mmask)) {
break;
}
}
*mp = rn_new_radix_mask(tt, *mp);
return tt;
}
struct radix_node *
rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
{
struct radix_node *t, *p, *x, *tt;
struct radix_mask *m, *saved_m, **mp;
struct radix_node *dupedkey, *saved_tt, *top;
caddr_t v, netmask;
int b, head_off, vlen;
v = v_arg;
netmask = netmask_arg;
x = head->rnh_treetop;
tt = rn_search(v, x);
head_off = x->rn_offset;
vlen = *(u_char *)v;
saved_tt = tt;
top = x;
if (tt == 0 ||
Bcmp(v + head_off, rn_get_key(tt) + head_off, vlen - head_off)) {
return NULL;
}
/*
* Delete our route from mask lists.
*/
if (netmask) {
if ((x = rn_addmask(netmask, 1, head_off)) == 0) {
return NULL;
}
netmask = rn_get_key(x);
while (rn_get_mask(tt) != netmask) {
if ((tt = tt->rn_dupedkey) == 0) {
return NULL;
}
}
}
if (rn_get_mask(tt) == 0 || (saved_m = m = tt->rn_mklist) == 0) {
goto on1;
}
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt || m->rm_refs > 0) {
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
return NULL; /* dangling ref could cause disaster */
}
} else {
if (rm_get_mask(m) != rn_get_mask(tt)) {
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
goto on1;
}
if (--m->rm_refs >= 0) {
goto on1;
}
}
b = -1 - tt->rn_bit;
t = saved_tt->rn_parent;
if (b > t->rn_bit) {
goto on1; /* Wasn't lifted at all */
}
do {
x = t;
t = t->rn_parent;
} while (b <= t->rn_bit && x != top);
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
if (m == saved_m) {
*mp = m->rm_mklist;
if (tt->rn_mklist == m) {
tt->rn_mklist = *mp;
}
MKFree(m);
break;
}
}
if (m == 0) {
log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
if (tt->rn_flags & RNF_NORMAL) {
return NULL; /* Dangling ref to us */
}
}
on1:
/*
* Eliminate us from tree
*/
if (tt->rn_flags & RNF_ROOT) {
return NULL;
}
head->rnh_cnt--;
#ifdef RN_DEBUG
/* Get us out of the creation list */
for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {
}
if (t) {
t->rn_ybro = tt->rn_ybro;
}
#endif
t = tt->rn_parent;
dupedkey = saved_tt->rn_dupedkey;
if (dupedkey) {
/*
* at this point, tt is the deletion target and saved_tt
* is the head of the dupekey chain
*/
if (tt == saved_tt) {
/* remove from head of chain */
x = dupedkey; x->rn_parent = t;
if (t->rn_left == tt) {
t->rn_left = x;
} else {
t->rn_right = x;
}
} else {
/* find node in front of tt on the chain */
for (x = p = saved_tt; p && p->rn_dupedkey != tt;) {
p = p->rn_dupedkey;
}
if (p) {
p->rn_dupedkey = tt->rn_dupedkey;
if (tt->rn_dupedkey) { /* parent */
tt->rn_dupedkey->rn_parent = p;
}
/* parent */
} else {
log(LOG_ERR, "rn_delete: couldn't find us\n");
}
}
t = tt + 1;
if (t->rn_flags & RNF_ACTIVE) {
#ifndef RN_DEBUG
*++x = *t;
p = t->rn_parent;
#else
b = t->rn_info;
*++x = *t;
t->rn_info = b;
p = t->rn_parent;
#endif
if (p->rn_left == t) {
p->rn_left = x;
} else {
p->rn_right = x;
}
x->rn_left->rn_parent = x;
x->rn_right->rn_parent = x;
}
goto out;
}
if (t->rn_left == tt) {
x = t->rn_right;
} else {
x = t->rn_left;
}
p = t->rn_parent;
if (p->rn_right == t) {
p->rn_right = x;
} else {
p->rn_left = x;
}
x->rn_parent = p;
/*
* Demote routes attached to us.
*/
if (t->rn_mklist) {
if (x->rn_bit >= 0) {
for (mp = &x->rn_mklist; (m = *mp);) {
mp = &m->rm_mklist;
}
*mp = t->rn_mklist;
} else {
/* If there are any key,mask pairs in a sibling
* duped-key chain, some subset will appear sorted
* in the same order attached to our mklist */
for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) {
if (m == x->rn_mklist) {
struct radix_mask *mm = m->rm_mklist;
x->rn_mklist = NULL;
if (--(m->rm_refs) < 0) {
MKFree(m);
}
m = mm;
}
}
if (m) {
log(LOG_ERR, "rn_delete: Orphaned Mask "
"0x%llx at 0x%llx\n",
(uint64_t)VM_KERNEL_ADDRPERM(m),
(uint64_t)VM_KERNEL_ADDRPERM(x));
}
}
}
/*
* We may be holding an active internal node in the tree.
*/
x = tt + 1;
if (t != x) {
#ifndef RN_DEBUG
*t = *x;
#else
b = t->rn_info;
*t = *x;
t->rn_info = b;
#endif
t->rn_left->rn_parent = t;
t->rn_right->rn_parent = t;
p = x->rn_parent;
if (p->rn_left == x) {
p->rn_left = t;
} else {
p->rn_right = t;
}
}
out:
tt->rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return tt;
}
/*
* This is the same as rn_walktree() except for the parameters and the
* exit.
*/
static int
rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f,
void *w)
{
int error;
struct radix_node *base, *next;
u_char *xa = (u_char *)a;
u_char *xm = (u_char *)m;
struct radix_node *rn, *last;
int stopping;
int lastb;
int rnh_cnt;
/*
* This gets complicated because we may delete the node while
* applying the function f to it; we cannot simply use the next
* leaf as the successor node in advance, because that leaf may
* be removed as well during deletion when it is a clone of the
* current node. When that happens, we would end up referring
* to an already-freed radix node as the successor node. To get
* around this issue, if we detect that the radix tree has changed
* in dimension (smaller than before), we simply restart the walk
* from the top of tree.
*/
restart:
last = NULL;
stopping = 0;
rnh_cnt = h->rnh_cnt;
/*
* rn_search_m is sort-of-open-coded here.
*/
for (rn = h->rnh_treetop; rn->rn_bit >= 0;) {
last = rn;
if (!(rn->rn_bmask & xm[rn->rn_offset])) {
break;
}
if (rn->rn_bmask & xa[rn->rn_offset]) {
rn = rn->rn_right;
} else {
rn = rn->rn_left;
}
}
/*
* Two cases: either we stepped off the end of our mask,
* in which case last == rn, or we reached a leaf, in which
* case we want to start from the last node we looked at.
* Either way, last is the node we want to start from.
*/
rn = last;
lastb = rn->rn_bit;
/* First time through node, go left */
while (rn->rn_bit >= 0) {
rn = rn->rn_left;
}
while (!stopping) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_parent->rn_right == rn
&& !(rn->rn_flags & RNF_ROOT)) {
rn = rn->rn_parent;
/* if went up beyond last, stop */
if (rn->rn_bit <= lastb) {
stopping = 1;
/*
* XXX we should jump to the 'Process leaves'
* part, because the values of 'rn' and 'next'
* we compute will not be used. Not a big deal
* because this loop will terminate, but it is
* inefficient and hard to understand!
*/
}
}
/*
* The following code (bug fix) inherited from FreeBSD is
* currently disabled, because our implementation uses the
* RTF_PRCLONING scheme that has been abandoned in current
* FreeBSD release. The scheme involves setting such a flag
* for the default route entry, and therefore all off-link
* destinations would become clones of that entry. Enabling
* the following code would be problematic at this point,
* because the removal of default route would cause only
* the left-half of the tree to be traversed, leaving the
* right-half untouched. If there are clones of the entry
* that reside in that right-half, they would not be deleted
* and would linger around until they expire or explicitly
* deleted, which is a very bad thing.
*
* This code should be uncommented only after we get rid
* of the RTF_PRCLONING scheme.
*/
#if 0
/*
* At the top of the tree, no need to traverse the right
* half, prevent the traversal of the entire tree in the
* case of default route.
*/
if (rn->rn_parent->rn_flags & RNF_ROOT) {
stopping = 1;
}
#endif
/* Find the next *leaf* to start from */
for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
rn = rn->rn_left;
}
next = rn;
/* Process leaves */
while ((rn = base) != 0) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT)
&& (error = (*f)(rn, w))) {
return error;
}
}
/* If one or more nodes got deleted, restart from top */
if (h->rnh_cnt < rnh_cnt) {
goto restart;
}
rn = next;
if (rn->rn_flags & RNF_ROOT) {
stopping = 1;
}
}
return 0;
}
static int
rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
{
int error;
struct radix_node *base, *next;
struct radix_node *rn;
int rnh_cnt;
/*
* This gets complicated because we may delete the node while
* applying the function f to it; we cannot simply use the next
* leaf as the successor node in advance, because that leaf may
* be removed as well during deletion when it is a clone of the
* current node. When that happens, we would end up referring
* to an already-freed radix node as the successor node. To get
* around this issue, if we detect that the radix tree has changed
* in dimension (smaller than before), we simply restart the walk
* from the top of tree.
*/
restart:
rn = h->rnh_treetop;
rnh_cnt = h->rnh_cnt;
/* First time through node, go left */
while (rn->rn_bit >= 0) {
rn = rn->rn_left;
}
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_parent->rn_right == rn &&
(rn->rn_flags & RNF_ROOT) == 0) {
rn = rn->rn_parent;
}
/* Find the next *leaf* to start from */
for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
rn = rn->rn_left;
}
next = rn;
/* Process leaves */
while ((rn = base) != NULL) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT)
&& (error = (*f)(rn, w))) {
return error;
}
}
/* If one or more nodes got deleted, restart from top */
if (h->rnh_cnt < rnh_cnt) {
goto restart;
}
rn = next;
if (rn->rn_flags & RNF_ROOT) {
return 0;
}
}
/* NOTREACHED */
}
int
rn_inithead(void **head, int off)
{
struct radix_node_head *rnh;
struct radix_node *t, *tt, *ttt;
if (off > INT8_MAX) {
return 0;
}
if (*head) {
return 1;
}
rnh = zalloc_flags(radix_node_head_zone, Z_WAITOK_ZERO_NOFAIL);
*head = rnh;
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_right = ttt;
t->rn_parent = t;
tt = t->rn_left;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_bit = (short)(-1 - off);
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_addaddr = rn_addroute;
rnh->rnh_deladdr = rn_delete;
rnh->rnh_matchaddr = rn_match;
rnh->rnh_matchaddr_args = rn_match_args;
rnh->rnh_lookup = rn_lookup;
rnh->rnh_lookup_args = rn_lookup_args;
rnh->rnh_walktree = rn_walktree;
rnh->rnh_walktree_from = rn_walktree_from;
rnh->rnh_treetop = t;
rnh->rnh_cnt = 3;
return 1;
}
void
rn_init(void)
{
char *cp, *cplim;
struct domain *dom;
/* lock already held when rn_init is called */
TAILQ_FOREACH(dom, &domains, dom_entry) {
if (dom->dom_maxrtkey > max_keylen) {
max_keylen = dom->dom_maxrtkey;
}
}
if (max_keylen == 0) {
log(LOG_ERR,
"rn_init: radix functions require max_keylen be set\n");
return;
}
rn_zeros = zalloc_permanent(3 * max_keylen, ZALIGN_NONE);
rn_ones = cp = rn_zeros + max_keylen;
addmask_key = cplim = rn_ones + max_keylen;
while (cp < cplim) {
*cp++ = -1;
}
if (rn_inithead((void **)&mask_rnhead, 0) == 0) {
panic("rn_init 2");
}
radix_node_zone = zone_create("radix_node",
sizeof(struct radix_node) * 2 + max_keylen,
ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM);
}