gems-kernel/source/THIRDPARTY/xnu/bsd/netinet/in_pcb.c
2024-06-03 11:29:39 -05:00

4401 lines
114 KiB
C

/*
* Copyright (c) 2000-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
* $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/mcache.h>
#include <sys/kauth.h>
#include <sys/priv.h>
#include <sys/proc_uuid_policy.h>
#include <sys/syslog.h>
#include <sys/priv.h>
#include <sys/file_internal.h>
#include <net/dlil.h>
#include <libkern/OSAtomic.h>
#include <kern/locks.h>
#include <machine/limits.h>
#include <kern/zalloc.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/flowhash.h>
#include <net/flowadv.h>
#include <net/nat464_utils.h>
#include <net/ntstat.h>
#include <net/nwk_wq.h>
#include <net/restricted_in_port.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/inp_log.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <sys/kdebug.h>
#include <sys/random.h>
#include <dev/random/randomdev.h>
#include <mach/boolean.h>
#include <atm/atm_internal.h>
#include <pexpert/pexpert.h>
#if NECP
#include <net/necp.h>
#endif
#include <sys/stat.h>
#include <sys/ubc.h>
#include <sys/vnode.h>
#include <os/log.h>
#if SKYWALK
#include <skywalk/namespace/flowidns.h>
#endif /* SKYWALK */
#include <IOKit/IOBSD.h>
#include <net/sockaddr_utils.h>
extern const char *proc_name_address(struct proc *);
static LCK_GRP_DECLARE(inpcb_lock_grp, "inpcb");
static LCK_ATTR_DECLARE(inpcb_lock_attr, 0, 0);
static LCK_MTX_DECLARE_ATTR(inpcb_lock, &inpcb_lock_grp, &inpcb_lock_attr);
static LCK_MTX_DECLARE_ATTR(inpcb_timeout_lock, &inpcb_lock_grp, &inpcb_lock_attr);
static TAILQ_HEAD(, inpcbinfo) inpcb_head = TAILQ_HEAD_INITIALIZER(inpcb_head);
static u_int16_t inpcb_timeout_run = 0; /* INPCB timer is scheduled to run */
static boolean_t inpcb_garbage_collecting = FALSE; /* gc timer is scheduled */
static boolean_t inpcb_ticking = FALSE; /* "slow" timer is scheduled */
static boolean_t inpcb_fast_timer_on = FALSE;
#define INPCB_GCREQ_THRESHOLD 50000
static thread_call_t inpcb_thread_call, inpcb_fast_thread_call;
static void inpcb_sched_timeout(void);
static void inpcb_sched_lazy_timeout(void);
static void _inpcb_sched_timeout(unsigned int);
static void inpcb_timeout(void *, void *);
const int inpcb_timeout_lazy = 10; /* 10 seconds leeway for lazy timers */
extern int tvtohz(struct timeval *);
#if CONFIG_PROC_UUID_POLICY
static void inp_update_cellular_policy(struct inpcb *, boolean_t);
#if NECP
static void inp_update_necp_want_app_policy(struct inpcb *, boolean_t);
#endif /* NECP */
#endif /* !CONFIG_PROC_UUID_POLICY */
#define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8))
#define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1))
int allow_udp_port_exhaustion = 0;
/*
* These configure the range of local port addresses assigned to
* "unspecified" outgoing connections/packets/whatever.
*/
int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */
int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */
#define RANGECHK(var, min, max) \
if ((var) < (min)) { (var) = (min); } \
else if ((var) > (max)) { (var) = (max); }
static int
sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
{
#pragma unused(arg1, arg2)
int error;
int new_value = *(int *)oidp->oid_arg1;
#if (DEBUG | DEVELOPMENT)
int old_value = *(int *)oidp->oid_arg1;
/*
* For unit testing allow a non-superuser process with the
* proper entitlement to modify the variables
*/
if (req->newptr) {
if (proc_suser(current_proc()) != 0 &&
(error = priv_check_cred(kauth_cred_get(),
PRIV_NETINET_RESERVEDPORT, 0))) {
return EPERM;
}
}
#endif /* (DEBUG | DEVELOPMENT) */
error = sysctl_handle_int(oidp, &new_value, 0, req);
if (!error) {
if (oidp->oid_arg1 == &ipport_lowfirstauto || oidp->oid_arg1 == &ipport_lowlastauto) {
RANGECHK(new_value, 1, IPPORT_RESERVED - 1);
} else {
RANGECHK(new_value, IPPORT_RESERVED, USHRT_MAX);
}
*(int *)oidp->oid_arg1 = new_value;
}
#if (DEBUG | DEVELOPMENT)
os_log(OS_LOG_DEFAULT,
"%s:%u sysctl net.restricted_port.verbose: %d -> %d)",
proc_best_name(current_proc()), proc_selfpid(),
old_value, *(int *)oidp->oid_arg1);
#endif /* (DEBUG | DEVELOPMENT) */
return error;
}
#undef RANGECHK
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IP Ports");
#if (DEBUG | DEVELOPMENT)
#define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY)
#else
#define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED)
#endif /* (DEBUG | DEVELOPMENT) */
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
CTLFAGS_IP_PORTRANGE,
&ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
CTLFAGS_IP_PORTRANGE,
&ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
CTLFAGS_IP_PORTRANGE,
&ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
CTLFAGS_IP_PORTRANGE,
&ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
CTLFAGS_IP_PORTRANGE,
&ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
CTLFAGS_IP_PORTRANGE,
&ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, ipport_allow_udp_port_exhaustion,
CTLFLAG_LOCKED | CTLFLAG_RW, &allow_udp_port_exhaustion, 0, "");
static uint32_t apn_fallbk_debug = 0;
#define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0)
#if !XNU_TARGET_OS_OSX
static boolean_t apn_fallbk_enabled = TRUE;
SYSCTL_DECL(_net_inet);
SYSCTL_NODE(_net_inet, OID_AUTO, apn_fallback, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "APN Fallback");
SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED,
&apn_fallbk_enabled, 0, "APN fallback enable");
SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED,
&apn_fallbk_debug, 0, "APN fallback debug enable");
#else /* XNU_TARGET_OS_OSX */
static boolean_t apn_fallbk_enabled = FALSE;
#endif /* XNU_TARGET_OS_OSX */
extern int udp_use_randomport;
extern int tcp_use_randomport;
/* Structs used for flowhash computation */
struct inp_flowhash_key_addr {
union {
struct in_addr v4;
struct in6_addr v6;
u_int8_t addr8[16];
u_int16_t addr16[8];
u_int32_t addr32[4];
} infha;
};
struct inp_flowhash_key {
struct inp_flowhash_key_addr infh_laddr;
struct inp_flowhash_key_addr infh_faddr;
u_int32_t infh_lport;
u_int32_t infh_fport;
u_int32_t infh_af;
u_int32_t infh_proto;
u_int32_t infh_rand1;
u_int32_t infh_rand2;
};
#if !SKYWALK
static u_int32_t inp_hash_seed = 0;
#endif /* !SKYWALK */
static int infc_cmp(const struct inpcb *, const struct inpcb *);
/* Flags used by inp_fc_getinp */
#define INPFC_SOLOCKED 0x1
#define INPFC_REMOVE 0x2
static struct inpcb *inp_fc_getinp(u_int32_t, u_int32_t);
static void inp_fc_feedback(struct inpcb *);
extern void tcp_remove_from_time_wait(struct inpcb *inp);
static LCK_MTX_DECLARE_ATTR(inp_fc_lck, &inpcb_lock_grp, &inpcb_lock_attr);
RB_HEAD(inp_fc_tree, inpcb) inp_fc_tree;
RB_PROTOTYPE(inp_fc_tree, inpcb, infc_link, infc_cmp);
RB_GENERATE(inp_fc_tree, inpcb, infc_link, infc_cmp);
/*
* Use this inp as a key to find an inp in the flowhash tree.
* Accesses to it are protected by inp_fc_lck.
*/
struct inpcb key_inp;
/*
* in_pcb.c: manage the Protocol Control Blocks.
*/
void
in_pcbinit(void)
{
static int inpcb_initialized = 0;
uint32_t logging_config;
VERIFY(!inpcb_initialized);
inpcb_initialized = 1;
logging_config = atm_get_diagnostic_config();
if (logging_config & 0x80000000) {
inp_log_privacy = 1;
}
inpcb_thread_call = thread_call_allocate_with_priority(inpcb_timeout,
NULL, THREAD_CALL_PRIORITY_KERNEL);
/* Give it an arg so that we know that this is the fast timer */
inpcb_fast_thread_call = thread_call_allocate_with_priority(
inpcb_timeout, &inpcb_timeout, THREAD_CALL_PRIORITY_KERNEL);
if (inpcb_thread_call == NULL || inpcb_fast_thread_call == NULL) {
panic("unable to alloc the inpcb thread call");
}
/*
* Initialize data structures required to deliver
* flow advisories.
*/
lck_mtx_lock(&inp_fc_lck);
RB_INIT(&inp_fc_tree);
bzero(&key_inp, sizeof(key_inp));
lck_mtx_unlock(&inp_fc_lck);
}
#define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \
((req).intimer_fast > 0) || ((req).intimer_nodelay > 0))
static void
inpcb_timeout(void *arg0, void *arg1)
{
#pragma unused(arg1)
struct inpcbinfo *ipi;
boolean_t t, gc;
struct intimercount gccnt, tmcnt;
/*
* Update coarse-grained networking timestamp (in sec.); the idea
* is to piggy-back on the timeout callout to update the counter
* returnable via net_uptime().
*/
net_update_uptime();
bzero(&gccnt, sizeof(gccnt));
bzero(&tmcnt, sizeof(tmcnt));
lck_mtx_lock_spin(&inpcb_timeout_lock);
gc = inpcb_garbage_collecting;
inpcb_garbage_collecting = FALSE;
t = inpcb_ticking;
inpcb_ticking = FALSE;
if (gc || t) {
lck_mtx_unlock(&inpcb_timeout_lock);
lck_mtx_lock(&inpcb_lock);
TAILQ_FOREACH(ipi, &inpcb_head, ipi_entry) {
if (INPCB_HAVE_TIMER_REQ(ipi->ipi_gc_req)) {
bzero(&ipi->ipi_gc_req,
sizeof(ipi->ipi_gc_req));
if (gc && ipi->ipi_gc != NULL) {
ipi->ipi_gc(ipi);
gccnt.intimer_lazy +=
ipi->ipi_gc_req.intimer_lazy;
gccnt.intimer_fast +=
ipi->ipi_gc_req.intimer_fast;
gccnt.intimer_nodelay +=
ipi->ipi_gc_req.intimer_nodelay;
}
}
if (INPCB_HAVE_TIMER_REQ(ipi->ipi_timer_req)) {
bzero(&ipi->ipi_timer_req,
sizeof(ipi->ipi_timer_req));
if (t && ipi->ipi_timer != NULL) {
ipi->ipi_timer(ipi);
tmcnt.intimer_lazy +=
ipi->ipi_timer_req.intimer_lazy;
tmcnt.intimer_fast +=
ipi->ipi_timer_req.intimer_fast;
tmcnt.intimer_nodelay +=
ipi->ipi_timer_req.intimer_nodelay;
}
}
}
lck_mtx_unlock(&inpcb_lock);
lck_mtx_lock_spin(&inpcb_timeout_lock);
}
/* lock was dropped above, so check first before overriding */
if (!inpcb_garbage_collecting) {
inpcb_garbage_collecting = INPCB_HAVE_TIMER_REQ(gccnt);
}
if (!inpcb_ticking) {
inpcb_ticking = INPCB_HAVE_TIMER_REQ(tmcnt);
}
/* arg0 will be set if we are the fast timer */
if (arg0 != NULL) {
inpcb_fast_timer_on = FALSE;
}
inpcb_timeout_run--;
VERIFY(inpcb_timeout_run >= 0 && inpcb_timeout_run < 2);
/* re-arm the timer if there's work to do */
if (gccnt.intimer_nodelay > 0 || tmcnt.intimer_nodelay > 0) {
inpcb_sched_timeout();
} else if ((gccnt.intimer_fast + tmcnt.intimer_fast) <= 5) {
/* be lazy when idle with little activity */
inpcb_sched_lazy_timeout();
} else {
inpcb_sched_timeout();
}
lck_mtx_unlock(&inpcb_timeout_lock);
}
static void
inpcb_sched_timeout(void)
{
_inpcb_sched_timeout(0);
}
static void
inpcb_sched_lazy_timeout(void)
{
_inpcb_sched_timeout(inpcb_timeout_lazy);
}
static void
_inpcb_sched_timeout(unsigned int offset)
{
uint64_t deadline, leeway;
clock_interval_to_deadline(1, NSEC_PER_SEC, &deadline);
LCK_MTX_ASSERT(&inpcb_timeout_lock, LCK_MTX_ASSERT_OWNED);
if (inpcb_timeout_run == 0 &&
(inpcb_garbage_collecting || inpcb_ticking)) {
lck_mtx_convert_spin(&inpcb_timeout_lock);
inpcb_timeout_run++;
if (offset == 0) {
inpcb_fast_timer_on = TRUE;
thread_call_enter_delayed(inpcb_fast_thread_call,
deadline);
} else {
inpcb_fast_timer_on = FALSE;
clock_interval_to_absolutetime_interval(offset,
NSEC_PER_SEC, &leeway);
thread_call_enter_delayed_with_leeway(
inpcb_thread_call, NULL, deadline, leeway,
THREAD_CALL_DELAY_LEEWAY);
}
} else if (inpcb_timeout_run == 1 &&
offset == 0 && !inpcb_fast_timer_on) {
/*
* Since the request was for a fast timer but the
* scheduled timer is a lazy timer, try to schedule
* another instance of fast timer also.
*/
lck_mtx_convert_spin(&inpcb_timeout_lock);
inpcb_timeout_run++;
inpcb_fast_timer_on = TRUE;
thread_call_enter_delayed(inpcb_fast_thread_call, deadline);
}
}
void
inpcb_gc_sched(struct inpcbinfo *ipi, u_int32_t type)
{
u_int32_t gccnt;
lck_mtx_lock_spin(&inpcb_timeout_lock);
inpcb_garbage_collecting = TRUE;
gccnt = ipi->ipi_gc_req.intimer_nodelay +
ipi->ipi_gc_req.intimer_fast;
if (gccnt > INPCB_GCREQ_THRESHOLD) {
type = INPCB_TIMER_FAST;
}
switch (type) {
case INPCB_TIMER_NODELAY:
os_atomic_inc(&ipi->ipi_gc_req.intimer_nodelay, relaxed);
inpcb_sched_timeout();
break;
case INPCB_TIMER_FAST:
os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
inpcb_sched_timeout();
break;
default:
os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed);
inpcb_sched_lazy_timeout();
break;
}
lck_mtx_unlock(&inpcb_timeout_lock);
}
void
inpcb_timer_sched(struct inpcbinfo *ipi, u_int32_t type)
{
lck_mtx_lock_spin(&inpcb_timeout_lock);
inpcb_ticking = TRUE;
switch (type) {
case INPCB_TIMER_NODELAY:
os_atomic_inc(&ipi->ipi_timer_req.intimer_nodelay, relaxed);
inpcb_sched_timeout();
break;
case INPCB_TIMER_FAST:
os_atomic_inc(&ipi->ipi_timer_req.intimer_fast, relaxed);
inpcb_sched_timeout();
break;
default:
os_atomic_inc(&ipi->ipi_timer_req.intimer_lazy, relaxed);
inpcb_sched_lazy_timeout();
break;
}
lck_mtx_unlock(&inpcb_timeout_lock);
}
void
in_pcbinfo_attach(struct inpcbinfo *ipi)
{
struct inpcbinfo *ipi0;
lck_mtx_lock(&inpcb_lock);
TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) {
if (ipi0 == ipi) {
panic("%s: ipi %p already in the list",
__func__, ipi);
/* NOTREACHED */
}
}
TAILQ_INSERT_TAIL(&inpcb_head, ipi, ipi_entry);
lck_mtx_unlock(&inpcb_lock);
}
int
in_pcbinfo_detach(struct inpcbinfo *ipi)
{
struct inpcbinfo *ipi0;
int error = 0;
lck_mtx_lock(&inpcb_lock);
TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) {
if (ipi0 == ipi) {
break;
}
}
if (ipi0 != NULL) {
TAILQ_REMOVE(&inpcb_head, ipi0, ipi_entry);
} else {
error = ENXIO;
}
lck_mtx_unlock(&inpcb_lock);
return error;
}
__attribute__((noinline))
char *
inp_snprintf_tuple(struct inpcb *inp, char *buf, size_t buflen)
{
char laddrstr[MAX_IPv6_STR_LEN];
char faddrstr[MAX_IPv6_STR_LEN];
uint16_t lport = 0;
uint16_t fport = 0;
uint16_t proto = IPPROTO_IP;
if (inp->inp_socket != NULL) {
proto = SOCK_PROTO(inp->inp_socket);
if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) {
lport = inp->inp_lport;
fport = inp->inp_fport;
}
}
if (inp->inp_vflag & INP_IPV4) {
inet_ntop(AF_INET, (void *)&inp->inp_laddr.s_addr, laddrstr, sizeof(laddrstr));
inet_ntop(AF_INET, (void *)&inp->inp_faddr.s_addr, faddrstr, sizeof(faddrstr));
} else if (inp->inp_vflag & INP_IPV6) {
inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, laddrstr, sizeof(laddrstr));
inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, faddrstr, sizeof(faddrstr));
}
snprintf(buf, buflen, "[%u %s:%u %s:%u]",
proto, laddrstr, ntohs(lport), faddrstr, ntohs(fport));
return buf;
}
__attribute__((noinline))
void
in_pcb_check_management_entitled(struct inpcb *inp)
{
if (inp->inp_flags2 & INP2_MANAGEMENT_CHECKED) {
return;
}
if (management_data_unrestricted) {
inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
} else if (if_management_interface_check_needed == true) {
inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
/*
* Note that soopt_cred_check check both intcoproc entitlements
* We check MANAGEMENT_DATA_ENTITLEMENT as there is no corresponding PRIV value
*/
if (soopt_cred_check(inp->inp_socket, PRIV_NET_RESTRICTED_INTCOPROC, false, false) == 0
|| IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT) == true
#if DEBUG || DEVELOPMENT
|| IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true
#endif /* DEBUG || DEVELOPMENT */
) {
inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
} else {
if (__improbable(if_management_verbose > 1)) {
char buf[128];
os_log(OS_LOG_DEFAULT, "in_pcb_check_management_entitled %s:%d not management entitled %s",
proc_best_name(current_proc()),
proc_selfpid(),
inp_snprintf_tuple(inp, buf, sizeof(buf)));
}
}
}
}
/*
* Allocate a PCB and associate it with the socket.
*
* Returns: 0 Success
* ENOBUFS
* ENOMEM
*/
int
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, struct proc *p)
{
#pragma unused(p)
struct inpcb *inp;
caddr_t temp;
if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) {
inp = zalloc_flags(pcbinfo->ipi_zone,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
} else {
inp = (struct inpcb *)(void *)so->so_saved_pcb;
temp = inp->inp_saved_ppcb;
bzero((caddr_t)inp, sizeof(*inp));
inp->inp_saved_ppcb = temp;
}
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
inp->inp_pcbinfo = pcbinfo;
inp->inp_socket = so;
/* make sure inp_stat is always 64-bit aligned */
inp->inp_stat = (struct inp_stat *)P2ROUNDUP(inp->inp_stat_store,
sizeof(u_int64_t));
if (((uintptr_t)inp->inp_stat - (uintptr_t)inp->inp_stat_store) +
sizeof(*inp->inp_stat) > sizeof(inp->inp_stat_store)) {
panic("%s: insufficient space to align inp_stat", __func__);
/* NOTREACHED */
}
/* make sure inp_cstat is always 64-bit aligned */
inp->inp_cstat = (struct inp_stat *)P2ROUNDUP(inp->inp_cstat_store,
sizeof(u_int64_t));
if (((uintptr_t)inp->inp_cstat - (uintptr_t)inp->inp_cstat_store) +
sizeof(*inp->inp_cstat) > sizeof(inp->inp_cstat_store)) {
panic("%s: insufficient space to align inp_cstat", __func__);
/* NOTREACHED */
}
/* make sure inp_wstat is always 64-bit aligned */
inp->inp_wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_wstat_store,
sizeof(u_int64_t));
if (((uintptr_t)inp->inp_wstat - (uintptr_t)inp->inp_wstat_store) +
sizeof(*inp->inp_wstat) > sizeof(inp->inp_wstat_store)) {
panic("%s: insufficient space to align inp_wstat", __func__);
/* NOTREACHED */
}
/* make sure inp_Wstat is always 64-bit aligned */
inp->inp_Wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_Wstat_store,
sizeof(u_int64_t));
if (((uintptr_t)inp->inp_Wstat - (uintptr_t)inp->inp_Wstat_store) +
sizeof(*inp->inp_Wstat) > sizeof(inp->inp_Wstat_store)) {
panic("%s: insufficient space to align inp_Wstat", __func__);
/* NOTREACHED */
}
so->so_pcb = (caddr_t)inp;
if (so->so_proto->pr_flags & PR_PCBLOCK) {
lck_mtx_init(&inp->inpcb_mtx, pcbinfo->ipi_lock_grp,
&pcbinfo->ipi_lock_attr);
}
if (SOCK_DOM(so) == PF_INET6 && !ip6_mapped_addr_on) {
inp->inp_flags |= IN6P_IPV6_V6ONLY;
}
if (ip6_auto_flowlabel) {
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
}
if (intcoproc_unrestricted) {
inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED;
}
(void) inp_update_policy(inp);
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
pcbinfo->ipi_count++;
lck_rw_done(&pcbinfo->ipi_lock);
return 0;
}
/*
* in_pcblookup_local_and_cleanup does everything
* in_pcblookup_local does but it checks for a socket
* that's going away. Since we know that the lock is
* held read+write when this function is called, we
* can safely dispose of this socket like the slow
* timer would usually do and return NULL. This is
* great for bind.
*/
struct inpcb *
in_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo, struct in_addr laddr,
u_int lport_arg, int wild_okay)
{
struct inpcb *inp;
/* Perform normal lookup */
inp = in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay);
/* Check if we found a match but it's waiting to be disposed */
if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) {
struct socket *so = inp->inp_socket;
socket_lock(so, 0);
if (so->so_usecount == 0) {
if (inp->inp_state != INPCB_STATE_DEAD) {
in_pcbdetach(inp);
}
in_pcbdispose(inp); /* will unlock & destroy */
inp = NULL;
} else {
socket_unlock(so, 0);
}
}
return inp;
}
static void
in_pcb_conflict_post_msg(u_int16_t port)
{
/*
* Radar 5523020 send a kernel event notification if a
* non-participating socket tries to bind the port a socket
* who has set SOF_NOTIFYCONFLICT owns.
*/
struct kev_msg ev_msg;
struct kev_in_portinuse in_portinuse;
bzero(&in_portinuse, sizeof(struct kev_in_portinuse));
bzero(&ev_msg, sizeof(struct kev_msg));
in_portinuse.port = ntohs(port); /* port in host order */
in_portinuse.req_pid = proc_selfpid();
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_INET_SUBCLASS;
ev_msg.event_code = KEV_INET_PORTINUSE;
ev_msg.dv[0].data_ptr = &in_portinuse;
ev_msg.dv[0].data_length = sizeof(struct kev_in_portinuse);
ev_msg.dv[1].data_length = 0;
dlil_post_complete_msg(NULL, &ev_msg);
}
/*
* Bind an INPCB to an address and/or port. This routine should not alter
* the caller-supplied local address "nam".
*
* Returns: 0 Success
* EADDRNOTAVAIL Address not available.
* EINVAL Invalid argument
* EAFNOSUPPORT Address family not supported [notdef]
* EACCES Permission denied
* EADDRINUSE Address in use
* EAGAIN Resource unavailable, try again
* priv_check_cred:EPERM Operation not permitted
*/
int
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p)
{
struct socket *so = inp->inp_socket;
unsigned short *lastport;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
u_short lport = 0, rand_port = 0;
int wild = 0;
int reuseport = (so->so_options & SO_REUSEPORT);
int error = 0;
int randomport;
int conflict = 0;
boolean_t anonport = FALSE;
kauth_cred_t cred;
struct in_addr laddr;
struct ifnet *outif = NULL;
if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) {
return EINVAL;
}
inp->inp_flags2 |= INP2_BIND_IN_PROGRESS;
if (TAILQ_EMPTY(&in_ifaddrhead)) { /* XXX broken! */
error = EADDRNOTAVAIL;
goto done;
}
if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) {
wild = 1;
}
bzero(&laddr, sizeof(laddr));
socket_unlock(so, 0); /* keep reference on socket */
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) {
/* another thread completed the bind */
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
if (nam != NULL) {
if (nam->sa_len != sizeof(struct sockaddr_in)) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
#if 0
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (nam->sa_family != AF_INET) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EAFNOSUPPORT;
goto done;
}
#endif /* 0 */
lport = SIN(nam)->sin_port;
if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr))) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR) {
reuseport = SO_REUSEADDR | SO_REUSEPORT;
}
} else if (SIN(nam)->sin_addr.s_addr != INADDR_ANY) {
struct sockaddr_in sin;
struct ifaddr *ifa;
/* Sanitized for interface address searches */
SOCKADDR_ZERO(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(struct sockaddr_in);
sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
ifa = ifa_ifwithaddr(SA(&sin));
if (ifa == NULL) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
} else {
/*
* Opportunistically determine the outbound
* interface that may be used; this may not
* hold true if we end up using a route
* going over a different interface, e.g.
* when sending to a local address. This
* will get updated again after sending.
*/
IFA_LOCK(ifa);
outif = ifa->ifa_ifp;
IFA_UNLOCK(ifa);
ifa_remref(ifa);
}
}
#if SKYWALK
if (inp->inp_flags2 & INP2_EXTERNAL_PORT) {
// Extract the external flow info
struct ns_flow_info nfi = {};
error = necp_client_get_netns_flow_info(inp->necp_client_uuid,
&nfi);
if (error != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
goto done;
}
// Extract the reserved port
u_int16_t reserved_lport = 0;
if (nfi.nfi_laddr.sa.sa_family == AF_INET) {
reserved_lport = nfi.nfi_laddr.sin.sin_port;
} else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) {
reserved_lport = nfi.nfi_laddr.sin6.sin6_port;
} else {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
// Validate or use the reserved port
if (lport == 0) {
lport = reserved_lport;
} else if (lport != reserved_lport) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EINVAL;
goto done;
}
}
/* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */
if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) {
uint32_t current_reservations = 0;
if (inp->inp_vflag & INP_IPV6) {
current_reservations = netns_lookup_reservations_count_in6(inp->in6p_laddr, IPPROTO_UDP);
} else {
current_reservations = netns_lookup_reservations_count_in(inp->inp_laddr, IPPROTO_UDP);
}
if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) {
log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left");
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
}
}
#endif /* SKYWALK */
if (lport != 0) {
struct inpcb *t;
uid_t u;
#if XNU_TARGET_OS_OSX
if (ntohs(lport) < IPPORT_RESERVED &&
SIN(nam)->sin_addr.s_addr != 0 &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
cred = kauth_cred_proc_ref(p);
error = priv_check_cred(cred,
PRIV_NETINET_RESERVEDPORT, 0);
kauth_cred_unref(&cred);
if (error != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EACCES;
goto done;
}
}
#endif /* XNU_TARGET_OS_OSX */
/*
* Check wether the process is allowed to bind to a restricted port
*/
if (!current_task_can_use_restricted_in_port(lport,
(uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
if (!IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) &&
(u = kauth_cred_getuid(so->so_cred)) != 0 &&
(t = in_pcblookup_local_and_cleanup(
inp->inp_pcbinfo, SIN(nam)->sin_addr, lport,
INPLOOKUP_WILDCARD)) != NULL &&
(SIN(nam)->sin_addr.s_addr != INADDR_ANY ||
t->inp_laddr.s_addr != INADDR_ANY ||
!(t->inp_socket->so_options & SO_REUSEPORT)) &&
(u != kauth_cred_getuid(t->inp_socket->so_cred)) &&
!(t->inp_socket->so_flags & SOF_REUSESHAREUID) &&
(SIN(nam)->sin_addr.s_addr != INADDR_ANY ||
t->inp_laddr.s_addr != INADDR_ANY) &&
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
if ((t->inp_socket->so_flags &
SOF_NOTIFYCONFLICT) &&
!(so->so_flags & SOF_NOTIFYCONFLICT)) {
conflict = 1;
}
lck_rw_done(&pcbinfo->ipi_lock);
if (conflict) {
in_pcb_conflict_post_msg(lport);
}
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
t = in_pcblookup_local_and_cleanup(pcbinfo,
SIN(nam)->sin_addr, lport, wild);
if (t != NULL &&
(reuseport & t->inp_socket->so_options) == 0 &&
(!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
!(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
uuid_compare(t->necp_client_uuid, inp->necp_client_uuid) != 0)) {
if (SIN(nam)->sin_addr.s_addr != INADDR_ANY ||
t->inp_laddr.s_addr != INADDR_ANY ||
SOCK_DOM(so) != PF_INET6 ||
SOCK_DOM(t->inp_socket) != PF_INET6) {
if ((t->inp_socket->so_flags &
SOF_NOTIFYCONFLICT) &&
!(so->so_flags & SOF_NOTIFYCONFLICT)) {
conflict = 1;
}
lck_rw_done(&pcbinfo->ipi_lock);
if (conflict) {
in_pcb_conflict_post_msg(lport);
}
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
}
#if SKYWALK
if ((SOCK_PROTO(so) == IPPROTO_TCP ||
SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
int res_err = 0;
if (inp->inp_vflag & INP_IPV6) {
res_err = netns_reserve_in6(
&inp->inp_netns_token,
SIN6(nam)->sin6_addr,
(uint8_t)SOCK_PROTO(so), lport, NETNS_BSD,
NULL);
} else {
res_err = netns_reserve_in(
&inp->inp_netns_token,
SIN(nam)->sin_addr, (uint8_t)SOCK_PROTO(so),
lport, NETNS_BSD, NULL);
}
if (res_err != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRINUSE;
goto done;
}
}
#endif /* SKYWALK */
}
laddr = SIN(nam)->sin_addr;
}
if (lport == 0) {
u_short first, last;
int count;
bool found;
/*
* Override wild = 1 for implicit bind (mainly used by connect)
* For implicit bind (lport == 0), we always use an unused port,
* so REUSEADDR|REUSEPORT don't apply
*/
wild = 1;
randomport = (so->so_flags & SOF_BINDRANDOMPORT) ||
(so->so_type == SOCK_STREAM ? tcp_use_randomport :
udp_use_randomport);
/*
* Even though this looks similar to the code in
* in6_pcbsetport, the v6 vs v4 checks are different.
*/
anonport = TRUE;
if (inp->inp_flags & INP_HIGHPORT) {
first = (u_short)ipport_hifirstauto; /* sysctl */
last = (u_short)ipport_hilastauto;
lastport = &pcbinfo->ipi_lasthi;
} else if (inp->inp_flags & INP_LOWPORT) {
cred = kauth_cred_proc_ref(p);
error = priv_check_cred(cred,
PRIV_NETINET_RESERVEDPORT, 0);
kauth_cred_unref(&cred);
if (error != 0) {
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
goto done;
}
first = (u_short)ipport_lowfirstauto; /* 1023 */
last = (u_short)ipport_lowlastauto; /* 600 */
lastport = &pcbinfo->ipi_lastlow;
} else {
first = (u_short)ipport_firstauto; /* sysctl */
last = (u_short)ipport_lastauto;
lastport = &pcbinfo->ipi_lastport;
}
/* No point in randomizing if only one port is available */
if (first == last) {
randomport = 0;
}
/*
* Simple check to ensure all ports are not used up causing
* a deadlock here.
*
* We split the two cases (up and down) so that the direction
* is not being tested on each round of the loop.
*/
if (first > last) {
struct in_addr lookup_addr;
/*
* counting down
*/
if (randomport) {
read_frandom(&rand_port, sizeof(rand_port));
*lastport =
first - (rand_port % (first - last));
}
count = first - last;
lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr :
inp->inp_laddr;
found = false;
do {
if (count-- < 0) { /* completely used? */
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
}
--*lastport;
if (*lastport > first || *lastport < last) {
*lastport = first;
}
lport = htons(*lastport);
/*
* Skip if this is a restricted port as we do not want to
* restricted ports as ephemeral
*/
if (IS_RESTRICTED_IN_PORT(lport)) {
continue;
}
found = in_pcblookup_local_and_cleanup(pcbinfo,
lookup_addr, lport, wild) == NULL;
#if SKYWALK
if (found &&
(SOCK_PROTO(so) == IPPROTO_TCP ||
SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
int res_err;
if (inp->inp_vflag & INP_IPV6) {
res_err = netns_reserve_in6(
&inp->inp_netns_token,
inp->in6p_laddr,
(uint8_t)SOCK_PROTO(so), lport,
NETNS_BSD, NULL);
} else {
res_err = netns_reserve_in(
&inp->inp_netns_token,
lookup_addr, (uint8_t)SOCK_PROTO(so),
lport, NETNS_BSD, NULL);
}
found = res_err == 0;
}
#endif /* SKYWALK */
} while (!found);
} else {
struct in_addr lookup_addr;
/*
* counting up
*/
if (randomport) {
read_frandom(&rand_port, sizeof(rand_port));
*lastport =
first + (rand_port % (first - last));
}
count = last - first;
lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr :
inp->inp_laddr;
found = false;
do {
if (count-- < 0) { /* completely used? */
lck_rw_done(&pcbinfo->ipi_lock);
socket_lock(so, 0);
error = EADDRNOTAVAIL;
goto done;
}
++*lastport;
if (*lastport < first || *lastport > last) {
*lastport = first;
}
lport = htons(*lastport);
/*
* Skip if this is a restricted port as we do not want to
* restricted ports as ephemeral
*/
if (IS_RESTRICTED_IN_PORT(lport)) {
continue;
}
found = in_pcblookup_local_and_cleanup(pcbinfo,
lookup_addr, lport, wild) == NULL;
#if SKYWALK
if (found &&
(SOCK_PROTO(so) == IPPROTO_TCP ||
SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
int res_err;
if (inp->inp_vflag & INP_IPV6) {
res_err = netns_reserve_in6(
&inp->inp_netns_token,
inp->in6p_laddr,
(uint8_t)SOCK_PROTO(so), lport,
NETNS_BSD, NULL);
} else {
res_err = netns_reserve_in(
&inp->inp_netns_token,
lookup_addr, (uint8_t)SOCK_PROTO(so),
lport, NETNS_BSD, NULL);
}
found = res_err == 0;
}
#endif /* SKYWALK */
} while (!found);
}
}
socket_lock(so, 0);
/*
* We unlocked socket's protocol lock for a long time.
* The socket might have been dropped/defuncted.
* Checking if world has changed since.
*/
if (inp->inp_state == INPCB_STATE_DEAD) {
#if SKYWALK
netns_release(&inp->inp_netns_token);
#endif /* SKYWALK */
lck_rw_done(&pcbinfo->ipi_lock);
error = ECONNABORTED;
goto done;
}
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) {
#if SKYWALK
netns_release(&inp->inp_netns_token);
#endif /* SKYWALK */
lck_rw_done(&pcbinfo->ipi_lock);
error = EINVAL;
goto done;
}
if (laddr.s_addr != INADDR_ANY) {
inp->inp_laddr = laddr;
inp->inp_last_outifp = outif;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token, outif);
}
#endif /* SKYWALK */
}
inp->inp_lport = lport;
if (anonport) {
inp->inp_flags |= INP_ANONPORT;
}
if (in_pcbinshash(inp, 1) != 0) {
inp->inp_laddr.s_addr = INADDR_ANY;
inp->inp_last_outifp = NULL;
#if SKYWALK
netns_release(&inp->inp_netns_token);
#endif /* SKYWALK */
inp->inp_lport = 0;
if (anonport) {
inp->inp_flags &= ~INP_ANONPORT;
}
lck_rw_done(&pcbinfo->ipi_lock);
error = EAGAIN;
goto done;
}
lck_rw_done(&pcbinfo->ipi_lock);
sflt_notify(so, sock_evt_bound, NULL);
in_pcb_check_management_entitled(inp);
done:
inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS;
return error;
}
#define APN_FALLBACK_IP_FILTER(a) \
(IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \
IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \
IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \
IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \
IN_PRIVATE(ntohl((a)->sin_addr.s_addr)))
#define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */
static uint64_t last_apn_fallback = 0;
static boolean_t
apn_fallback_required(proc_t proc, struct socket *so, struct sockaddr_in *p_dstv4)
{
uint64_t timenow;
struct sockaddr_storage lookup_default_addr;
struct rtentry *rt = NULL;
VERIFY(proc != NULL);
if (apn_fallbk_enabled == FALSE) {
return FALSE;
}
if (proc == kernproc) {
return FALSE;
}
if (so && (so->so_options & SO_NOAPNFALLBK)) {
return FALSE;
}
timenow = net_uptime();
if ((timenow - last_apn_fallback) < APN_FALLBACK_NOTIF_INTERVAL) {
apn_fallbk_log((LOG_INFO, "APN fallback notification throttled.\n"));
return FALSE;
}
if (p_dstv4 && APN_FALLBACK_IP_FILTER(p_dstv4)) {
return FALSE;
}
/* Check if we have unscoped IPv6 default route through cellular */
bzero(&lookup_default_addr, sizeof(lookup_default_addr));
lookup_default_addr.ss_family = AF_INET6;
lookup_default_addr.ss_len = sizeof(struct sockaddr_in6);
rt = rtalloc1(SA(&lookup_default_addr), 0, 0);
if (NULL == rt) {
apn_fallbk_log((LOG_INFO, "APN fallback notification could not find "
"unscoped default IPv6 route.\n"));
return FALSE;
}
if (!IFNET_IS_CELLULAR(rt->rt_ifp)) {
rtfree(rt);
apn_fallbk_log((LOG_INFO, "APN fallback notification could not find "
"unscoped default IPv6 route through cellular interface.\n"));
return FALSE;
}
/*
* We have a default IPv6 route, ensure that
* we do not have IPv4 default route before triggering
* the event
*/
rtfree(rt);
rt = NULL;
bzero(&lookup_default_addr, sizeof(lookup_default_addr));
lookup_default_addr.ss_family = AF_INET;
lookup_default_addr.ss_len = sizeof(struct sockaddr_in);
rt = rtalloc1(SA(&lookup_default_addr), 0, 0);
if (rt) {
rtfree(rt);
rt = NULL;
apn_fallbk_log((LOG_INFO, "APN fallback notification found unscoped "
"IPv4 default route!\n"));
return FALSE;
}
{
/*
* We disable APN fallback if the binary is not a third-party app.
* Note that platform daemons use their process name as a
* bundle ID so we filter out bundle IDs without dots.
*/
const char *bundle_id = cs_identity_get(proc);
if (bundle_id == NULL ||
bundle_id[0] == '\0' ||
strchr(bundle_id, '.') == NULL ||
strncmp(bundle_id, "com.apple.", sizeof("com.apple.") - 1) == 0) {
apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found first-"
"party bundle ID \"%s\"!\n", (bundle_id ? bundle_id : "NULL")));
return FALSE;
}
}
{
/*
* The Apple App Store IPv6 requirement started on
* June 1st, 2016 at 12:00:00 AM PDT.
* We disable APN fallback if the binary is more recent than that.
* We check both atime and birthtime since birthtime is not always supported.
*/
static const long ipv6_start_date = 1464764400L;
vfs_context_t context;
struct stat64 sb;
int vn_stat_error;
bzero(&sb, sizeof(struct stat64));
context = vfs_context_create(NULL);
vn_stat_error = vn_stat(proc->p_textvp, &sb, NULL, 1, 0, context);
(void)vfs_context_rele(context);
if (vn_stat_error != 0 ||
sb.st_atimespec.tv_sec >= ipv6_start_date ||
sb.st_birthtimespec.tv_sec >= ipv6_start_date) {
apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found binary "
"too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n",
vn_stat_error, sb.st_atimespec.tv_sec, sb.st_mtimespec.tv_sec,
sb.st_ctimespec.tv_sec, sb.st_birthtimespec.tv_sec));
return FALSE;
}
}
return TRUE;
}
static void
apn_fallback_trigger(proc_t proc, struct socket *so)
{
pid_t pid = 0;
struct kev_msg ev_msg;
struct kev_netevent_apnfallbk_data apnfallbk_data;
last_apn_fallback = net_uptime();
pid = proc_pid(proc);
uuid_t application_uuid;
uuid_clear(application_uuid);
proc_getexecutableuuid(proc, application_uuid,
sizeof(application_uuid));
bzero(&ev_msg, sizeof(struct kev_msg));
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS;
ev_msg.event_code = KEV_NETEVENT_APNFALLBACK;
bzero(&apnfallbk_data, sizeof(apnfallbk_data));
if (so->so_flags & SOF_DELEGATED) {
apnfallbk_data.epid = so->e_pid;
uuid_copy(apnfallbk_data.euuid, so->e_uuid);
} else {
apnfallbk_data.epid = so->last_pid;
uuid_copy(apnfallbk_data.euuid, so->last_uuid);
}
ev_msg.dv[0].data_ptr = &apnfallbk_data;
ev_msg.dv[0].data_length = sizeof(apnfallbk_data);
kev_post_msg(&ev_msg);
apn_fallbk_log((LOG_INFO, "APN fallback notification issued.\n"));
}
/*
* Transform old in_pcbconnect() into an inner subroutine for new
* in_pcbconnect(); do some validity-checking on the remote address
* (in "nam") and then determine local host address (i.e., which
* interface) to use to access that remote host.
*
* This routine may alter the caller-supplied remote address "nam".
*
* The caller may override the bound-to-interface setting of the socket
* by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
*
* This routine might return an ifp with a reference held if the caller
* provides a non-NULL outif, even in the error case. The caller is
* responsible for releasing its reference.
*
* Returns: 0 Success
* EINVAL Invalid argument
* EAFNOSUPPORT Address family not supported
* EADDRNOTAVAIL Address not available
*/
int
in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in_addr *laddr,
unsigned int ifscope, struct ifnet **outif, int raw)
{
struct route *ro = &inp->inp_route;
struct in_ifaddr *ia = NULL;
struct sockaddr_in sin;
int error = 0;
boolean_t restricted = FALSE;
if (outif != NULL) {
*outif = NULL;
}
if (nam->sa_len != sizeof(struct sockaddr_in)) {
return EINVAL;
}
if (SIN(nam)->sin_family != AF_INET) {
return EAFNOSUPPORT;
}
if (raw == 0 && SIN(nam)->sin_port == 0) {
return EADDRNOTAVAIL;
}
in_pcb_check_management_entitled(inp);
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (raw == 0 && (SIN(nam)->sin_addr.s_addr == INADDR_ANY ||
SIN(nam)->sin_addr.s_addr == (u_int32_t)INADDR_BROADCAST)) {
lck_rw_lock_shared(&in_ifaddr_rwlock);
if (!TAILQ_EMPTY(&in_ifaddrhead)) {
ia = TAILQ_FIRST(&in_ifaddrhead);
IFA_LOCK_SPIN(&ia->ia_ifa);
if (SIN(nam)->sin_addr.s_addr == INADDR_ANY) {
SIN(nam)->sin_addr = IA_SIN(ia)->sin_addr;
} else if (ia->ia_ifp->if_flags & IFF_BROADCAST) {
SIN(nam)->sin_addr =
SIN(&ia->ia_broadaddr)->sin_addr;
}
IFA_UNLOCK(&ia->ia_ifa);
ia = NULL;
}
lck_rw_done(&in_ifaddr_rwlock);
}
/*
* Otherwise, if the socket has already bound the source, just use it.
*/
if (inp->inp_laddr.s_addr != INADDR_ANY) {
VERIFY(ia == NULL);
*laddr = inp->inp_laddr;
return 0;
}
/*
* If the ifscope is specified by the caller (e.g. IP_PKTINFO)
* then it overrides the sticky ifscope set for the socket.
*/
if (ifscope == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) {
ifscope = inp->inp_boundifp->if_index;
}
/*
* If route is known or can be allocated now,
* our src addr is taken from the i/f, else punt.
* Note that we should check the address family of the cached
* destination, in case of sharing the cache with IPv6.
*/
if (ro->ro_rt != NULL) {
RT_LOCK_SPIN(ro->ro_rt);
}
if (ROUTE_UNUSABLE(ro) || ro->ro_dst.sa_family != AF_INET ||
SIN(&ro->ro_dst)->sin_addr.s_addr != SIN(nam)->sin_addr.s_addr ||
(inp->inp_socket->so_options & SO_DONTROUTE)) {
if (ro->ro_rt != NULL) {
RT_UNLOCK(ro->ro_rt);
}
ROUTE_RELEASE(ro);
}
if (!(inp->inp_socket->so_options & SO_DONTROUTE) &&
(ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) {
if (ro->ro_rt != NULL) {
RT_UNLOCK(ro->ro_rt);
}
ROUTE_RELEASE(ro);
/* No route yet, so try to acquire one */
SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in));
ro->ro_dst.sa_family = AF_INET;
ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
SIN(&ro->ro_dst)->sin_addr = SIN(nam)->sin_addr;
rtalloc_scoped(ro, ifscope);
if (ro->ro_rt != NULL) {
RT_LOCK_SPIN(ro->ro_rt);
}
}
/* Sanitized local copy for interface address searches */
SOCKADDR_ZERO(&sin, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(struct sockaddr_in);
sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
/*
* If we did not find (or use) a route, assume dest is reachable
* on a directly connected network and try to find a corresponding
* interface to take the source address from.
*/
if (ro->ro_rt == NULL) {
proc_t proc = current_proc();
VERIFY(ia == NULL);
ia = ifatoia(ifa_ifwithdstaddr(SA(&sin)));
if (ia == NULL) {
ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope));
}
error = ((ia == NULL) ? ENETUNREACH : 0);
if (apn_fallback_required(proc, inp->inp_socket,
(void *)nam)) {
apn_fallback_trigger(proc, inp->inp_socket);
}
goto done;
}
RT_LOCK_ASSERT_HELD(ro->ro_rt);
/*
* If the outgoing interface on the route found is not
* a loopback interface, use the address from that interface.
*/
if (!(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
VERIFY(ia == NULL);
/*
* If the route points to a cellular interface and the
* caller forbids our using interfaces of such type,
* pretend that there is no route.
* Apply the same logic for expensive interfaces.
*/
if (inp_restricted_send(inp, ro->ro_rt->rt_ifp)) {
RT_UNLOCK(ro->ro_rt);
ROUTE_RELEASE(ro);
error = EHOSTUNREACH;
restricted = TRUE;
} else {
/* Become a regular mutex */
RT_CONVERT_LOCK(ro->ro_rt);
ia = ifatoia(ro->ro_rt->rt_ifa);
ifa_addref(&ia->ia_ifa);
/*
* Mark the control block for notification of
* a possible flow that might undergo clat46
* translation.
*
* We defer the decision to a later point when
* inpcb is being disposed off.
* The reason is that we only want to send notification
* if the flow was ever used to send data.
*/
if (IS_INTF_CLAT46(ro->ro_rt->rt_ifp)) {
inp->inp_flags2 |= INP2_CLAT46_FLOW;
}
RT_UNLOCK(ro->ro_rt);
error = 0;
}
goto done;
}
VERIFY(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK);
RT_UNLOCK(ro->ro_rt);
/*
* The outgoing interface is marked with 'loopback net', so a route
* to ourselves is here.
* Try to find the interface of the destination address and then
* take the address from there. That interface is not necessarily
* a loopback interface.
*/
VERIFY(ia == NULL);
ia = ifatoia(ifa_ifwithdstaddr(SA(&sin)));
if (ia == NULL) {
ia = ifatoia(ifa_ifwithaddr_scoped(SA(&sin), ifscope));
}
if (ia == NULL) {
ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope));
}
if (ia == NULL) {
RT_LOCK(ro->ro_rt);
ia = ifatoia(ro->ro_rt->rt_ifa);
if (ia != NULL) {
ifa_addref(&ia->ia_ifa);
}
RT_UNLOCK(ro->ro_rt);
}
error = ((ia == NULL) ? ENETUNREACH : 0);
done:
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) &&
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
IMO_LOCK(imo);
if (imo->imo_multicast_ifp != NULL && (ia == NULL ||
ia->ia_ifp != imo->imo_multicast_ifp)) {
ifp = imo->imo_multicast_ifp;
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
lck_rw_lock_shared(&in_ifaddr_rwlock);
TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
if (ia->ia_ifp == ifp) {
break;
}
}
if (ia != NULL) {
ifa_addref(&ia->ia_ifa);
}
lck_rw_done(&in_ifaddr_rwlock);
if (ia == NULL) {
error = EADDRNOTAVAIL;
} else {
error = 0;
}
}
IMO_UNLOCK(imo);
}
/*
* Don't do pcblookup call here; return interface in laddr
* and exit to caller, that will do the lookup.
*/
if (ia != NULL) {
/*
* If the source address belongs to a cellular interface
* and the socket forbids our using interfaces of such
* type, pretend that there is no source address.
* Apply the same logic for expensive interfaces.
*/
IFA_LOCK_SPIN(&ia->ia_ifa);
if (inp_restricted_send(inp, ia->ia_ifa.ifa_ifp)) {
IFA_UNLOCK(&ia->ia_ifa);
error = EHOSTUNREACH;
restricted = TRUE;
} else if (error == 0) {
*laddr = ia->ia_addr.sin_addr;
if (outif != NULL) {
struct ifnet *ifp;
if (ro->ro_rt != NULL) {
ifp = ro->ro_rt->rt_ifp;
} else {
ifp = ia->ia_ifp;
}
VERIFY(ifp != NULL);
IFA_CONVERT_LOCK(&ia->ia_ifa);
ifnet_reference(ifp); /* for caller */
if (*outif != NULL) {
ifnet_release(*outif);
}
*outif = ifp;
}
IFA_UNLOCK(&ia->ia_ifa);
} else {
IFA_UNLOCK(&ia->ia_ifa);
}
ifa_remref(&ia->ia_ifa);
ia = NULL;
}
if (restricted && error == EHOSTUNREACH) {
soevent(inp->inp_socket, (SO_FILT_HINT_LOCKED |
SO_FILT_HINT_IFDENIED));
}
return error;
}
/*
* Outer subroutine:
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*
* The caller may override the bound-to-interface setting of the socket
* by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
*/
int
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p,
unsigned int ifscope, struct ifnet **outif)
{
struct in_addr laddr;
struct sockaddr_in *sin = SIN(nam);
struct inpcb *pcb;
int error;
struct socket *so = inp->inp_socket;
#if CONTENT_FILTER
if (so) {
so->so_state_change_cnt++;
}
#endif
/*
* Call inner routine, to assign local interface address.
*/
if ((error = in_pcbladdr(inp, nam, &laddr, ifscope, outif, 0)) != 0) {
return error;
}
socket_unlock(so, 0);
pcb = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port,
inp->inp_laddr.s_addr ? inp->inp_laddr : laddr,
inp->inp_lport, 0, NULL);
socket_lock(so, 0);
/*
* Check if the socket is still in a valid state. When we unlock this
* embryonic socket, it can get aborted if another thread is closing
* the listener (radar 7947600).
*/
if ((so->so_flags & SOF_ABORTED) != 0) {
return ECONNREFUSED;
}
if (pcb != NULL) {
in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0);
return EADDRINUSE;
}
if (inp->inp_laddr.s_addr == INADDR_ANY) {
if (inp->inp_lport == 0) {
error = in_pcbbind(inp, NULL, p);
if (error) {
return error;
}
}
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/*
* Lock inversion issue, mostly with udp
* multicast packets.
*/
socket_unlock(so, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(so, 0);
}
inp->inp_laddr = laddr;
/* no reference needed */
inp->inp_last_outifp = (outif != NULL) ? *outif : NULL;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token,
inp->inp_last_outifp);
}
#endif /* SKYWALK */
inp->inp_flags |= INP_INADDR_ANY;
} else {
/*
* Usage of IP_PKTINFO, without local port already
* speficified will cause kernel to panic,
* see rdar://problem/18508185.
* For now returning error to avoid a kernel panic
* This routines can be refactored and handle this better
* in future.
*/
if (inp->inp_lport == 0) {
return EINVAL;
}
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/*
* Lock inversion issue, mostly with udp
* multicast packets.
*/
socket_unlock(so, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(so, 0);
}
}
inp->inp_faddr = sin->sin_addr;
inp->inp_fport = sin->sin_port;
if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
nstat_pcb_invalidate_cache(inp);
}
in_pcbrehash(inp);
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
return 0;
}
void
in_pcbdisconnect(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
nstat_pcb_cache(inp);
}
inp->inp_faddr.s_addr = INADDR_ANY;
inp->inp_fport = 0;
#if CONTENT_FILTER
if (so) {
so->so_state_change_cnt++;
}
#endif
if (!lck_rw_try_lock_exclusive(&inp->inp_pcbinfo->ipi_lock)) {
/* lock inversion issue, mostly with udp multicast packets */
socket_unlock(so, 0);
lck_rw_lock_exclusive(&inp->inp_pcbinfo->ipi_lock);
socket_lock(so, 0);
}
in_pcbrehash(inp);
lck_rw_done(&inp->inp_pcbinfo->ipi_lock);
/*
* A multipath subflow socket would have its SS_NOFDREF set by default,
* so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
* when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
*/
if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) {
in_pcbdetach(inp);
}
}
void
in_pcbdetach(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
if (so->so_pcb == NULL) {
/* PCB has been disposed */
panic("%s: inp=%p so=%p proto=%d so_pcb is null!", __func__,
inp, so, SOCK_PROTO(so));
/* NOTREACHED */
}
#if IPSEC
if (inp->inp_sp != NULL) {
(void) ipsec4_delete_pcbpolicy(inp);
}
#endif /* IPSEC */
if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) {
if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) {
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_no_data);
}
}
/*
* Let NetworkStatistics know this PCB is going away
* before we detach it.
*/
if (nstat_collect &&
(SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) {
nstat_pcb_detach(inp);
}
/* Free memory buffer held for generating keep alives */
if (inp->inp_keepalive_data != NULL) {
kfree_data(inp->inp_keepalive_data, inp->inp_keepalive_datalen);
inp->inp_keepalive_data = NULL;
}
/* mark socket state as dead */
if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) {
panic("%s: so=%p proto=%d couldn't set to STOPUSING",
__func__, so, SOCK_PROTO(so));
/* NOTREACHED */
}
#if SKYWALK
/* Free up the port in the namespace registrar if not in TIME_WAIT */
if (!(inp->inp_flags2 & INP2_TIMEWAIT)) {
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
}
#endif /* SKYWALK */
if (!(so->so_flags & SOF_PCBCLEARING)) {
struct ip_moptions *imo;
inp->inp_vflag = 0;
if (inp->inp_options != NULL) {
(void) m_free(inp->inp_options);
inp->inp_options = NULL;
}
ROUTE_RELEASE(&inp->inp_route);
imo = inp->inp_moptions;
if (imo != NULL) {
IMO_REMREF(imo);
}
inp->inp_moptions = NULL;
sofreelastref(so, 0);
inp->inp_state = INPCB_STATE_DEAD;
/*
* Enqueue an event to send kernel event notification
* if the flow has to CLAT46 for data packets
*/
if (inp->inp_flags2 & INP2_CLAT46_FLOW) {
/*
* If there has been any exchange of data bytes
* over this flow.
* Schedule a notification to report that flow is
* using client side translation.
*/
if (inp->inp_stat != NULL &&
(inp->inp_stat->txbytes != 0 ||
inp->inp_stat->rxbytes != 0)) {
if (so->so_flags & SOF_DELEGATED) {
in6_clat46_event_enqueue_nwk_wq_entry(
IN6_CLAT46_EVENT_V4_FLOW,
so->e_pid,
so->e_uuid);
} else {
in6_clat46_event_enqueue_nwk_wq_entry(
IN6_CLAT46_EVENT_V4_FLOW,
so->last_pid,
so->last_uuid);
}
}
}
/* makes sure we're not called twice from so_close */
so->so_flags |= SOF_PCBCLEARING;
inpcb_gc_sched(inp->inp_pcbinfo, INPCB_TIMER_FAST);
}
}
void
in_pcbdispose(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
struct inpcbinfo *ipi = inp->inp_pcbinfo;
if (so != NULL && so->so_usecount != 0) {
panic("%s: so %p [%d,%d] usecount %d lockhistory %s",
__func__, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount,
solockhistory_nr(so));
/* NOTREACHED */
} else if (inp->inp_wantcnt != WNT_STOPUSING) {
if (so != NULL) {
panic_plain("%s: inp %p invalid wantcnt %d, so %p "
"[%d,%d] usecount %d retaincnt %d state 0x%x "
"flags 0x%x lockhistory %s\n", __func__, inp,
inp->inp_wantcnt, so, SOCK_DOM(so), SOCK_TYPE(so),
so->so_usecount, so->so_retaincnt, so->so_state,
so->so_flags, solockhistory_nr(so));
/* NOTREACHED */
} else {
panic("%s: inp %p invalid wantcnt %d no socket",
__func__, inp, inp->inp_wantcnt);
/* NOTREACHED */
}
}
LCK_RW_ASSERT(&ipi->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE);
inp->inp_gencnt = ++ipi->ipi_gencnt;
/* access ipi in in_pcbremlists */
in_pcbremlists(inp);
if (so != NULL) {
if (so->so_proto->pr_flags & PR_PCBLOCK) {
sofreelastref(so, 0);
if (so->so_rcv.sb_cc > 0 || so->so_snd.sb_cc > 0) {
/*
* selthreadclear() already called
* during sofreelastref() above.
*/
sbrelease(&so->so_rcv);
sbrelease(&so->so_snd);
}
if (so->so_head != NULL) {
panic("%s: so=%p head still exist",
__func__, so);
/* NOTREACHED */
}
lck_mtx_unlock(&inp->inpcb_mtx);
#if NECP
necp_inpcb_remove_cb(inp);
#endif /* NECP */
lck_mtx_destroy(&inp->inpcb_mtx, ipi->ipi_lock_grp);
}
/* makes sure we're not called twice from so_close */
so->so_flags |= SOF_PCBCLEARING;
so->so_saved_pcb = (caddr_t)inp;
so->so_pcb = NULL;
inp->inp_socket = NULL;
#if NECP
necp_inpcb_dispose(inp);
#endif /* NECP */
/*
* In case there a route cached after a detach (possible
* in the tcp case), make sure that it is freed before
* we deallocate the structure.
*/
ROUTE_RELEASE(&inp->inp_route);
if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) {
zfree(ipi->ipi_zone, inp);
}
sodealloc(so);
}
}
/*
* The calling convention of in_getsockaddr() and in_getpeeraddr() was
* modified to match the pru_sockaddr() and pru_peeraddr() entry points
* in struct pr_usrreqs, so that protocols can just reference then directly
* without the need for a wrapper function.
*/
int
in_getsockaddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct sockaddr_in *sin;
/*
* Do the malloc first in case it blocks.
*/
sin = SIN(alloc_sockaddr(sizeof(*sin),
Z_WAITOK | Z_NOFAIL));
sin->sin_family = AF_INET;
if ((inp = sotoinpcb(so)) == NULL) {
free_sockaddr(sin);
return EINVAL;
}
sin->sin_port = inp->inp_lport;
sin->sin_addr = inp->inp_laddr;
*nam = SA(sin);
return 0;
}
int
in_getsockaddr_s(struct socket *so, struct sockaddr_in *ss)
{
struct sockaddr_in *sin = ss;
struct inpcb *inp;
VERIFY(ss != NULL);
SOCKADDR_ZERO(ss, sizeof(*ss));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
if ((inp = sotoinpcb(so)) == NULL) {
return EINVAL;
}
sin->sin_port = inp->inp_lport;
sin->sin_addr = inp->inp_laddr;
return 0;
}
int
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
{
struct inpcb *inp;
struct sockaddr_in *sin;
/*
* Do the malloc first in case it blocks.
*/
sin = SIN(alloc_sockaddr(sizeof(*sin),
Z_WAITOK | Z_NOFAIL));
sin->sin_family = AF_INET;
if ((inp = sotoinpcb(so)) == NULL) {
free_sockaddr(sin);
return EINVAL;
}
sin->sin_port = inp->inp_fport;
sin->sin_addr = inp->inp_faddr;
*nam = SA(sin);
return 0;
}
void
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr,
int errno, void (*notify)(struct inpcb *, int))
{
struct inpcb *inp;
lck_rw_lock_shared(&pcbinfo->ipi_lock);
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp->inp_faddr.s_addr != faddr.s_addr ||
inp->inp_socket == NULL) {
continue;
}
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
socket_lock(inp->inp_socket, 1);
(*notify)(inp, errno);
(void) in_pcb_checkstate(inp, WNT_RELEASE, 1);
socket_unlock(inp->inp_socket, 1);
}
lck_rw_done(&pcbinfo->ipi_lock);
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in_losing(struct inpcb *inp)
{
boolean_t release = FALSE;
struct rtentry *rt;
if ((rt = inp->inp_route.ro_rt) != NULL) {
struct in_ifaddr *ia = NULL;
RT_LOCK(rt);
if (rt->rt_flags & RTF_DYNAMIC) {
/*
* Prevent another thread from modifying rt_key,
* rt_gateway via rt_setgate() after rt_lock is
* dropped by marking the route as defunct.
*/
rt->rt_flags |= RTF_CONDEMNED;
RT_UNLOCK(rt);
(void) rtrequest(RTM_DELETE, rt_key(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
} else {
RT_UNLOCK(rt);
}
/* if the address is gone keep the old route in the pcb */
if (inp->inp_laddr.s_addr != INADDR_ANY &&
(ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) {
/*
* Address is around; ditch the route. A new route
* can be allocated the next time output is attempted.
*/
release = TRUE;
}
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
}
if (rt == NULL || release) {
ROUTE_RELEASE(&inp->inp_route);
}
}
/*
* After a routing change, flush old routing
* and allocate a (hopefully) better one.
*/
void
in_rtchange(struct inpcb *inp, int errno)
{
#pragma unused(errno)
boolean_t release = FALSE;
struct rtentry *rt;
if ((rt = inp->inp_route.ro_rt) != NULL) {
struct in_ifaddr *ia = NULL;
/* if address is gone, keep the old route */
if (inp->inp_laddr.s_addr != INADDR_ANY &&
(ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) {
/*
* Address is around; ditch the route. A new route
* can be allocated the next time output is attempted.
*/
release = TRUE;
}
if (ia != NULL) {
ifa_remref(&ia->ia_ifa);
}
}
if (rt == NULL || release) {
ROUTE_RELEASE(&inp->inp_route);
}
}
/*
* Lookup a PCB based on the local address and port.
*/
struct inpcb *
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
unsigned int lport_arg, int wild_okay)
{
struct inpcb *inp;
int matchwild = 3, wildcard;
u_short lport = (u_short)lport_arg;
KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0, 0, 0, 0, 0);
if (!wild_okay) {
struct inpcbhead *head;
/*
* Look for an unconnected (wildcard foreign addr) PCB that
* matches the local address and port we're looking for.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_lport == lport) {
/*
* Found.
*/
return inp;
}
}
/*
* Not found.
*/
KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0, 0, 0, 0, 0);
return NULL;
} else {
struct inpcbporthead *porthash;
struct inpcbport *phd;
struct inpcb *match = NULL;
/*
* Best fit PCB lookup.
*
* First see if this local port is in use by looking on the
* port hash list.
*/
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
pcbinfo->ipi_porthashmask)];
LIST_FOREACH(phd, porthash, phd_hash) {
if (phd->phd_port == lport) {
break;
}
}
if (phd != NULL) {
/*
* Port is in use by one or more PCBs. Look for best
* fit.
*/
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
wildcard = 0;
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp->inp_faddr.s_addr != INADDR_ANY) {
wildcard++;
}
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (laddr.s_addr == INADDR_ANY) {
wildcard++;
} else if (inp->inp_laddr.s_addr !=
laddr.s_addr) {
continue;
}
} else {
if (laddr.s_addr != INADDR_ANY) {
wildcard++;
}
}
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0) {
break;
}
}
}
}
KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match,
0, 0, 0, 0);
return match;
}
}
/*
* Check if PCB exists in hash list.
*/
int
in_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
uid_t *uid, gid_t *gid, struct ifnet *ifp)
{
struct inpcbhead *head;
struct inpcb *inp;
u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg;
int found = 0;
struct inpcb *local_wild = NULL;
struct inpcb *local_wild_mapped = NULL;
*uid = UID_MAX;
*gid = GID_MAX;
/*
* We may have found the pcb in the last lookup - check this first.
*/
lck_rw_lock_shared(&pcbinfo->ipi_lock);
/*
* First look for an exact match.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
if ((found = (inp->inp_socket != NULL))) {
/*
* Found.
*/
*uid = kauth_cred_getuid(
inp->inp_socket->so_cred);
*gid = kauth_cred_getgid(
inp->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
}
}
if (!wildcard) {
/*
* Not found.
*/
lck_rw_done(&pcbinfo->ipi_lock);
return 0;
}
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_lport == lport) {
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if ((found = (inp->inp_socket != NULL))) {
*uid = kauth_cred_getuid(
inp->inp_socket->so_cred);
*gid = kauth_cred_getgid(
inp->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
if (inp->inp_socket &&
SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) {
local_wild_mapped = inp;
} else {
local_wild = inp;
}
}
}
}
if (local_wild == NULL) {
if (local_wild_mapped != NULL) {
if ((found = (local_wild_mapped->inp_socket != NULL))) {
*uid = kauth_cred_getuid(
local_wild_mapped->inp_socket->so_cred);
*gid = kauth_cred_getgid(
local_wild_mapped->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
}
lck_rw_done(&pcbinfo->ipi_lock);
return 0;
}
if ((found = (local_wild->inp_socket != NULL))) {
*uid = kauth_cred_getuid(
local_wild->inp_socket->so_cred);
*gid = kauth_cred_getgid(
local_wild->inp_socket->so_cred);
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
}
/*
* Lookup PCB in hash list.
*/
struct inpcb *
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
struct ifnet *ifp)
{
struct inpcbhead *head;
struct inpcb *inp;
u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg;
struct inpcb *local_wild = NULL;
struct inpcb *local_wild_mapped = NULL;
/*
* We may have found the pcb in the last lookup - check this first.
*/
lck_rw_lock_shared(&pcbinfo->ipi_lock);
/*
* First look for an exact match.
*/
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (inp->inp_faddr.s_addr == faddr.s_addr &&
inp->inp_laddr.s_addr == laddr.s_addr &&
inp->inp_fport == fport &&
inp->inp_lport == lport) {
/*
* Found.
*/
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return inp;
} else {
/* it's there but dead, say it isn't found */
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
}
}
if (!wildcard) {
/*
* Not found.
*/
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
pcbinfo->ipi_hashmask)];
LIST_FOREACH(inp, head, inp_hash) {
if (!(inp->inp_vflag & INP_IPV4)) {
continue;
}
if (inp_restricted_recv(inp, ifp)) {
continue;
}
#if NECP
if (!necp_socket_is_allowed_to_recv_on_interface(inp, ifp)) {
continue;
}
#endif /* NECP */
if (inp->inp_faddr.s_addr == INADDR_ANY &&
inp->inp_lport == lport) {
if (inp->inp_laddr.s_addr == laddr.s_addr) {
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return inp;
} else {
/* it's dead; say it isn't found */
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
if (SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) {
local_wild_mapped = inp;
} else {
local_wild = inp;
}
}
}
}
if (local_wild == NULL) {
if (local_wild_mapped != NULL) {
if (in_pcb_checkstate(local_wild_mapped,
WNT_ACQUIRE, 0) != WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return local_wild_mapped;
} else {
/* it's dead; say it isn't found */
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
}
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
if (in_pcb_checkstate(local_wild, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
lck_rw_done(&pcbinfo->ipi_lock);
return local_wild;
}
/*
* It's either not found or is already dead.
*/
lck_rw_done(&pcbinfo->ipi_lock);
return NULL;
}
/*
* @brief Insert PCB onto various hash lists.
*
* @param inp Pointer to internet protocol control block
* @param locked Implies if ipi_lock (protecting pcb list)
* is already locked or not.
*
* @return int error on failure and 0 on success
*/
int
in_pcbinshash(struct inpcb *inp, int locked)
{
struct inpcbhead *pcbhash;
struct inpcbporthead *pcbporthash;
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbport *phd;
u_int32_t hashkey_faddr;
if (!locked) {
if (!lck_rw_try_lock_exclusive(&pcbinfo->ipi_lock)) {
/*
* Lock inversion issue, mostly with udp
* multicast packets
*/
socket_unlock(inp->inp_socket, 0);
lck_rw_lock_exclusive(&pcbinfo->ipi_lock);
socket_lock(inp->inp_socket, 0);
}
}
/*
* This routine or its caller may have given up
* socket's protocol lock briefly.
* During that time the socket may have been dropped.
* Safe-guarding against that.
*/
if (inp->inp_state == INPCB_STATE_DEAD) {
if (!locked) {
lck_rw_done(&pcbinfo->ipi_lock);
}
return ECONNABORTED;
}
if (inp->inp_vflag & INP_IPV6) {
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
} else {
hashkey_faddr = inp->inp_faddr.s_addr;
}
inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport,
inp->inp_fport, pcbinfo->ipi_hashmask);
pcbhash = &pcbinfo->ipi_hashbase[inp->inp_hash_element];
pcbporthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(inp->inp_lport,
pcbinfo->ipi_porthashmask)];
/*
* Go through port list and look for a head for this lport.
*/
LIST_FOREACH(phd, pcbporthash, phd_hash) {
if (phd->phd_port == inp->inp_lport) {
break;
}
}
/*
* If none exists, malloc one and tack it on.
*/
if (phd == NULL) {
phd = kalloc_type(struct inpcbport, Z_WAITOK | Z_NOFAIL);
phd->phd_port = inp->inp_lport;
LIST_INIT(&phd->phd_pcblist);
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
}
VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST));
#if SKYWALK
int err;
struct socket *so = inp->inp_socket;
if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
if (inp->inp_vflag & INP_IPV6) {
err = netns_reserve_in6(&inp->inp_netns_token,
inp->in6p_laddr, (uint8_t)SOCK_PROTO(so), inp->inp_lport,
NETNS_BSD | NETNS_PRERESERVED, NULL);
} else {
err = netns_reserve_in(&inp->inp_netns_token,
inp->inp_laddr, (uint8_t)SOCK_PROTO(so), inp->inp_lport,
NETNS_BSD | NETNS_PRERESERVED, NULL);
}
if (err) {
if (!locked) {
lck_rw_done(&pcbinfo->ipi_lock);
}
return err;
}
netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp);
inp_update_netns_flags(so);
}
#endif /* SKYWALK */
inp->inp_phd = phd;
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
inp->inp_flags2 |= INP2_INHASHLIST;
if (!locked) {
lck_rw_done(&pcbinfo->ipi_lock);
}
#if NECP
// This call catches the original setting of the local address
inp_update_necp_policy(inp, NULL, NULL, 0);
#endif /* NECP */
return 0;
}
/*
* Move PCB to the proper hash bucket when { faddr, fport } have been
* changed. NOTE: This does not handle the case of the lport changing (the
* hashed port list would have to be updated as well), so the lport must
* not change after in_pcbinshash() has been called.
*/
void
in_pcbrehash(struct inpcb *inp)
{
struct inpcbhead *head;
u_int32_t hashkey_faddr;
#if SKYWALK
struct socket *so = inp->inp_socket;
if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) &&
!(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
int err;
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
if (inp->inp_vflag & INP_IPV6) {
err = netns_change_addr_in6(
&inp->inp_netns_token, inp->in6p_laddr);
} else {
err = netns_change_addr_in(
&inp->inp_netns_token, inp->inp_laddr);
}
} else {
if (inp->inp_vflag & INP_IPV6) {
err = netns_reserve_in6(&inp->inp_netns_token,
inp->in6p_laddr, (uint8_t)SOCK_PROTO(so),
inp->inp_lport, NETNS_BSD, NULL);
} else {
err = netns_reserve_in(&inp->inp_netns_token,
inp->inp_laddr, (uint8_t)SOCK_PROTO(so),
inp->inp_lport, NETNS_BSD, NULL);
}
}
/* We are assuming that whatever code paths result in a rehash
* did their due diligence and ensured that the given
* <proto, laddr, lport> tuple was free ahead of time. Just
* reserving the lport on INADDR_ANY should be enough, since
* that will block Skywalk from trying to reserve that same
* port. Given this assumption, the above netns calls should
* never fail*/
VERIFY(err == 0);
netns_set_ifnet(&inp->inp_netns_token, inp->inp_last_outifp);
inp_update_netns_flags(so);
}
#endif /* SKYWALK */
if (inp->inp_vflag & INP_IPV6) {
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
} else {
hashkey_faddr = inp->inp_faddr.s_addr;
}
inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport,
inp->inp_fport, inp->inp_pcbinfo->ipi_hashmask);
head = &inp->inp_pcbinfo->ipi_hashbase[inp->inp_hash_element];
if (inp->inp_flags2 & INP2_INHASHLIST) {
LIST_REMOVE(inp, inp_hash);
inp->inp_flags2 &= ~INP2_INHASHLIST;
}
VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST));
LIST_INSERT_HEAD(head, inp, inp_hash);
inp->inp_flags2 |= INP2_INHASHLIST;
#if NECP
// This call catches updates to the remote addresses
inp_update_necp_policy(inp, NULL, NULL, 0);
#endif /* NECP */
}
/*
* Remove PCB from various lists.
* Must be called pcbinfo lock is held in exclusive mode.
*/
void
in_pcbremlists(struct inpcb *inp)
{
inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt;
/*
* Check if it's in hashlist -- an inp is placed in hashlist when
* it's local port gets assigned. So it should also be present
* in the port list.
*/
if (inp->inp_flags2 & INP2_INHASHLIST) {
struct inpcbport *phd = inp->inp_phd;
VERIFY(phd != NULL && inp->inp_lport > 0);
LIST_REMOVE(inp, inp_hash);
inp->inp_hash.le_next = NULL;
inp->inp_hash.le_prev = NULL;
LIST_REMOVE(inp, inp_portlist);
inp->inp_portlist.le_next = NULL;
inp->inp_portlist.le_prev = NULL;
if (LIST_EMPTY(&phd->phd_pcblist)) {
LIST_REMOVE(phd, phd_hash);
kfree_type(struct inpcbport, phd);
}
inp->inp_phd = NULL;
inp->inp_flags2 &= ~INP2_INHASHLIST;
#if SKYWALK
/* Free up the port in the namespace registrar */
netns_release(&inp->inp_netns_token);
netns_release(&inp->inp_wildcard_netns_token);
#endif /* SKYWALK */
}
VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST));
if (inp->inp_flags2 & INP2_TIMEWAIT) {
/* Remove from time-wait queue */
tcp_remove_from_time_wait(inp);
inp->inp_flags2 &= ~INP2_TIMEWAIT;
VERIFY(inp->inp_pcbinfo->ipi_twcount != 0);
inp->inp_pcbinfo->ipi_twcount--;
} else {
/* Remove from global inp list if it is not time-wait */
LIST_REMOVE(inp, inp_list);
}
if (inp->inp_flags2 & INP2_IN_FCTREE) {
inp_fc_getinp(inp->inp_flowhash, (INPFC_SOLOCKED | INPFC_REMOVE));
VERIFY(!(inp->inp_flags2 & INP2_IN_FCTREE));
}
inp->inp_pcbinfo->ipi_count--;
}
/*
* Mechanism used to defer the memory release of PCBs
* The pcb list will contain the pcb until the reaper can clean it up if
* the following conditions are met:
* 1) state "DEAD",
* 2) wantcnt is STOPUSING
* 3) usecount is 0
* This function will be called to either mark the pcb as
*/
int
in_pcb_checkstate(struct inpcb *pcb, int mode, int locked)
{
volatile UInt32 *wantcnt = (volatile UInt32 *)&pcb->inp_wantcnt;
UInt32 origwant;
UInt32 newwant;
switch (mode) {
case WNT_STOPUSING:
/*
* Try to mark the pcb as ready for recycling. CAS with
* STOPUSING, if success we're good, if it's in use, will
* be marked later
*/
if (locked == 0) {
socket_lock(pcb->inp_socket, 1);
}
pcb->inp_state = INPCB_STATE_DEAD;
stopusing:
if (pcb->inp_socket->so_usecount < 0) {
panic("%s: pcb=%p so=%p usecount is negative",
__func__, pcb, pcb->inp_socket);
/* NOTREACHED */
}
if (locked == 0) {
socket_unlock(pcb->inp_socket, 1);
}
inpcb_gc_sched(pcb->inp_pcbinfo, INPCB_TIMER_FAST);
origwant = *wantcnt;
if ((UInt16) origwant == 0xffff) { /* should stop using */
return WNT_STOPUSING;
}
newwant = 0xffff;
if ((UInt16) origwant == 0) {
/* try to mark it as unsuable now */
OSCompareAndSwap(origwant, newwant, wantcnt);
}
return WNT_STOPUSING;
case WNT_ACQUIRE:
/*
* Try to increase reference to pcb. If WNT_STOPUSING
* should bail out. If socket state DEAD, try to set count
* to STOPUSING, return failed otherwise increase cnt.
*/
do {
origwant = *wantcnt;
if ((UInt16) origwant == 0xffff) {
/* should stop using */
return WNT_STOPUSING;
}
newwant = origwant + 1;
} while (!OSCompareAndSwap(origwant, newwant, wantcnt));
return WNT_ACQUIRE;
case WNT_RELEASE:
/*
* Release reference. If result is null and pcb state
* is DEAD, set wanted bit to STOPUSING
*/
if (locked == 0) {
socket_lock(pcb->inp_socket, 1);
}
do {
origwant = *wantcnt;
if ((UInt16) origwant == 0x0) {
panic("%s: pcb=%p release with zero count",
__func__, pcb);
/* NOTREACHED */
}
if ((UInt16) origwant == 0xffff) {
/* should stop using */
if (locked == 0) {
socket_unlock(pcb->inp_socket, 1);
}
return WNT_STOPUSING;
}
newwant = origwant - 1;
} while (!OSCompareAndSwap(origwant, newwant, wantcnt));
if (pcb->inp_state == INPCB_STATE_DEAD) {
goto stopusing;
}
if (pcb->inp_socket->so_usecount < 0) {
panic("%s: RELEASE pcb=%p so=%p usecount is negative",
__func__, pcb, pcb->inp_socket);
/* NOTREACHED */
}
if (locked == 0) {
socket_unlock(pcb->inp_socket, 1);
}
return WNT_RELEASE;
default:
panic("%s: so=%p not a valid state =%x", __func__,
pcb->inp_socket, mode);
/* NOTREACHED */
}
/* NOTREACHED */
return mode;
}
/*
* inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat.
* The inpcb_compat data structure is passed to user space and must
* not change. We intentionally avoid copying pointers.
*/
void
inpcb_to_compat(struct inpcb *inp, struct inpcb_compat *inp_compat)
{
bzero(inp_compat, sizeof(*inp_compat));
inp_compat->inp_fport = inp->inp_fport;
inp_compat->inp_lport = inp->inp_lport;
inp_compat->nat_owner = 0;
inp_compat->nat_cookie = 0;
inp_compat->inp_gencnt = inp->inp_gencnt;
inp_compat->inp_flags = inp->inp_flags;
inp_compat->inp_flow = inp->inp_flow;
inp_compat->inp_vflag = inp->inp_vflag;
inp_compat->inp_ip_ttl = inp->inp_ip_ttl;
inp_compat->inp_ip_p = inp->inp_ip_p;
inp_compat->inp_dependfaddr.inp6_foreign =
inp->inp_dependfaddr.inp6_foreign;
inp_compat->inp_dependladdr.inp6_local =
inp->inp_dependladdr.inp6_local;
inp_compat->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos;
inp_compat->inp_depend6.inp6_hlim = 0;
inp_compat->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum;
inp_compat->inp_depend6.inp6_ifindex = 0;
inp_compat->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops;
}
#if XNU_TARGET_OS_OSX
void
inpcb_to_xinpcb64(struct inpcb *inp, struct xinpcb64 *xinp)
{
xinp->inp_fport = inp->inp_fport;
xinp->inp_lport = inp->inp_lport;
xinp->inp_gencnt = inp->inp_gencnt;
xinp->inp_flags = inp->inp_flags;
xinp->inp_flow = inp->inp_flow;
xinp->inp_vflag = inp->inp_vflag;
xinp->inp_ip_ttl = inp->inp_ip_ttl;
xinp->inp_ip_p = inp->inp_ip_p;
xinp->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign;
xinp->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local;
xinp->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos;
xinp->inp_depend6.inp6_hlim = 0;
xinp->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum;
xinp->inp_depend6.inp6_ifindex = 0;
xinp->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops;
}
#endif /* XNU_TARGET_OS_OSX */
/*
* The following routines implement this scheme:
*
* Callers of ip_output() that intend to cache the route in the inpcb pass
* a local copy of the struct route to ip_output(). Using a local copy of
* the cached route significantly simplifies things as IP no longer has to
* worry about having exclusive access to the passed in struct route, since
* it's defined in the caller's stack; in essence, this allows for a lock-
* less operation when updating the struct route at the IP level and below,
* whenever necessary. The scheme works as follows:
*
* Prior to dropping the socket's lock and calling ip_output(), the caller
* copies the struct route from the inpcb into its stack, and adds a reference
* to the cached route entry, if there was any. The socket's lock is then
* dropped and ip_output() is called with a pointer to the copy of struct
* route defined on the stack (not to the one in the inpcb.)
*
* Upon returning from ip_output(), the caller then acquires the socket's
* lock and synchronizes the cache; if there is no route cached in the inpcb,
* it copies the local copy of struct route (which may or may not contain any
* route) back into the cache; otherwise, if the inpcb has a route cached in
* it, the one in the local copy will be freed, if there's any. Trashing the
* cached route in the inpcb can be avoided because ip_output() is single-
* threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
* by the socket/transport layer.)
*/
void
inp_route_copyout(struct inpcb *inp, struct route *dst)
{
struct route *src = &inp->inp_route;
socket_lock_assert_owned(inp->inp_socket);
/*
* If the route in the PCB is stale or not for IPv4, blow it away;
* this is possible in the case of IPv4-mapped address case.
*/
if (ROUTE_UNUSABLE(src) || rt_key(src->ro_rt)->sa_family != AF_INET) {
ROUTE_RELEASE(src);
}
route_copyout(dst, src, sizeof(*dst));
}
void
inp_route_copyin(struct inpcb *inp, struct route *src)
{
struct route *dst = &inp->inp_route;
socket_lock_assert_owned(inp->inp_socket);
/* Minor sanity check */
if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) {
panic("%s: wrong or corrupted route: %p", __func__, src);
}
route_copyin(src, dst, sizeof(*src));
}
/*
* Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option.
*/
int
inp_bindif(struct inpcb *inp, unsigned int ifscope, struct ifnet **pifp)
{
struct ifnet *ifp = NULL;
ifnet_head_lock_shared();
if ((ifscope > (unsigned)if_index) || (ifscope != IFSCOPE_NONE &&
(ifp = ifindex2ifnet[ifscope]) == NULL)) {
ifnet_head_done();
return ENXIO;
}
ifnet_head_done();
VERIFY(ifp != NULL || ifscope == IFSCOPE_NONE);
/*
* A zero interface scope value indicates an "unbind".
* Otherwise, take in whatever value the app desires;
* the app may already know the scope (or force itself
* to such a scope) ahead of time before the interface
* gets attached. It doesn't matter either way; any
* route lookup from this point on will require an
* exact match for the embedded interface scope.
*/
inp->inp_boundifp = ifp;
if (inp->inp_boundifp == NULL) {
inp->inp_flags &= ~INP_BOUND_IF;
} else {
inp->inp_flags |= INP_BOUND_IF;
}
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
if (pifp != NULL) {
*pifp = ifp;
}
return 0;
}
/*
* Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
* as well as for setting PROC_UUID_NO_CELLULAR policy.
*/
void
inp_set_nocellular(struct inpcb *inp)
{
inp->inp_flags |= INP_NO_IFT_CELLULAR;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
/*
* Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
* as well as for clearing PROC_UUID_NO_CELLULAR policy.
*/
void
inp_clear_nocellular(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
/*
* SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket
* has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag
* if and only if the socket is unrestricted.
*/
if (so != NULL && !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
inp->inp_flags &= ~INP_NO_IFT_CELLULAR;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
}
void
inp_set_noexpensive(struct inpcb *inp)
{
inp->inp_flags2 |= INP2_NO_IFF_EXPENSIVE;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
void
inp_set_noconstrained(struct inpcb *inp)
{
inp->inp_flags2 |= INP2_NO_IFF_CONSTRAINED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
void
inp_set_awdl_unrestricted(struct inpcb *inp)
{
inp->inp_flags2 |= INP2_AWDL_UNRESTRICTED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
boolean_t
inp_get_awdl_unrestricted(struct inpcb *inp)
{
return (inp->inp_flags2 & INP2_AWDL_UNRESTRICTED) ? TRUE : FALSE;
}
void
inp_clear_awdl_unrestricted(struct inpcb *inp)
{
inp->inp_flags2 &= ~INP2_AWDL_UNRESTRICTED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
void
inp_set_intcoproc_allowed(struct inpcb *inp)
{
inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
boolean_t
inp_get_intcoproc_allowed(struct inpcb *inp)
{
return (inp->inp_flags2 & INP2_INTCOPROC_ALLOWED) ? TRUE : FALSE;
}
void
inp_clear_intcoproc_allowed(struct inpcb *inp)
{
inp->inp_flags2 &= ~INP2_INTCOPROC_ALLOWED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
void
inp_set_management_allowed(struct inpcb *inp)
{
inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
boolean_t
inp_get_management_allowed(struct inpcb *inp)
{
return (inp->inp_flags2 & INP2_MANAGEMENT_ALLOWED) ? TRUE : FALSE;
}
void
inp_clear_management_allowed(struct inpcb *inp)
{
inp->inp_flags2 &= ~INP2_MANAGEMENT_ALLOWED;
/* Blow away any cached route in the PCB */
ROUTE_RELEASE(&inp->inp_route);
}
#if NECP
/*
* Called when PROC_UUID_NECP_APP_POLICY is set.
*/
void
inp_set_want_app_policy(struct inpcb *inp)
{
inp->inp_flags2 |= INP2_WANT_APP_POLICY;
}
/*
* Called when PROC_UUID_NECP_APP_POLICY is cleared.
*/
void
inp_clear_want_app_policy(struct inpcb *inp)
{
inp->inp_flags2 &= ~INP2_WANT_APP_POLICY;
}
#endif /* NECP */
/*
* Calculate flow hash for an inp, used by an interface to identify a
* flow. When an interface provides flow control advisory, this flow
* hash is used as an identifier.
*/
u_int32_t
inp_calc_flowhash(struct inpcb *inp)
{
#if SKYWALK
uint32_t flowid;
struct flowidns_flow_key fk;
bzero(&fk, sizeof(fk));
if (inp->inp_vflag & INP_IPV4) {
fk.ffk_af = AF_INET;
fk.ffk_laddr_v4 = inp->inp_laddr;
fk.ffk_raddr_v4 = inp->inp_faddr;
} else {
fk.ffk_af = AF_INET6;
fk.ffk_laddr_v6 = inp->in6p_laddr;
fk.ffk_raddr_v6 = inp->in6p_faddr;
/* clear embedded scope ID */
if (IN6_IS_SCOPE_EMBED(&fk.ffk_laddr_v6)) {
fk.ffk_laddr_v6.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&fk.ffk_raddr_v6)) {
fk.ffk_raddr_v6.s6_addr16[1] = 0;
}
}
fk.ffk_lport = inp->inp_lport;
fk.ffk_rport = inp->inp_fport;
fk.ffk_proto = (inp->inp_ip_p != 0) ? inp->inp_ip_p :
(uint8_t)SOCK_PROTO(inp->inp_socket);
flowidns_allocate_flowid(FLOWIDNS_DOMAIN_INPCB, &fk, &flowid);
/* Insert the inp into inp_fc_tree */
lck_mtx_lock_spin(&inp_fc_lck);
ASSERT(inp->inp_flowhash == 0);
ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) == 0);
inp->inp_flowhash = flowid;
VERIFY(RB_INSERT(inp_fc_tree, &inp_fc_tree, inp) == NULL);
inp->inp_flags2 |= INP2_IN_FCTREE;
lck_mtx_unlock(&inp_fc_lck);
return flowid;
#else /* !SKYWALK */
struct inp_flowhash_key fh __attribute__((aligned(8)));
u_int32_t flowhash = 0;
struct inpcb *tmp_inp = NULL;
if (inp_hash_seed == 0) {
inp_hash_seed = RandomULong();
}
bzero(&fh, sizeof(fh));
bcopy(&inp->inp_dependladdr, &fh.infh_laddr, sizeof(fh.infh_laddr));
bcopy(&inp->inp_dependfaddr, &fh.infh_faddr, sizeof(fh.infh_faddr));
fh.infh_lport = inp->inp_lport;
fh.infh_fport = inp->inp_fport;
fh.infh_af = (inp->inp_vflag & INP_IPV6) ? AF_INET6 : AF_INET;
fh.infh_proto = inp->inp_ip_p;
fh.infh_rand1 = RandomULong();
fh.infh_rand2 = RandomULong();
try_again:
flowhash = net_flowhash(&fh, sizeof(fh), inp_hash_seed);
if (flowhash == 0) {
/* try to get a non-zero flowhash */
inp_hash_seed = RandomULong();
goto try_again;
}
inp->inp_flowhash = flowhash;
/* Insert the inp into inp_fc_tree */
lck_mtx_lock_spin(&inp_fc_lck);
tmp_inp = RB_FIND(inp_fc_tree, &inp_fc_tree, inp);
if (tmp_inp != NULL) {
/*
* There is a different inp with the same flowhash.
* There can be a collision on flow hash but the
* probability is low. Let's recompute the
* flowhash.
*/
lck_mtx_unlock(&inp_fc_lck);
/* recompute hash seed */
inp_hash_seed = RandomULong();
goto try_again;
}
RB_INSERT(inp_fc_tree, &inp_fc_tree, inp);
inp->inp_flags2 |= INP2_IN_FCTREE;
lck_mtx_unlock(&inp_fc_lck);
return flowhash;
#endif /* !SKYWALK */
}
void
inp_flowadv(uint32_t flowhash)
{
struct inpcb *inp;
inp = inp_fc_getinp(flowhash, 0);
if (inp == NULL) {
return;
}
inp_fc_feedback(inp);
}
/*
* Function to compare inp_fc_entries in inp flow control tree
*/
static inline int
infc_cmp(const struct inpcb *inp1, const struct inpcb *inp2)
{
return memcmp(&(inp1->inp_flowhash), &(inp2->inp_flowhash),
sizeof(inp1->inp_flowhash));
}
static struct inpcb *
inp_fc_getinp(u_int32_t flowhash, u_int32_t flags)
{
struct inpcb *inp = NULL;
int locked = (flags & INPFC_SOLOCKED) ? 1 : 0;
lck_mtx_lock_spin(&inp_fc_lck);
key_inp.inp_flowhash = flowhash;
inp = RB_FIND(inp_fc_tree, &inp_fc_tree, &key_inp);
if (inp == NULL) {
/* inp is not present, return */
lck_mtx_unlock(&inp_fc_lck);
return NULL;
}
if (flags & INPFC_REMOVE) {
ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) != 0);
lck_mtx_convert_spin(&inp_fc_lck);
RB_REMOVE(inp_fc_tree, &inp_fc_tree, inp);
bzero(&(inp->infc_link), sizeof(inp->infc_link));
#if SKYWALK
VERIFY(inp->inp_flowhash != 0);
flowidns_release_flowid(inp->inp_flowhash);
inp->inp_flowhash = 0;
#endif /* !SKYWALK */
inp->inp_flags2 &= ~INP2_IN_FCTREE;
lck_mtx_unlock(&inp_fc_lck);
return NULL;
}
if (in_pcb_checkstate(inp, WNT_ACQUIRE, locked) == WNT_STOPUSING) {
inp = NULL;
}
lck_mtx_unlock(&inp_fc_lck);
return inp;
}
static void
inp_fc_feedback(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
/* we already hold a want_cnt on this inp, socket can't be null */
VERIFY(so != NULL);
socket_lock(so, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
socket_unlock(so, 1);
return;
}
if (inp->inp_sndinprog_cnt > 0) {
inp->inp_flags |= INP_FC_FEEDBACK;
}
/*
* Return if the connection is not in flow-controlled state.
* This can happen if the connection experienced
* loss while it was in flow controlled state
*/
if (!INP_WAIT_FOR_IF_FEEDBACK(inp)) {
socket_unlock(so, 1);
return;
}
inp_reset_fc_state(inp);
if (SOCK_TYPE(so) == SOCK_STREAM) {
inp_fc_unthrottle_tcp(inp);
}
socket_unlock(so, 1);
}
static void
inp_reset_fc_timerstat(struct inpcb *inp)
{
uint64_t now;
if (inp->inp_fadv_start_time == 0) {
return;
}
now = net_uptime_us();
ASSERT(now >= inp->inp_fadv_start_time);
inp->inp_fadv_total_time += (now - inp->inp_fadv_start_time);
inp->inp_fadv_cnt++;
inp->inp_fadv_start_time = 0;
}
static void
inp_set_fc_timerstat(struct inpcb *inp)
{
if (inp->inp_fadv_start_time != 0) {
return;
}
inp->inp_fadv_start_time = net_uptime_us();
}
void
inp_reset_fc_state(struct inpcb *inp)
{
struct socket *so = inp->inp_socket;
int suspended = (INP_IS_FLOW_SUSPENDED(inp)) ? 1 : 0;
int needwakeup = (INP_WAIT_FOR_IF_FEEDBACK(inp)) ? 1 : 0;
inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED);
inp_reset_fc_timerstat(inp);
if (suspended) {
so->so_flags &= ~(SOF_SUSPENDED);
soevent(so, (SO_FILT_HINT_LOCKED | SO_FILT_HINT_RESUME));
}
/* Give a write wakeup to unblock the socket */
if (needwakeup) {
sowwakeup(so);
}
}
int
inp_set_fc_state(struct inpcb *inp, int advcode)
{
boolean_t is_flow_controlled = INP_WAIT_FOR_IF_FEEDBACK(inp);
struct inpcb *tmp_inp = NULL;
/*
* If there was a feedback from the interface when
* send operation was in progress, we should ignore
* this flow advisory to avoid a race between setting
* flow controlled state and receiving feedback from
* the interface
*/
if (inp->inp_flags & INP_FC_FEEDBACK) {
return 0;
}
inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED);
if ((tmp_inp = inp_fc_getinp(inp->inp_flowhash,
INPFC_SOLOCKED)) != NULL) {
if (in_pcb_checkstate(tmp_inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
goto exit_reset;
}
VERIFY(tmp_inp == inp);
switch (advcode) {
case FADV_FLOW_CONTROLLED:
inp->inp_flags |= INP_FLOW_CONTROLLED;
inp_set_fc_timerstat(inp);
break;
case FADV_SUSPENDED:
inp->inp_flags |= INP_FLOW_SUSPENDED;
inp_set_fc_timerstat(inp);
soevent(inp->inp_socket,
(SO_FILT_HINT_LOCKED | SO_FILT_HINT_SUSPEND));
/* Record the fact that suspend event was sent */
inp->inp_socket->so_flags |= SOF_SUSPENDED;
break;
}
if (!is_flow_controlled && SOCK_TYPE(inp->inp_socket) == SOCK_STREAM) {
inp_fc_throttle_tcp(inp);
}
return 1;
}
exit_reset:
inp_reset_fc_timerstat(inp);
return 0;
}
/*
* Handler for SO_FLUSH socket option.
*/
int
inp_flush(struct inpcb *inp, int optval)
{
u_int32_t flowhash = inp->inp_flowhash;
struct ifnet *rtifp, *oifp;
/* Either all classes or one of the valid ones */
if (optval != SO_TC_ALL && !SO_VALID_TC(optval)) {
return EINVAL;
}
/* We need a flow hash for identification */
if (flowhash == 0) {
return 0;
}
/* Grab the interfaces from the route and pcb */
rtifp = ((inp->inp_route.ro_rt != NULL) ?
inp->inp_route.ro_rt->rt_ifp : NULL);
oifp = inp->inp_last_outifp;
if (rtifp != NULL) {
if_qflush_sc(rtifp, so_tc2msc(optval), flowhash, NULL, NULL, 0);
}
if (oifp != NULL && oifp != rtifp) {
if_qflush_sc(oifp, so_tc2msc(optval), flowhash, NULL, NULL, 0);
}
return 0;
}
/*
* Clear the INP_INADDR_ANY flag (special case for PPP only)
*/
void
inp_clear_INP_INADDR_ANY(struct socket *so)
{
struct inpcb *inp = NULL;
socket_lock(so, 1);
inp = sotoinpcb(so);
if (inp) {
inp->inp_flags &= ~INP_INADDR_ANY;
}
socket_unlock(so, 1);
}
void
inp_get_soprocinfo(struct inpcb *inp, struct so_procinfo *soprocinfo)
{
struct socket *so = inp->inp_socket;
soprocinfo->spi_pid = so->last_pid;
strlcpy(&soprocinfo->spi_proc_name[0], &inp->inp_last_proc_name[0],
sizeof(soprocinfo->spi_proc_name));
if (so->last_pid != 0) {
uuid_copy(soprocinfo->spi_uuid, so->last_uuid);
}
/*
* When not delegated, the effective pid is the same as the real pid
*/
if (so->so_flags & SOF_DELEGATED) {
soprocinfo->spi_delegated = 1;
soprocinfo->spi_epid = so->e_pid;
uuid_copy(soprocinfo->spi_euuid, so->e_uuid);
} else {
soprocinfo->spi_delegated = 0;
soprocinfo->spi_epid = so->last_pid;
}
strlcpy(&soprocinfo->spi_e_proc_name[0], &inp->inp_e_proc_name[0],
sizeof(soprocinfo->spi_e_proc_name));
}
int
inp_findinpcb_procinfo(struct inpcbinfo *pcbinfo, uint32_t flowhash,
struct so_procinfo *soprocinfo)
{
struct inpcb *inp = NULL;
int found = 0;
bzero(soprocinfo, sizeof(struct so_procinfo));
if (!flowhash) {
return -1;
}
lck_rw_lock_shared(&pcbinfo->ipi_lock);
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
if (inp->inp_state != INPCB_STATE_DEAD &&
inp->inp_socket != NULL &&
inp->inp_flowhash == flowhash) {
found = 1;
inp_get_soprocinfo(inp, soprocinfo);
break;
}
}
lck_rw_done(&pcbinfo->ipi_lock);
return found;
}
#if CONFIG_PROC_UUID_POLICY
static void
inp_update_cellular_policy(struct inpcb *inp, boolean_t set)
{
struct socket *so = inp->inp_socket;
int before, after;
VERIFY(so != NULL);
VERIFY(inp->inp_state != INPCB_STATE_DEAD);
before = INP_NO_CELLULAR(inp);
if (set) {
inp_set_nocellular(inp);
} else {
inp_clear_nocellular(inp);
}
after = INP_NO_CELLULAR(inp);
if (net_io_policy_log && (before != after)) {
static const char *ok = "OK";
static const char *nok = "NOACCESS";
uuid_string_t euuid_buf;
pid_t epid;
if (so->so_flags & SOF_DELEGATED) {
uuid_unparse(so->e_uuid, euuid_buf);
epid = so->e_pid;
} else {
uuid_unparse(so->last_uuid, euuid_buf);
epid = so->last_pid;
}
/* allow this socket to generate another notification event */
so->so_ifdenied_notifies = 0;
log(LOG_DEBUG, "%s: so 0x%llx [%d,%d] epid %d "
"euuid %s%s %s->%s\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
SOCK_TYPE(so), epid, euuid_buf,
(so->so_flags & SOF_DELEGATED) ?
" [delegated]" : "",
((before < after) ? ok : nok),
((before < after) ? nok : ok));
}
}
#if NECP
static void
inp_update_necp_want_app_policy(struct inpcb *inp, boolean_t set)
{
struct socket *so = inp->inp_socket;
int before, after;
VERIFY(so != NULL);
VERIFY(inp->inp_state != INPCB_STATE_DEAD);
before = (inp->inp_flags2 & INP2_WANT_APP_POLICY);
if (set) {
inp_set_want_app_policy(inp);
} else {
inp_clear_want_app_policy(inp);
}
after = (inp->inp_flags2 & INP2_WANT_APP_POLICY);
if (net_io_policy_log && (before != after)) {
static const char *wanted = "WANTED";
static const char *unwanted = "UNWANTED";
uuid_string_t euuid_buf;
pid_t epid;
if (so->so_flags & SOF_DELEGATED) {
uuid_unparse(so->e_uuid, euuid_buf);
epid = so->e_pid;
} else {
uuid_unparse(so->last_uuid, euuid_buf);
epid = so->last_pid;
}
log(LOG_DEBUG, "%s: so 0x%llx [%d,%d] epid %d "
"euuid %s%s %s->%s\n", __func__,
(uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
SOCK_TYPE(so), epid, euuid_buf,
(so->so_flags & SOF_DELEGATED) ?
" [delegated]" : "",
((before < after) ? unwanted : wanted),
((before < after) ? wanted : unwanted));
}
}
#endif /* NECP */
#endif /* !CONFIG_PROC_UUID_POLICY */
#if NECP
void
inp_update_necp_policy(struct inpcb *inp, struct sockaddr *override_local_addr, struct sockaddr *override_remote_addr, u_int override_bound_interface)
{
necp_socket_find_policy_match(inp, override_local_addr, override_remote_addr, override_bound_interface);
if (necp_socket_should_rescope(inp) &&
inp->inp_lport == 0 &&
inp->inp_laddr.s_addr == INADDR_ANY &&
IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
// If we should rescope, and the socket is not yet bound
inp_bindif(inp, necp_socket_get_rescope_if_index(inp), NULL);
inp->inp_flags2 |= INP2_SCOPED_BY_NECP;
}
}
#endif /* NECP */
int
inp_update_policy(struct inpcb *inp)
{
#if CONFIG_PROC_UUID_POLICY
struct socket *so = inp->inp_socket;
uint32_t pflags = 0;
int32_t ogencnt;
int err = 0;
uint8_t *lookup_uuid = NULL;
if (!net_io_policy_uuid ||
so == NULL || inp->inp_state == INPCB_STATE_DEAD) {
return 0;
}
/*
* Kernel-created sockets that aren't delegating other sockets
* are currently exempted from UUID policy checks.
*/
if (so->last_pid == 0 && !(so->so_flags & SOF_DELEGATED)) {
return 0;
}
#if defined(XNU_TARGET_OS_OSX)
if (so->so_rpid > 0) {
lookup_uuid = so->so_ruuid;
ogencnt = so->so_policy_gencnt;
err = proc_uuid_policy_lookup(lookup_uuid, &pflags, &so->so_policy_gencnt);
}
#endif
if (lookup_uuid == NULL || err == ENOENT) {
lookup_uuid = ((so->so_flags & SOF_DELEGATED) ? so->e_uuid : so->last_uuid);
ogencnt = so->so_policy_gencnt;
err = proc_uuid_policy_lookup(lookup_uuid, &pflags, &so->so_policy_gencnt);
}
/*
* Discard cached generation count if the entry is gone (ENOENT),
* so that we go thru the checks below.
*/
if (err == ENOENT && ogencnt != 0) {
so->so_policy_gencnt = 0;
}
/*
* If the generation count has changed, inspect the policy flags
* and act accordingly. If a policy flag was previously set and
* the UUID is no longer present in the table (ENOENT), treat it
* as if the flag has been cleared.
*/
if ((err == 0 || err == ENOENT) && ogencnt != so->so_policy_gencnt) {
/* update cellular policy for this socket */
if (err == 0 && (pflags & PROC_UUID_NO_CELLULAR)) {
inp_update_cellular_policy(inp, TRUE);
} else if (!(pflags & PROC_UUID_NO_CELLULAR)) {
inp_update_cellular_policy(inp, FALSE);
}
#if NECP
/* update necp want app policy for this socket */
if (err == 0 && (pflags & PROC_UUID_NECP_APP_POLICY)) {
inp_update_necp_want_app_policy(inp, TRUE);
} else if (!(pflags & PROC_UUID_NECP_APP_POLICY)) {
inp_update_necp_want_app_policy(inp, FALSE);
}
#endif /* NECP */
}
return (err == ENOENT) ? 0 : err;
#else /* !CONFIG_PROC_UUID_POLICY */
#pragma unused(inp)
return 0;
#endif /* !CONFIG_PROC_UUID_POLICY */
}
unsigned int log_restricted;
SYSCTL_DECL(_net_inet);
SYSCTL_INT(_net_inet, OID_AUTO, log_restricted,
CTLFLAG_RW | CTLFLAG_LOCKED, &log_restricted, 0,
"Log network restrictions");
/*
* Called when we need to enforce policy restrictions in the input path.
*
* Returns TRUE if we're not allowed to receive data, otherwise FALSE.
*/
static boolean_t
_inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp)
{
VERIFY(inp != NULL);
/*
* Inbound restrictions.
*/
if (!sorestrictrecv) {
return FALSE;
}
if (ifp == NULL) {
return FALSE;
}
if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) {
return TRUE;
}
if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) {
return TRUE;
}
if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) {
return TRUE;
}
if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) {
return TRUE;
}
if (!(ifp->if_eflags & IFEF_RESTRICTED_RECV)) {
return FALSE;
}
if (inp->inp_flags & INP_RECV_ANYIF) {
return FALSE;
}
/*
* An entitled process can use the management interface without being bound
* to the interface
*/
if (IFNET_IS_MANAGEMENT(ifp)) {
if (INP_MANAGEMENT_ALLOWED(inp)) {
return FALSE;
}
if (if_management_verbose > 1) {
os_log(OS_LOG_DEFAULT, "_inp_restricted_recv %s:%d not allowed on management interface %s",
proc_best_name(current_proc()), proc_getpid(current_proc()),
ifp->if_xname);
}
return TRUE;
}
if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp == ifp) {
return FALSE;
}
if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) {
return TRUE;
}
return TRUE;
}
boolean_t
inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp)
{
boolean_t ret;
ret = _inp_restricted_recv(inp, ifp);
if (ret == TRUE && log_restricted) {
printf("pid %d (%s) is unable to receive packets on %s\n",
proc_getpid(current_proc()), proc_best_name(current_proc()),
ifp->if_xname);
}
return ret;
}
/*
* Called when we need to enforce policy restrictions in the output path.
*
* Returns TRUE if we're not allowed to send data out, otherwise FALSE.
*/
static boolean_t
_inp_restricted_send(struct inpcb *inp, struct ifnet *ifp)
{
VERIFY(inp != NULL);
/*
* Outbound restrictions.
*/
if (!sorestrictsend) {
return FALSE;
}
if (ifp == NULL) {
return FALSE;
}
if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) {
return TRUE;
}
if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) {
return TRUE;
}
if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) {
return TRUE;
}
if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) {
return TRUE;
}
if (IFNET_IS_MANAGEMENT(ifp)) {
if (!INP_MANAGEMENT_ALLOWED(inp)) {
if (if_management_verbose > 1) {
os_log(OS_LOG_DEFAULT, "_inp_restricted_send %s:%d not allowed on management interface %s",
proc_best_name(current_proc()), proc_getpid(current_proc()),
ifp->if_xname);
}
return TRUE;
}
}
if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) {
return TRUE;
}
return FALSE;
}
boolean_t
inp_restricted_send(struct inpcb *inp, struct ifnet *ifp)
{
boolean_t ret;
ret = _inp_restricted_send(inp, ifp);
if (ret == TRUE && log_restricted) {
printf("pid %d (%s) is unable to transmit packets on %s\n",
proc_getpid(current_proc()), proc_best_name(current_proc()),
ifp->if_xname);
}
return ret;
}
inline void
inp_count_sndbytes(struct inpcb *inp, u_int32_t th_ack)
{
struct ifnet *ifp = inp->inp_last_outifp;
struct socket *so = inp->inp_socket;
if (ifp != NULL && !(so->so_flags & SOF_MP_SUBFLOW) &&
(ifp->if_type == IFT_CELLULAR || IFNET_IS_WIFI(ifp))) {
int32_t unsent;
so->so_snd.sb_flags |= SB_SNDBYTE_CNT;
/*
* There can be data outstanding before the connection
* becomes established -- TFO case
*/
if (so->so_snd.sb_cc > 0) {
inp_incr_sndbytes_total(so, so->so_snd.sb_cc);
}
unsent = inp_get_sndbytes_allunsent(so, th_ack);
if (unsent > 0) {
inp_incr_sndbytes_unsent(so, unsent);
}
}
}
inline void
inp_incr_sndbytes_total(struct socket *so, int32_t len)
{
struct inpcb *inp = (struct inpcb *)so->so_pcb;
struct ifnet *ifp = inp->inp_last_outifp;
if (ifp != NULL) {
VERIFY(ifp->if_sndbyte_total >= 0);
OSAddAtomic64(len, &ifp->if_sndbyte_total);
}
}
inline void
inp_decr_sndbytes_total(struct socket *so, int32_t len)
{
struct inpcb *inp = (struct inpcb *)so->so_pcb;
struct ifnet *ifp = inp->inp_last_outifp;
if (ifp != NULL) {
if (ifp->if_sndbyte_total >= len) {
OSAddAtomic64(-len, &ifp->if_sndbyte_total);
} else {
ifp->if_sndbyte_total = 0;
}
}
}
inline void
inp_incr_sndbytes_unsent(struct socket *so, int32_t len)
{
struct inpcb *inp = (struct inpcb *)so->so_pcb;
struct ifnet *ifp = inp->inp_last_outifp;
if (ifp != NULL) {
VERIFY(ifp->if_sndbyte_unsent >= 0);
OSAddAtomic64(len, &ifp->if_sndbyte_unsent);
}
}
inline void
inp_decr_sndbytes_unsent(struct socket *so, int32_t len)
{
if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) {
return;
}
struct inpcb *inp = (struct inpcb *)so->so_pcb;
struct ifnet *ifp = inp->inp_last_outifp;
if (ifp != NULL) {
if (ifp->if_sndbyte_unsent >= len) {
OSAddAtomic64(-len, &ifp->if_sndbyte_unsent);
} else {
ifp->if_sndbyte_unsent = 0;
}
}
}
inline void
inp_decr_sndbytes_allunsent(struct socket *so, u_int32_t th_ack)
{
int32_t len;
if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) {
return;
}
len = inp_get_sndbytes_allunsent(so, th_ack);
inp_decr_sndbytes_unsent(so, len);
}
#if SKYWALK
inline void
inp_update_netns_flags(struct socket *so)
{
struct inpcb *inp;
uint32_t set_flags = 0;
uint32_t clear_flags = 0;
if (!(SOCK_CHECK_DOM(so, AF_INET) || SOCK_CHECK_DOM(so, AF_INET6))) {
return;
}
inp = sotoinpcb(so);
if (inp == NULL) {
return;
}
if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
return;
}
if (so->so_options & SO_NOWAKEFROMSLEEP) {
set_flags |= NETNS_NOWAKEFROMSLEEP;
} else {
clear_flags |= NETNS_NOWAKEFROMSLEEP;
}
if (inp->inp_flags & INP_RECV_ANYIF) {
set_flags |= NETNS_RECVANYIF;
} else {
clear_flags |= NETNS_RECVANYIF;
}
if (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) {
set_flags |= NETNS_EXTBGIDLE;
} else {
clear_flags |= NETNS_EXTBGIDLE;
}
netns_change_flags(&inp->inp_netns_token, set_flags, clear_flags);
}
#endif /* SKYWALK */
inline void
inp_set_activity_bitmap(struct inpcb *inp)
{
in_stat_set_activity_bitmap(&inp->inp_nw_activity, net_uptime());
}
inline void
inp_get_activity_bitmap(struct inpcb *inp, activity_bitmap_t *ab)
{
bcopy(&inp->inp_nw_activity, ab, sizeof(*ab));
}
inline void
inp_clear_activity_bitmap(struct inpcb *inp)
{
in_stat_clear_activity_bitmap(&inp->inp_nw_activity);
}
void
inp_update_last_owner(struct socket *so, struct proc *p, struct proc *ep)
{
struct inpcb *inp = (struct inpcb *)so->so_pcb;
if (inp == NULL) {
return;
}
if (p != NULL) {
strlcpy(&inp->inp_last_proc_name[0], proc_name_address(p), sizeof(inp->inp_last_proc_name));
}
if (so->so_flags & SOF_DELEGATED) {
if (ep != NULL) {
strlcpy(&inp->inp_e_proc_name[0], proc_name_address(ep), sizeof(inp->inp_e_proc_name));
} else {
inp->inp_e_proc_name[0] = 0;
}
} else {
inp->inp_e_proc_name[0] = 0;
}
}
void
inp_copy_last_owner(struct socket *so, struct socket *head)
{
struct inpcb *inp = (struct inpcb *)so->so_pcb;
struct inpcb *head_inp = (struct inpcb *)head->so_pcb;
if (inp == NULL || head_inp == NULL) {
return;
}
strlcpy(&inp->inp_last_proc_name[0], &head_inp->inp_last_proc_name[0], sizeof(inp->inp_last_proc_name));
strlcpy(&inp->inp_e_proc_name[0], &head_inp->inp_e_proc_name[0], sizeof(inp->inp_e_proc_name));
}
static int
in_check_management_interface_proc_callout(proc_t proc, void *arg __unused)
{
struct fileproc *fp = NULL;
task_t task = proc_task(proc);
bool allowed = false;
if (IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT) == true
|| IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT) == true
#if DEBUG || DEVELOPMENT
|| IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT_DEVELOPMENT) == true
|| IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true
#endif /* DEBUG || DEVELOPMENT */
) {
allowed = true;
}
if (allowed == false && management_data_unrestricted == false) {
return PROC_RETURNED;
}
proc_fdlock(proc);
fdt_foreach(fp, proc) {
struct fileglob *fg = fp->fp_glob;
struct socket *so;
struct inpcb *inp;
if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) {
continue;
}
so = (struct socket *)fp_get_data(fp);
if (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6) {
continue;
}
inp = (struct inpcb *)so->so_pcb;
if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
continue;
}
socket_lock(so, 1);
if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
socket_unlock(so, 1);
continue;
}
inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
socket_unlock(so, 1);
}
proc_fdunlock(proc);
return PROC_RETURNED;
}
static bool in_management_interface_checked = false;
static void
in_management_interface_event_callback(struct nwk_wq_entry *nwk_item)
{
kfree_type(struct nwk_wq_entry, nwk_item);
if (in_management_interface_checked == true) {
return;
}
in_management_interface_checked = true;
proc_iterate(PROC_ALLPROCLIST,
in_check_management_interface_proc_callout,
NULL, NULL, NULL);
}
void
in_management_interface_check(void)
{
struct nwk_wq_entry *nwk_item;
if (if_management_interface_check_needed == false ||
in_management_interface_checked == true) {
return;
}
nwk_item = kalloc_type(struct nwk_wq_entry,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
nwk_item->func = in_management_interface_event_callback;
nwk_wq_enqueue(nwk_item);
}