gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/nd6.c
2024-06-03 11:29:39 -05:00

5229 lines
141 KiB
C

/*
* Copyright (c) 2000-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* XXX
* KAME 970409 note:
* BSD/OS version heavily modifies this code, related to llinfo.
* Since we don't have BSD/OS version of net/route.c in our hand,
* I left the code mostly as it was in 970310. -- itojun
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/mcache.h>
#include <dev/random/randomdev.h>
#include <kern/queue.h>
#include <kern/zalloc.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_llreach.h>
#include <net/route.h>
#include <net/dlil.h>
#include <net/ntstat.h>
#include <net/net_osdep.h>
#include <net/nwk_wq.h>
#include <netinet/in.h>
#include <netinet/in_arp.h>
#include <netinet/if_ether.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#include <netinet6/scope6_var.h>
#include <netinet/icmp6.h>
#include <net/sockaddr_utils.h>
#include <os/log.h>
#include "loop.h"
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
#define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
/* timer values */
int nd6_prune = 1; /* walk list every 1 seconds */
int nd6_prune_lazy = 5; /* lazily walk list every 5 seconds */
int nd6_delay = 5; /* delay first probe time 5 second */
int nd6_umaxtries = 3; /* maximum unicast query */
int nd6_mmaxtries = 3; /* maximum multicast query */
int nd6_useloopback = 1; /* use loopback interface for local traffic */
int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
/* preventing too many loops in ND option parsing */
int nd6_maxndopt = 10; /* max # of ND options allowed */
int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
#if ND6_DEBUG
int nd6_debug = 1;
#else
int nd6_debug = 0;
#endif
int nd6_optimistic_dad = ND6_OPTIMISTIC_DAD_DEFAULT;
/* for debugging? */
static int nd6_inuse, nd6_allocated;
/*
* Synchronization notes:
*
* The global list of ND entries are stored in llinfo_nd6; an entry
* gets inserted into the list when the route is created and gets
* removed from the list when it is deleted; this is done as part
* of RTM_ADD/RTM_RESOLVE/RTM_DELETE in nd6_rtrequest().
*
* Because rnh_lock and rt_lock for the entry are held during those
* operations, the same locks (and thus lock ordering) must be used
* elsewhere to access the relevant data structure fields:
*
* ln_next, ln_prev, ln_rt
*
* - Routing lock (rnh_lock)
*
* ln_hold, ln_asked, ln_expire, ln_state, ln_router, ln_flags,
* ln_llreach, ln_lastused
*
* - Routing entry lock (rt_lock)
*
* Due to the dependency on rt_lock, llinfo_nd6 has the same lifetime
* as the route entry itself. When a route is deleted (RTM_DELETE),
* it is simply removed from the global list but the memory is not
* freed until the route itself is freed.
*/
struct llinfo_nd6 llinfo_nd6 = {
.ln_next = &llinfo_nd6,
.ln_prev = &llinfo_nd6,
};
static LCK_GRP_DECLARE(nd_if_lock_grp, "nd_if_lock");
static LCK_ATTR_DECLARE(nd_if_lock_attr, 0, 0);
/* Protected by nd6_mutex */
struct nd_drhead nd_defrouter_list;
struct nd_prhead nd_prefix = { .lh_first = 0 };
struct nd_rtihead nd_rti_list;
/*
* nd6_timeout() is scheduled on a demand basis. nd6_timeout_run is used
* to indicate whether or not a timeout has been scheduled. The rnh_lock
* mutex is used to protect this scheduling; it is a natural choice given
* the work done in the timer callback. Unfortunately, there are cases
* when nd6_timeout() needs to be scheduled while rnh_lock cannot be easily
* held, due to lock ordering. In those cases, we utilize a "demand" counter
* nd6_sched_timeout_want which can be atomically incremented without
* having to hold rnh_lock. On places where we acquire rnh_lock, such as
* nd6_rtrequest(), we check this counter and schedule the timer if it is
* non-zero. The increment happens on various places when we allocate
* new ND entries, default routers, prefixes and addresses.
*/
static int nd6_timeout_run; /* nd6_timeout is scheduled to run */
static void nd6_timeout(void *);
int nd6_sched_timeout_want; /* demand count for timer to be sched */
static boolean_t nd6_fast_timer_on = FALSE;
/* Serialization variables for nd6_service(), protected by rnh_lock */
static boolean_t nd6_service_busy;
static void *nd6_service_wc = &nd6_service_busy;
static int nd6_service_waiters = 0;
int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
static struct sockaddr_in6 all1_sa;
static int regen_tmpaddr(struct in6_ifaddr *);
static struct llinfo_nd6 *nd6_llinfo_alloc(zalloc_flags_t);
static void nd6_llinfo_free(void *);
static void nd6_llinfo_purge(struct rtentry *);
static void nd6_llinfo_get_ri(struct rtentry *, struct rt_reach_info *);
static void nd6_llinfo_get_iflri(struct rtentry *, struct ifnet_llreach_info *);
static void nd6_llinfo_refresh(struct rtentry *);
static uint64_t ln_getexpire(struct llinfo_nd6 *);
static void nd6_service(void *);
static void nd6_slowtimo(void *);
static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *, struct ifnet *);
static int nd6_siocgdrlst(void *, int);
static int nd6_siocgprlst(void *, int);
static void nd6_router_select_rti_entries(struct ifnet *);
static void nd6_purge_interface_default_routers(struct ifnet *);
static void nd6_purge_interface_rti_entries(struct ifnet *);
static void nd6_purge_interface_prefixes(struct ifnet *);
static void nd6_purge_interface_llinfo(struct ifnet *);
static int nd6_sysctl_drlist SYSCTL_HANDLER_ARGS;
static int nd6_sysctl_prlist SYSCTL_HANDLER_ARGS;
/*
* Insertion and removal from llinfo_nd6 must be done with rnh_lock held.
*/
#define LN_DEQUEUE(_ln) do { \
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \
RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \
(_ln)->ln_next->ln_prev = (_ln)->ln_prev; \
(_ln)->ln_prev->ln_next = (_ln)->ln_next; \
(_ln)->ln_prev = (_ln)->ln_next = NULL; \
(_ln)->ln_flags &= ~ND6_LNF_IN_USE; \
} while (0)
#define LN_INSERTHEAD(_ln) do { \
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); \
RT_LOCK_ASSERT_HELD((_ln)->ln_rt); \
(_ln)->ln_next = llinfo_nd6.ln_next; \
llinfo_nd6.ln_next = (_ln); \
(_ln)->ln_prev = &llinfo_nd6; \
(_ln)->ln_next->ln_prev = (_ln); \
(_ln)->ln_flags |= ND6_LNF_IN_USE; \
} while (0)
static KALLOC_TYPE_DEFINE(llinfo_nd6_zone, struct llinfo_nd6, NET_KT_DEFAULT);
extern int tvtohz(struct timeval *);
static int nd6_init_done;
SYSCTL_DECL(_net_inet6_icmp6);
SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
nd6_sysctl_drlist, "S,in6_defrouter", "");
SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
nd6_sysctl_prlist, "S,in6_defrouter", "");
SYSCTL_DECL(_net_inet6_ip6);
static int ip6_maxchainsent = 0;
SYSCTL_INT(_net_inet6_ip6, OID_AUTO, maxchainsent,
CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxchainsent, 0,
"use dlil_output_list");
SYSCTL_DECL(_net_inet6_icmp6);
int nd6_process_rti = ND6_PROCESS_RTI_DEFAULT;
SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_process_rti, CTLFLAG_RW | CTLFLAG_LOCKED,
&nd6_process_rti, 0,
"Enable/disable processing of Route Information Option in the "
"IPv6 Router Advertisement.");
void
nd6_init(void)
{
int i;
VERIFY(!nd6_init_done);
all1_sa.sin6_family = AF_INET6;
all1_sa.sin6_len = sizeof(struct sockaddr_in6);
for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) {
all1_sa.sin6_addr.s6_addr[i] = 0xff;
}
/* initialization of the default router list */
TAILQ_INIT(&nd_defrouter_list);
TAILQ_INIT(&nd_rti_list);
nd6_nbr_init();
nd6_rtr_init();
nd6_init_done = 1;
/* start timer */
timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz);
}
static struct llinfo_nd6 *
nd6_llinfo_alloc(zalloc_flags_t how)
{
return zalloc_flags(llinfo_nd6_zone, how | Z_ZERO);
}
static void
nd6_llinfo_free(void *arg)
{
struct llinfo_nd6 *ln = arg;
if (ln->ln_next != NULL || ln->ln_prev != NULL) {
panic("%s: trying to free %p when it is in use", __func__, ln);
/* NOTREACHED */
}
/* Just in case there's anything there, free it */
if (ln->ln_hold != NULL) {
m_freem_list(ln->ln_hold);
ln->ln_hold = NULL;
}
/* Purge any link-layer info caching */
VERIFY(ln->ln_rt->rt_llinfo == ln);
if (ln->ln_rt->rt_llinfo_purge != NULL) {
ln->ln_rt->rt_llinfo_purge(ln->ln_rt);
}
zfree(llinfo_nd6_zone, ln);
}
static void
nd6_llinfo_purge(struct rtentry *rt)
{
struct llinfo_nd6 *ln = rt->rt_llinfo;
RT_LOCK_ASSERT_HELD(rt);
VERIFY(rt->rt_llinfo_purge == nd6_llinfo_purge && ln != NULL);
if (ln->ln_llreach != NULL) {
RT_CONVERT_LOCK(rt);
ifnet_llreach_free(ln->ln_llreach);
ln->ln_llreach = NULL;
}
ln->ln_lastused = 0;
}
static void
nd6_llinfo_get_ri(struct rtentry *rt, struct rt_reach_info *ri)
{
struct llinfo_nd6 *ln = rt->rt_llinfo;
struct if_llreach *lr = ln->ln_llreach;
if (lr == NULL) {
bzero(ri, sizeof(*ri));
ri->ri_rssi = IFNET_RSSI_UNKNOWN;
ri->ri_lqm = IFNET_LQM_THRESH_OFF;
ri->ri_npm = IFNET_NPM_THRESH_UNKNOWN;
} else {
IFLR_LOCK(lr);
/* Export to rt_reach_info structure */
ifnet_lr2ri(lr, ri);
/* Export ND6 send expiration (calendar) time */
ri->ri_snd_expire =
ifnet_llreach_up2calexp(lr, ln->ln_lastused);
IFLR_UNLOCK(lr);
}
}
static void
nd6_llinfo_get_iflri(struct rtentry *rt, struct ifnet_llreach_info *iflri)
{
struct llinfo_nd6 *ln = rt->rt_llinfo;
struct if_llreach *lr = ln->ln_llreach;
if (lr == NULL) {
bzero(iflri, sizeof(*iflri));
iflri->iflri_rssi = IFNET_RSSI_UNKNOWN;
iflri->iflri_lqm = IFNET_LQM_THRESH_OFF;
iflri->iflri_npm = IFNET_NPM_THRESH_UNKNOWN;
} else {
IFLR_LOCK(lr);
/* Export to ifnet_llreach_info structure */
ifnet_lr2iflri(lr, iflri);
/* Export ND6 send expiration (uptime) time */
iflri->iflri_snd_expire =
ifnet_llreach_up2upexp(lr, ln->ln_lastused);
IFLR_UNLOCK(lr);
}
}
static void
nd6_llinfo_refresh(struct rtentry *rt)
{
struct llinfo_nd6 *ln = rt->rt_llinfo;
uint64_t timenow = net_uptime();
struct ifnet *ifp = rt->rt_ifp;
/*
* Can't refresh permanent, static or entries that are
* not direct host entries. Also skip if the entry is for
* host over an interface that has alternate neighbor cache
* management mechanisms (AWDL/NAN)
*/
if (!ln || ln->ln_expire == 0 || (rt->rt_flags & RTF_STATIC) ||
!(rt->rt_flags & RTF_LLINFO) || !ifp ||
(ifp->if_eflags & IFEF_IPV6_ND6ALT)) {
return;
}
if ((ln->ln_state > ND6_LLINFO_INCOMPLETE) &&
(ln->ln_state < ND6_LLINFO_PROBE)) {
if (ln->ln_expire > timenow) {
ln_setexpire(ln, timenow);
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE);
}
}
return;
}
const char *
ndcache_state2str(short ndp_state)
{
const char *ndp_state_str = "UNKNOWN";
switch (ndp_state) {
case ND6_LLINFO_PURGE:
ndp_state_str = "ND6_LLINFO_PURGE";
break;
case ND6_LLINFO_NOSTATE:
ndp_state_str = "ND6_LLINFO_NOSTATE";
break;
case ND6_LLINFO_INCOMPLETE:
ndp_state_str = "ND6_LLINFO_INCOMPLETE";
break;
case ND6_LLINFO_REACHABLE:
ndp_state_str = "ND6_LLINFO_REACHABLE";
break;
case ND6_LLINFO_STALE:
ndp_state_str = "ND6_LLINFO_STALE";
break;
case ND6_LLINFO_DELAY:
ndp_state_str = "ND6_LLINFO_DELAY";
break;
case ND6_LLINFO_PROBE:
ndp_state_str = "ND6_LLINFO_PROBE";
break;
default:
/* Init'd to UNKNOWN */
break;
}
return ndp_state_str;
}
void
ln_setexpire(struct llinfo_nd6 *ln, uint64_t expiry)
{
ln->ln_expire = expiry;
}
static uint64_t
ln_getexpire(struct llinfo_nd6 *ln)
{
struct timeval caltime;
uint64_t expiry;
if (ln->ln_expire != 0) {
struct rtentry *rt = ln->ln_rt;
VERIFY(rt != NULL);
/* account for system time change */
getmicrotime(&caltime);
rt->base_calendartime +=
NET_CALCULATE_CLOCKSKEW(caltime,
rt->base_calendartime, net_uptime(), rt->base_uptime);
expiry = rt->base_calendartime +
ln->ln_expire - rt->base_uptime;
} else {
expiry = 0;
}
return expiry;
}
void
nd6_ifreset(struct ifnet *ifp)
{
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
VERIFY(NULL != ndi);
VERIFY(ndi->initialized);
LCK_MTX_ASSERT(&ndi->lock, LCK_MTX_ASSERT_OWNED);
ndi->linkmtu = ifp->if_mtu;
ndi->chlim = IPV6_DEFHLIM;
ndi->basereachable = REACHABLE_TIME;
ndi->reachable = ND_COMPUTE_RTIME(ndi->basereachable);
ndi->retrans = RETRANS_TIMER;
}
void
nd6_ifattach(struct ifnet *ifp)
{
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
VERIFY(NULL != ndi);
if (!ndi->initialized) {
lck_mtx_init(&ndi->lock, &nd_if_lock_grp, &nd_if_lock_attr);
ndi->flags = ND6_IFF_PERFORMNUD;
ndi->flags |= ND6_IFF_DAD;
ndi->initialized = TRUE;
}
lck_mtx_lock(&ndi->lock);
if (!(ifp->if_flags & IFF_MULTICAST)) {
ndi->flags |= ND6_IFF_IFDISABLED;
}
nd6_ifreset(ifp);
lck_mtx_unlock(&ndi->lock);
nd6_setmtu(ifp);
nd6log0(info,
"Reinit'd ND information for interface %s\n",
if_name(ifp));
return;
}
#if 0
/*
* XXX Look more into this. Especially since we recycle ifnets and do delayed
* cleanup
*/
void
nd6_ifdetach(struct nd_ifinfo *nd)
{
/* XXX destroy nd's lock? */
FREE(nd, M_IP6NDP);
}
#endif
void
nd6_setmtu(struct ifnet *ifp)
{
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
u_int32_t oldmaxmtu, maxmtu;
if ((NULL == ndi) || (FALSE == ndi->initialized)) {
return;
}
lck_mtx_lock(&ndi->lock);
oldmaxmtu = ndi->maxmtu;
/*
* The ND level maxmtu is somewhat redundant to the interface MTU
* and is an implementation artifact of KAME. Instead of hard-
* limiting the maxmtu based on the interface type here, we simply
* take the if_mtu value since SIOCSIFMTU would have taken care of
* the sanity checks related to the maximum MTU allowed for the
* interface (a value that is known only by the interface layer),
* by sending the request down via ifnet_ioctl(). The use of the
* ND level maxmtu and linkmtu are done via IN6_LINKMTU() which
* does further checking against if_mtu.
*/
maxmtu = ndi->maxmtu = ifp->if_mtu;
/*
* Decreasing the interface MTU under IPV6 minimum MTU may cause
* undesirable situation. We thus notify the operator of the change
* explicitly. The check for oldmaxmtu is necessary to restrict the
* log to the case of changing the MTU, not initializing it.
*/
if (oldmaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
log(LOG_NOTICE, "nd6_setmtu: "
"new link MTU on %s (%u) is too small for IPv6\n",
if_name(ifp), (uint32_t)ndi->maxmtu);
}
ndi->linkmtu = ifp->if_mtu;
lck_mtx_unlock(&ndi->lock);
/* also adjust in6_maxmtu if necessary. */
if (maxmtu > in6_maxmtu) {
in6_setmaxmtu();
}
}
void
nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
{
bzero(ndopts, sizeof(*ndopts));
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
ndopts->nd_opts_last =
(struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
if (icmp6len == 0) {
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
}
/*
* Take one ND option.
*/
struct nd_opt_hdr *
nd6_option(union nd_opts *ndopts)
{
struct nd_opt_hdr *nd_opt;
int olen;
if (!ndopts) {
panic("ndopts == NULL in nd6_option");
}
if (!ndopts->nd_opts_last) {
panic("uninitialized ndopts in nd6_option");
}
if (!ndopts->nd_opts_search) {
return NULL;
}
if (ndopts->nd_opts_done) {
return NULL;
}
nd_opt = ndopts->nd_opts_search;
/* make sure nd_opt_len is inside the buffer */
if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
bzero(ndopts, sizeof(*ndopts));
return NULL;
}
olen = nd_opt->nd_opt_len << 3;
if (olen == 0) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
bzero(ndopts, sizeof(*ndopts));
return NULL;
}
ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
/* option overruns the end of buffer, invalid */
bzero(ndopts, sizeof(*ndopts));
return NULL;
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
/* reached the end of options chain */
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
return nd_opt;
}
/*
* Parse multiple ND options.
* This function is much easier to use, for ND routines that do not need
* multiple options of the same type.
*/
int
nd6_options(union nd_opts *ndopts)
{
struct nd_opt_hdr *nd_opt;
int i = 0;
if (ndopts == NULL) {
panic("ndopts == NULL in nd6_options");
}
if (ndopts->nd_opts_last == NULL) {
panic("uninitialized ndopts in nd6_options");
}
if (ndopts->nd_opts_search == NULL) {
return 0;
}
while (1) {
nd_opt = nd6_option(ndopts);
if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
icmp6stat.icp6s_nd_badopt++;
bzero(ndopts, sizeof(*ndopts));
return -1;
}
if (nd_opt == NULL) {
goto skip1;
}
switch (nd_opt->nd_opt_type) {
case ND_OPT_SOURCE_LINKADDR:
case ND_OPT_TARGET_LINKADDR:
case ND_OPT_MTU:
case ND_OPT_REDIRECTED_HEADER:
case ND_OPT_NONCE:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
nd6log(error,
"duplicated ND6 option found (type=%d)\n",
nd_opt->nd_opt_type);
/* XXX bark? */
} else {
ndopts->nd_opt_array[nd_opt->nd_opt_type] =
nd_opt;
}
break;
case ND_OPT_PREFIX_INFORMATION:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
ndopts->nd_opt_array[nd_opt->nd_opt_type] =
nd_opt;
}
ndopts->nd_opts_pi_end =
(struct nd_opt_prefix_info *)nd_opt;
break;
case ND_OPT_RDNSS:
case ND_OPT_DNSSL:
case ND_OPT_CAPTIVE_PORTAL:
/* ignore */
break;
case ND_OPT_ROUTE_INFO:
if (nd6_process_rti) {
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
ndopts->nd_opts_rti_end =
(struct nd_opt_route_info *)nd_opt;
break;
}
OS_FALLTHROUGH;
default:
/*
* Unknown options must be silently ignored,
* to accomodate future extension to the protocol.
*/
nd6log(debug,
"nd6_options: unsupported option %d - "
"option ignored\n", nd_opt->nd_opt_type);
}
skip1:
i++;
if (i > nd6_maxndopt) {
icmp6stat.icp6s_nd_toomanyopt++;
nd6log(info, "too many loop in nd opt\n");
break;
}
if (ndopts->nd_opts_done) {
break;
}
}
return 0;
}
struct nd6svc_arg {
int draining;
uint32_t killed;
uint32_t aging_lazy;
uint32_t aging;
uint32_t sticky;
uint32_t found;
};
static void
nd6_service_neighbor_cache(struct nd6svc_arg *ap, uint64_t timenow)
{
struct llinfo_nd6 *ln;
struct ifnet *ifp = NULL;
boolean_t send_nc_failure_kev = FALSE;
struct radix_node_head *rnh = rt_tables[AF_INET6];
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
again:
/*
* send_nc_failure_kev gets set when default router's IPv6 address
* can't be resolved.
* That can happen either:
* 1. When the entry has resolved once but can't be
* resolved later and the neighbor cache entry for gateway is deleted
* after max probe attempts.
*
* 2. When the entry is in ND6_LLINFO_INCOMPLETE but can not be resolved
* after max neighbor address resolution attempts.
*
* Both set send_nc_failure_kev to true. ifp is also set to the previous
* neighbor cache entry's route's ifp.
* Once we are done sending the notification, set send_nc_failure_kev
* to false to stop sending false notifications for non default router
* neighbors.
*
* We may to send more information like Gateway's IP that could not be
* resolved, however right now we do not install more than one default
* route per interface in the routing table.
*/
if (send_nc_failure_kev && ifp != NULL &&
ifp->if_addrlen == IF_LLREACH_MAXLEN) {
struct kev_msg ev_msg;
struct kev_nd6_ndfailure nd6_ndfailure;
bzero(&ev_msg, sizeof(ev_msg));
bzero(&nd6_ndfailure, sizeof(nd6_ndfailure));
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_ND6_SUBCLASS;
ev_msg.event_code = KEV_ND6_NDFAILURE;
nd6_ndfailure.link_data.if_family = ifp->if_family;
nd6_ndfailure.link_data.if_unit = ifp->if_unit;
strlcpy(nd6_ndfailure.link_data.if_name,
ifp->if_name,
sizeof(nd6_ndfailure.link_data.if_name));
ev_msg.dv[0].data_ptr = &nd6_ndfailure;
ev_msg.dv[0].data_length =
sizeof(nd6_ndfailure);
dlil_post_complete_msg(NULL, &ev_msg);
}
send_nc_failure_kev = FALSE;
ifp = NULL;
/*
* The global list llinfo_nd6 is modified by nd6_request() and is
* therefore protected by rnh_lock. For obvious reasons, we cannot
* hold rnh_lock across calls that might lead to code paths which
* attempt to acquire rnh_lock, else we deadlock. Hence for such
* cases we drop rt_lock and rnh_lock, make the calls, and repeat the
* loop. To ensure that we don't process the same entry more than
* once in a single timeout, we mark the "already-seen" entries with
* ND6_LNF_TIMER_SKIP flag. At the end of the loop, we do a second
* pass thru the entries and clear the flag so they can be processed
* during the next timeout.
*/
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
ln = llinfo_nd6.ln_next;
while (ln != NULL && ln != &llinfo_nd6) {
struct rtentry *rt;
struct sockaddr_in6 *dst;
struct llinfo_nd6 *next;
u_int32_t retrans, flags;
struct nd_ifinfo *ndi = NULL;
boolean_t is_router = FALSE;
/* ln_next/prev/rt is protected by rnh_lock */
next = ln->ln_next;
rt = ln->ln_rt;
RT_LOCK(rt);
/* We've seen this already; skip it */
if (ln->ln_flags & ND6_LNF_TIMER_SKIP) {
RT_UNLOCK(rt);
ln = next;
continue;
}
ap->found++;
/* rt->rt_ifp should never be NULL */
if ((ifp = rt->rt_ifp) == NULL) {
panic("%s: ln(%p) rt(%p) rt_ifp == NULL", __func__,
ln, rt);
/* NOTREACHED */
}
/* rt_llinfo must always be equal to ln */
if ((struct llinfo_nd6 *)rt->rt_llinfo != ln) {
panic("%s: rt_llinfo(%p) is not equal to ln(%p)",
__func__, rt->rt_llinfo, ln);
/* NOTREACHED */
}
/* rt_key should never be NULL */
dst = SIN6(rt_key(rt));
if (dst == NULL) {
panic("%s: rt(%p) key is NULL ln(%p)", __func__,
rt, ln);
/* NOTREACHED */
}
/* Set the flag in case we jump to "again" */
ln->ln_flags |= ND6_LNF_TIMER_SKIP;
/*
* Do not touch neighbor cache entries that are permanent,
* static or are for interfaces that manage neighbor cache
* entries via alternate NDP means.
*/
if (ln->ln_expire == 0 || (rt->rt_flags & RTF_STATIC) ||
(rt->rt_ifp->if_eflags & IFEF_IPV6_ND6ALT)) {
ap->sticky++;
} else if (ap->draining && (rt->rt_refcnt == 0)) {
/*
* If we are draining, immediately purge non-static
* entries without oustanding route refcnt.
*/
if (ln->ln_state > ND6_LLINFO_INCOMPLETE) {
ND6_CACHE_STATE_TRANSITION(ln, (short)ND6_LLINFO_STALE);
} else {
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PURGE);
}
ln_setexpire(ln, timenow);
}
/*
* If the entry has not expired, skip it. Take note on the
* state, as entries that are in the STALE state are simply
* waiting to be garbage collected, in which case we can
* relax the callout scheduling (use nd6_prune_lazy).
*/
if (ln->ln_expire > timenow) {
switch (ln->ln_state) {
case ND6_LLINFO_STALE:
ap->aging_lazy++;
break;
default:
ap->aging++;
break;
}
RT_UNLOCK(rt);
ln = next;
continue;
}
ndi = ND_IFINFO(ifp);
/*
* The IPv6 initialization of the loopback interface
* may happen after another interface gets assigned
* an IPv6 address
*/
if (ndi == NULL && ifp == lo_ifp) {
RT_UNLOCK(rt);
ln = next;
continue;
}
VERIFY(ndi->initialized);
retrans = ndi->retrans;
flags = ndi->flags;
RT_LOCK_ASSERT_HELD(rt);
is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE;
switch (ln->ln_state) {
case ND6_LLINFO_INCOMPLETE:
if (ln->ln_asked < nd6_mmaxtries) {
struct ifnet *exclifp = ln->ln_exclifp;
ln->ln_asked++;
ln_setexpire(ln, timenow + retrans / 1000);
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
if (ip6_forwarding) {
nd6_prproxy_ns_output(ifp, exclifp,
NULL, &dst->sin6_addr, ln);
} else {
nd6_ns_output(ifp, NULL,
&dst->sin6_addr, ln, NULL);
}
RT_REMREF(rt);
ap->aging++;
lck_mtx_lock(rnh_lock);
} else {
struct mbuf *m = ln->ln_hold;
ln->ln_hold = NULL;
send_nc_failure_kev = is_router;
if (m != NULL) {
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
struct mbuf *mnext;
while (m) {
mnext = m->m_nextpkt;
m->m_nextpkt = NULL;
m->m_pkthdr.rcvif = ifp;
icmp6_error_flag(m, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_ADDR, 0, 0);
m = mnext;
}
} else {
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
}
/*
* Enqueue work item to invoke callback for
* this route entry
*/
route_event_enqueue_nwk_wq_entry(rt, NULL,
ROUTE_LLENTRY_UNREACH, NULL, FALSE);
defrouter_set_reachability(&SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp,
FALSE);
nd6_free(rt);
ap->killed++;
lck_mtx_lock(rnh_lock);
/*
* nd6_free above would flush out the routing table of
* any cloned routes with same next-hop.
* Walk the tree anyways as there could be static routes
* left.
*
* We also already have a reference to rt that gets freed right
* after the block below executes. Don't need an extra reference
* on rt here.
*/
if (is_router) {
struct route_event rt_ev;
route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH);
(void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev);
}
rtfree_locked(rt);
}
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
goto again;
case ND6_LLINFO_REACHABLE:
if (ln->ln_expire != 0) {
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE);
ln_setexpire(ln, timenow + nd6_gctimer);
ap->aging_lazy++;
/*
* Enqueue work item to invoke callback for
* this route entry
*/
route_event_enqueue_nwk_wq_entry(rt, NULL,
ROUTE_LLENTRY_STALE, NULL, TRUE);
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
if (is_router) {
struct route_event rt_ev;
route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_STALE);
(void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev);
}
rtfree_locked(rt);
} else {
RT_UNLOCK(rt);
}
break;
case ND6_LLINFO_STALE:
case ND6_LLINFO_PURGE:
/* Garbage Collection(RFC 4861 5.3) */
if (ln->ln_expire != 0) {
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
nd6_free(rt);
ap->killed++;
lck_mtx_lock(rnh_lock);
rtfree_locked(rt);
goto again;
} else {
RT_UNLOCK(rt);
}
break;
case ND6_LLINFO_DELAY:
if ((flags & ND6_IFF_PERFORMNUD) != 0) {
/* We need NUD */
ln->ln_asked = 1;
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_PROBE);
ln_setexpire(ln, timenow + retrans / 1000);
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
nd6_ns_output(ifp, &dst->sin6_addr,
&dst->sin6_addr, ln, NULL);
RT_REMREF(rt);
ap->aging++;
lck_mtx_lock(rnh_lock);
goto again;
}
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE); /* XXX */
ln_setexpire(ln, timenow + nd6_gctimer);
RT_UNLOCK(rt);
ap->aging_lazy++;
break;
case ND6_LLINFO_PROBE:
if (ln->ln_asked < nd6_umaxtries) {
ln->ln_asked++;
ln_setexpire(ln, timenow + retrans / 1000);
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
nd6_ns_output(ifp, &dst->sin6_addr,
&dst->sin6_addr, ln, NULL);
RT_REMREF(rt);
ap->aging++;
lck_mtx_lock(rnh_lock);
} else {
is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE;
send_nc_failure_kev = is_router;
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
nd6_free(rt);
ap->killed++;
/*
* Enqueue work item to invoke callback for
* this route entry
*/
route_event_enqueue_nwk_wq_entry(rt, NULL,
ROUTE_LLENTRY_UNREACH, NULL, FALSE);
defrouter_set_reachability(&SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp,
FALSE);
lck_mtx_lock(rnh_lock);
/*
* nd6_free above would flush out the routing table of
* any cloned routes with same next-hop.
* Walk the tree anyways as there could be static routes
* left.
*
* We also already have a reference to rt that gets freed right
* after the block below executes. Don't need an extra reference
* on rt here.
*/
if (is_router) {
struct route_event rt_ev;
route_event_init(&rt_ev, rt, NULL, ROUTE_LLENTRY_UNREACH);
(void) rnh->rnh_walktree(rnh,
route_event_walktree, (void *)&rt_ev);
}
rtfree_locked(rt);
}
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
goto again;
default:
RT_UNLOCK(rt);
break;
}
ln = next;
}
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
/* Now clear the flag from all entries */
ln = llinfo_nd6.ln_next;
while (ln != NULL && ln != &llinfo_nd6) {
struct rtentry *rt = ln->ln_rt;
struct llinfo_nd6 *next = ln->ln_next;
RT_LOCK_SPIN(rt);
if (ln->ln_flags & ND6_LNF_TIMER_SKIP) {
ln->ln_flags &= ~ND6_LNF_TIMER_SKIP;
}
RT_UNLOCK(rt);
ln = next;
}
}
static void
nd6_service_expired_default_router(struct nd6svc_arg *ap, uint64_t timenow)
{
struct nd_defrouter *dr = NULL;
struct nd_defrouter *ndr = NULL;
struct nd_drhead nd_defrouter_tmp;
/* expire default router list */
TAILQ_INIT(&nd_defrouter_tmp);
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(nd6_mutex);
TAILQ_FOREACH_SAFE(dr, &nd_defrouter_list, dr_entry, ndr) {
ap->found++;
if (dr->expire != 0 && dr->expire < timenow) {
VERIFY(dr->ifp != NULL);
in6_ifstat_inc(dr->ifp, ifs6_defrtr_expiry_cnt);
if ((dr->stateflags & NDDRF_INELIGIBLE) == 0) {
in6_event_enqueue_nwk_wq_entry(IN6_NDP_RTR_EXPIRY, dr->ifp,
&dr->rtaddr, dr->rtlifetime);
}
if (dr->ifp != NULL &&
dr->ifp->if_type == IFT_CELLULAR) {
/*
* Some buggy cellular gateways may not send
* periodic router advertisements.
* Or they may send it with router lifetime
* value that is less than the configured Max and Min
* Router Advertisement interval.
* To top that an idle device may not wake up
* when periodic RA is received on cellular
* interface.
* We could send RS on every wake but RFC
* 4861 precludes that.
* The addresses are of infinite lifetimes
* and are tied to the lifetime of the bearer,
* so keeping the addresses and just getting rid of
* the router does not help us anyways.
* If there's network renumbering, a lifetime with
* value 0 would remove the default router.
* Also it will get deleted as part of purge when
* the PDP context is torn down and configured again.
* For that reason, do not expire the default router
* learned on cellular interface. Ever.
*/
dr->expire += dr->rtlifetime;
nd6log2(debug,
"%s: Refreshing expired default router entry "
"%s for interface %s\n", __func__,
ip6_sprintf(&dr->rtaddr), if_name(dr->ifp));
} else {
ap->killed++;
/*
* Remove the entry from default router list
* and add it to the temp list.
* nd_defrouter_tmp will be a local temporary
* list as no one else can get the same
* removed entry once it is removed from default
* router list.
* Remove the reference after calling defrtrlist_del
*/
TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry);
TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry);
}
} else {
if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) {
ap->sticky++;
} else {
ap->aging_lazy++;
}
}
}
/*
* Keep the following separate from the above
* iteration of nd_defrouter because it's not safe
* to call defrtrlist_del while iterating global default
* router list. Global list has to be traversed
* while holding nd6_mutex throughout.
*
* The following call to defrtrlist_del should be
* safe as we are iterating a local list of
* default routers.
*/
TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) {
TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry);
defrtrlist_del(dr, NULL);
NDDR_REMREF(dr); /* remove list reference */
}
/* XXX TBD: Also iterate through RTI router lists */
/*
* Also check if default router selection needs to be triggered
* for default interface, to avoid an issue with co-existence of
* static un-scoped default route configuration and default router
* discovery/selection.
*/
if (trigger_v6_defrtr_select) {
defrouter_select(NULL, NULL);
trigger_v6_defrtr_select = FALSE;
}
lck_mtx_unlock(nd6_mutex);
}
static void
nd6_service_expired_route_info(struct nd6svc_arg *ap, uint64_t timenow)
{
struct nd_route_info *rti = NULL;
struct nd_route_info *rti_next = NULL;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(nd6_mutex);
nd6_rti_list_wait(__func__);
TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) {
struct nd_defrouter *dr = NULL;
struct nd_defrouter *ndr = NULL;
struct nd_route_info rti_tmp = {};
rti_tmp.nd_rti_prefix = rti->nd_rti_prefix;
rti_tmp.nd_rti_prefixlen = rti->nd_rti_prefixlen;
TAILQ_INIT(&rti_tmp.nd_rti_router_list);
TAILQ_FOREACH_SAFE(dr, &rti->nd_rti_router_list, dr_entry, ndr) {
ap->found++;
if (dr->expire != 0 && dr->expire < timenow) {
VERIFY(dr->ifp != NULL);
if (dr->ifp != NULL &&
dr->ifp->if_type == IFT_CELLULAR) {
/*
* Don't expire these routes over cellular.
* XXX Should we change this for non default routes?
*/
dr->expire += dr->rtlifetime;
nd6log2(debug,
"%s: Refreshing expired default router entry "
"%s for interface %s\n", __func__,
ip6_sprintf(&dr->rtaddr), if_name(dr->ifp));
} else {
ap->killed++;
/*
* Remove the entry from rti entry's router list
* and add it to the temp list.
* Remove the reference after calling defrtrlist_del
*/
TAILQ_REMOVE(&rti->nd_rti_router_list, dr, dr_entry);
TAILQ_INSERT_TAIL(&rti_tmp.nd_rti_router_list, dr, dr_entry);
}
} else {
if (dr->expire == 0 || (dr->stateflags & NDDRF_STATIC)) {
ap->sticky++;
} else {
ap->aging_lazy++;
}
}
}
/*
* Keep the following separate from the above
* iteration of nd_defrouter because it's not safe
* to call defrtrlist_del while iterating global default
* router list. Global list has to be traversed
* while holding nd6_mutex throughout.
*
* The following call to defrtrlist_del should be
* safe as we are iterating a local list of
* default routers.
*/
TAILQ_FOREACH_SAFE(dr, &rti_tmp.nd_rti_router_list, dr_entry, ndr) {
TAILQ_REMOVE(&rti_tmp.nd_rti_router_list, dr, dr_entry);
defrtrlist_del(dr, &rti->nd_rti_router_list);
NDDR_REMREF(dr); /* remove list reference */
}
/*
* The above may have removed an entry from default router list.
* If it did and the list is now empty, remove the rti as well.
*/
if (TAILQ_EMPTY(&rti->nd_rti_router_list)) {
TAILQ_REMOVE(&nd_rti_list, rti, nd_rti_entry);
ndrti_free(rti);
}
}
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED);
nd6_rti_list_signal_done();
lck_mtx_unlock(nd6_mutex);
}
/*
* @function nd6_handle_duplicated_ip6_addr
*
* @brief
* Handle a duplicated IPv6 secured non-termporary address
*
* @discussion
* If the collision count hasn't been exceeded, removes the old
* conflicting IPv6 address, increments the collision count,
* and allocates a new address.
*
* Returns TRUE if the old address was removed, and the locks
* (in6_ifaddr_rwlock, ia6->ia_ifa) were unlocked.
*/
static boolean_t
nd6_handle_duplicated_ip6_addr(struct in6_ifaddr *ia6)
{
uint8_t collision_count;
int error = 0;
struct in6_ifaddr *new_ia6;
struct nd_prefix *pr;
struct ifnet *ifp;
LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE);
IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa);
/* don't retry too many times */
collision_count = ia6->ia6_cga_collision_count;
if (collision_count >= ip6_cga_conflict_retries) {
return FALSE;
}
/* need the prefix to allocate a new address */
pr = ia6->ia6_ndpr;
if (pr == NULL) {
return FALSE;
}
NDPR_ADDREF(pr);
ifp = pr->ndpr_ifp;
log(LOG_DEBUG,
"%s: %s duplicated (collision count %d)\n",
ifp->if_xname, ip6_sprintf(&ia6->ia_addr.sin6_addr),
collision_count);
/* remove the old address */
IFA_UNLOCK(&ia6->ia_ifa);
lck_rw_done(&in6_ifaddr_rwlock);
in6_purgeaddr(&ia6->ia_ifa);
/* allocate a new address with new collision count */
collision_count++;
new_ia6 = in6_pfx_newpersistaddr(pr, 1, &error, FALSE, collision_count);
if (new_ia6 != NULL) {
log(LOG_DEBUG,
"%s: %s new (collision count %d)\n",
ifp->if_xname, ip6_sprintf(&new_ia6->ia_addr.sin6_addr),
collision_count);
IFA_LOCK(&new_ia6->ia_ifa);
NDPR_LOCK(pr);
new_ia6->ia6_ndpr = pr;
NDPR_ADDREF(pr); /* for addr reference */
pr->ndpr_addrcnt++;
VERIFY(pr->ndpr_addrcnt != 0);
NDPR_UNLOCK(pr);
IFA_UNLOCK(&new_ia6->ia_ifa);
ifa_remref(&new_ia6->ia_ifa);
} else {
log(LOG_ERR, "%s: in6_pfx_newpersistaddr failed %d\n",
__func__, error);
}
/* release extra prefix reference */
NDPR_REMREF(pr);
return TRUE;
}
static boolean_t
secured_address_is_duplicated(int flags)
{
#define _IN6_IFF_DUPLICATED_AUTOCONF_SECURED \
(IN6_IFF_DUPLICATED | IN6_IFF_AUTOCONF | IN6_IFF_SECURED)
return (flags & _IN6_IFF_DUPLICATED_AUTOCONF_SECURED) ==
_IN6_IFF_DUPLICATED_AUTOCONF_SECURED;
}
static void
nd6_service_ip6_addr(struct nd6svc_arg *ap, uint64_t timenow)
{
struct in6_ifaddr *ia6 = NULL;
struct in6_ifaddr *nia6 = NULL;
/*
* expire interface addresses.
* in the past the loop was inside prefix expiry processing.
* However, from a stricter spec-conformance standpoint, we should
* rather separate address lifetimes and prefix lifetimes.
*/
addrloop:
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
TAILQ_FOREACH_SAFE(ia6, &in6_ifaddrhead, ia6_link, nia6) {
int oldflags = ia6->ia6_flags;
ap->found++;
IFA_LOCK(&ia6->ia_ifa);
/*
* Extra reference for ourselves; it's no-op if
* we don't have to regenerate temporary address,
* otherwise it protects the address from going
* away since we drop in6_ifaddr_rwlock below.
*/
ifa_addref(&ia6->ia_ifa);
/*
* Check for duplicated secured address
*
* nd6_handle_duplicated_ip6_addr attempts to regenerate
* secure address in the event of a collision.
* On successful generation this returns success
* and we restart the loop.
*
* When we hit the maximum attempts, this returns
* false.
*/
if (secured_address_is_duplicated(ia6->ia6_flags) &&
nd6_handle_duplicated_ip6_addr(ia6)) {
/*
* nd6_handle_duplicated_ip6_addr() unlocked
* (in6_ifaddr_rwlock, ia6->ia_ifa) already.
* Still need to release extra reference on
* ia6->ia_ifa taken above.
*/
ifa_remref(&ia6->ia_ifa);
goto addrloop;
}
/* check address lifetime */
if (IFA6_IS_INVALID(ia6, timenow)) {
/*
* If the expiring address is temporary, try
* regenerating a new one. This would be useful when
* we suspended a laptop PC, then turned it on after a
* period that could invalidate all temporary
* addresses. Although we may have to restart the
* loop (see below), it must be after purging the
* address. Otherwise, we'd see an infinite loop of
* regeneration.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
/*
* NOTE: We have to drop the lock here
* because regen_tmpaddr() eventually calls
* in6_update_ifa(), which must take the lock
* and would otherwise cause a hang. This is
* safe because the goto addrloop leads to a
* re-evaluation of the in6_ifaddrs list
*/
IFA_UNLOCK(&ia6->ia_ifa);
lck_rw_done(&in6_ifaddr_rwlock);
(void) regen_tmpaddr(ia6);
} else {
IFA_UNLOCK(&ia6->ia_ifa);
lck_rw_done(&in6_ifaddr_rwlock);
}
/*
* Purging the address would have caused
* in6_ifaddr_rwlock to be dropped and reacquired;
* therefore search again from the beginning
* of in6_ifaddrs list.
*/
in6_purgeaddr(&ia6->ia_ifa);
ap->killed++;
if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) {
in6_ifstat_inc(ia6->ia_ifa.ifa_ifp, ifs6_addr_expiry_cnt);
in6_event_enqueue_nwk_wq_entry(IN6_NDP_ADDR_EXPIRY,
ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr,
0);
}
/* Release extra reference taken above */
ifa_remref(&ia6->ia_ifa);
goto addrloop;
}
/*
* The lazy timer runs every nd6_prune_lazy seconds with at
* most "2 * nd6_prune_lazy - 1" leeway. We consider the worst
* case here and make sure we schedule the regular timer if an
* interface address is about to expire.
*/
if (IFA6_IS_INVALID(ia6, timenow + 3 * nd6_prune_lazy)) {
ap->aging++;
} else {
ap->aging_lazy++;
}
IFA_LOCK_ASSERT_HELD(&ia6->ia_ifa);
if (IFA6_IS_DEPRECATED(ia6, timenow)) {
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
#if SKYWALK
SK_NXS_MS_IF_ADDR_GENCNT_INC(ia6->ia_ifp);
#endif /* SKYWALK */
/*
* Only enqueue the Deprecated event when the address just
* becomes deprecated.
* Keep it limited to the stable address as it is common for
* older temporary addresses to get deprecated while we generate
* new ones.
*/
if ((ia6->ia6_flags & IN6_IFF_TEMPORARY) == 0) {
in6_event_enqueue_nwk_wq_entry(IN6_ADDR_MARKED_DEPRECATED,
ia6->ia_ifa.ifa_ifp, &ia6->ia_addr.sin6_addr,
0);
}
}
/*
* If a temporary address has just become deprecated,
* regenerate a new one if possible.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
(oldflags & IN6_IFF_DEPRECATED) == 0) {
/* see NOTE above */
IFA_UNLOCK(&ia6->ia_ifa);
lck_rw_done(&in6_ifaddr_rwlock);
if (regen_tmpaddr(ia6) == 0) {
/*
* A new temporary address is
* generated.
* XXX: this means the address chain
* has changed while we are still in
* the loop. Although the change
* would not cause disaster (because
* it's not a deletion, but an
* addition,) we'd rather restart the
* loop just for safety. Or does this
* significantly reduce performance??
*/
/* Release extra reference */
ifa_remref(&ia6->ia_ifa);
goto addrloop;
}
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
} else {
IFA_UNLOCK(&ia6->ia_ifa);
}
} else {
/*
* A new RA might have made a deprecated address
* preferred.
*/
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
#if SKYWALK
if ((oldflags & IN6_IFF_DEPRECATED) != 0) {
SK_NXS_MS_IF_ADDR_GENCNT_INC(ia6->ia_ifp);
}
#endif /* SKYWALK */
IFA_UNLOCK(&ia6->ia_ifa);
}
LCK_RW_ASSERT(&in6_ifaddr_rwlock, LCK_RW_ASSERT_EXCLUSIVE);
/* Release extra reference taken above */
ifa_remref(&ia6->ia_ifa);
}
lck_rw_done(&in6_ifaddr_rwlock);
}
static void
nd6_service_expired_prefix(struct nd6svc_arg *ap, uint64_t timenow)
{
struct nd_prefix *pr = NULL;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(nd6_mutex);
/* expire prefix list */
pr = nd_prefix.lh_first;
while (pr != NULL) {
ap->found++;
/*
* Skip already processed or defunct prefixes
* We may iterate the prefix list from head again
* so, we are trying to not revisit the same prefix
* for the same instance of nd6_service
*/
NDPR_LOCK(pr);
if (pr->ndpr_stateflags & NDPRF_PROCESSED_SERVICE ||
pr->ndpr_stateflags & NDPRF_DEFUNCT) {
pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE;
NDPR_UNLOCK(pr);
pr = pr->ndpr_next;
continue;
}
/*
* If there are still manual addresses configured in the system
* that are associated with the prefix, ignore prefix expiry
*/
if (pr->ndpr_manual_addrcnt != 0) {
pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE;
NDPR_UNLOCK(pr);
pr = pr->ndpr_next;
continue;
}
/*
* check prefix lifetime.
* since pltime is just for autoconf, pltime processing for
* prefix is not necessary.
*/
if (pr->ndpr_expire != 0 && pr->ndpr_expire < timenow) {
/*
* address expiration and prefix expiration are
* separate. NEVER perform in6_purgeaddr here.
*/
pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE;
NDPR_ADDREF(pr);
prelist_remove(pr);
NDPR_UNLOCK(pr);
in6_ifstat_inc(pr->ndpr_ifp, ifs6_pfx_expiry_cnt);
in6_event_enqueue_nwk_wq_entry(IN6_NDP_PFX_EXPIRY,
pr->ndpr_ifp, &pr->ndpr_prefix.sin6_addr,
0);
NDPR_REMREF(pr);
pfxlist_onlink_check();
pr = nd_prefix.lh_first;
ap->killed++;
} else {
if (pr->ndpr_expire == 0 ||
(pr->ndpr_stateflags & NDPRF_STATIC)) {
ap->sticky++;
} else {
ap->aging_lazy++;
}
pr->ndpr_stateflags |= NDPRF_PROCESSED_SERVICE;
NDPR_UNLOCK(pr);
pr = pr->ndpr_next;
}
}
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
NDPR_LOCK(pr);
pr->ndpr_stateflags &= ~NDPRF_PROCESSED_SERVICE;
NDPR_UNLOCK(pr);
}
lck_mtx_unlock(nd6_mutex);
}
/*
* ND6 service routine to expire default route list and prefix list
*/
static void
nd6_service(void *arg)
{
struct nd6svc_arg *ap = arg;
uint64_t timenow;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
/*
* Since we may drop rnh_lock and nd6_mutex below, we want
* to run this entire operation single threaded.
*/
while (nd6_service_busy) {
nd6log2(debug, "%s: %s is blocked by %d waiters\n",
__func__, ap->draining ? "drainer" : "timer",
nd6_service_waiters);
nd6_service_waiters++;
(void) msleep(nd6_service_wc, rnh_lock, (PZERO - 1),
__func__, NULL);
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
}
/* We are busy now; tell everyone else to go away */
nd6_service_busy = TRUE;
net_update_uptime();
timenow = net_uptime();
/* Iterate and service neighbor cache entries */
nd6_service_neighbor_cache(ap, timenow);
/*
* There is lock ordering requirement and rnh_lock
* has to be released before acquiring nd6_mutex.
*/
lck_mtx_unlock(rnh_lock);
/* Iterate and service expired default router */
nd6_service_expired_default_router(ap, timenow);
/* Iterate and service expired route information entries */
nd6_service_expired_route_info(ap, timenow);
/* Iterate and service expired/duplicated IPv6 address */
nd6_service_ip6_addr(ap, timenow);
/* Iterate and service expired IPv6 prefixes */
nd6_service_expired_prefix(ap, timenow);
lck_mtx_lock(rnh_lock);
/* We're done; let others enter */
nd6_service_busy = FALSE;
if (nd6_service_waiters > 0) {
nd6_service_waiters = 0;
wakeup(nd6_service_wc);
}
}
static int nd6_need_draining = 0;
void
nd6_drain(void *arg)
{
#pragma unused(arg)
nd6log2(debug, "%s: draining ND6 entries\n", __func__);
lck_mtx_lock(rnh_lock);
nd6_need_draining = 1;
nd6_sched_timeout(NULL, NULL);
lck_mtx_unlock(rnh_lock);
}
/*
* We use the ``arg'' variable to decide whether or not the timer we're
* running is the fast timer. We do this to reset the nd6_fast_timer_on
* variable so that later we don't end up ignoring a ``fast timer''
* request if the 5 second timer is running (see nd6_sched_timeout).
*/
static void
nd6_timeout(void *arg)
{
struct nd6svc_arg sarg;
uint32_t buf;
lck_mtx_lock(rnh_lock);
bzero(&sarg, sizeof(sarg));
if (nd6_need_draining != 0) {
nd6_need_draining = 0;
sarg.draining = 1;
}
nd6_service(&sarg);
nd6log2(debug, "%s: found %u, aging_lazy %u, aging %u, "
"sticky %u, killed %u\n", __func__, sarg.found, sarg.aging_lazy,
sarg.aging, sarg.sticky, sarg.killed);
/* re-arm the timer if there's work to do */
nd6_timeout_run--;
VERIFY(nd6_timeout_run >= 0 && nd6_timeout_run < 2);
if (arg == &nd6_fast_timer_on) {
nd6_fast_timer_on = FALSE;
}
if (sarg.aging_lazy > 0 || sarg.aging > 0 || nd6_sched_timeout_want) {
struct timeval atv, ltv, *leeway;
int lazy = nd6_prune_lazy;
if (sarg.aging > 0 || lazy < 1) {
atv.tv_usec = 0;
atv.tv_sec = nd6_prune;
leeway = NULL;
} else {
VERIFY(lazy >= 1);
atv.tv_usec = 0;
atv.tv_sec = MAX(nd6_prune, lazy);
ltv.tv_usec = 0;
read_frandom(&buf, sizeof(buf));
ltv.tv_sec = MAX(buf % lazy, 1) * 2;
leeway = &ltv;
}
nd6_sched_timeout(&atv, leeway);
} else if (nd6_debug) {
nd6log2(debug, "%s: not rescheduling timer\n", __func__);
}
lck_mtx_unlock(rnh_lock);
}
void
nd6_sched_timeout(struct timeval *atv, struct timeval *ltv)
{
struct timeval tv;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
if (atv == NULL) {
tv.tv_usec = 0;
tv.tv_sec = MAX(nd6_prune, 1);
atv = &tv;
ltv = NULL; /* ignore leeway */
}
/* see comments on top of this file */
if (nd6_timeout_run == 0) {
if (ltv == NULL) {
nd6log2(debug, "%s: timer scheduled in "
"T+%llus.%lluu (demand %d)\n", __func__,
(uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec,
nd6_sched_timeout_want);
nd6_fast_timer_on = TRUE;
timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv));
} else {
nd6log2(debug, "%s: timer scheduled in "
"T+%llus.%lluu with %llus.%lluu leeway "
"(demand %d)\n", __func__, (uint64_t)atv->tv_sec,
(uint64_t)atv->tv_usec, (uint64_t)ltv->tv_sec,
(uint64_t)ltv->tv_usec, nd6_sched_timeout_want);
nd6_fast_timer_on = FALSE;
timeout_with_leeway(nd6_timeout, NULL,
tvtohz(atv), tvtohz(ltv));
}
nd6_timeout_run++;
nd6_sched_timeout_want = 0;
} else if (nd6_timeout_run == 1 && ltv == NULL &&
nd6_fast_timer_on == FALSE) {
nd6log2(debug, "%s: fast timer scheduled in "
"T+%llus.%lluu (demand %d)\n", __func__,
(uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec,
nd6_sched_timeout_want);
nd6_fast_timer_on = TRUE;
nd6_sched_timeout_want = 0;
nd6_timeout_run++;
timeout(nd6_timeout, &nd6_fast_timer_on, tvtohz(atv));
} else {
if (ltv == NULL) {
nd6log2(debug, "%s: not scheduling timer: "
"timers %d, fast_timer %d, T+%llus.%lluu\n",
__func__, nd6_timeout_run, nd6_fast_timer_on,
(uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec);
} else {
nd6log2(debug, "%s: not scheduling timer: "
"timers %d, fast_timer %d, T+%llus.%lluu "
"with %llus.%lluu leeway\n", __func__,
nd6_timeout_run, nd6_fast_timer_on,
(uint64_t)atv->tv_sec, (uint64_t)atv->tv_usec,
(uint64_t)ltv->tv_sec, (uint64_t)ltv->tv_usec);
}
}
}
/*
* ND6 router advertisement kernel notification
*/
void
nd6_post_msg(u_int32_t code, struct nd_prefix_list *prefix_list,
u_int32_t list_length, u_int32_t mtu)
{
struct kev_msg ev_msg;
struct kev_nd6_ra_data nd6_ra_msg_data;
struct nd_prefix_list *itr = prefix_list;
bzero(&ev_msg, sizeof(struct kev_msg));
ev_msg.vendor_code = KEV_VENDOR_APPLE;
ev_msg.kev_class = KEV_NETWORK_CLASS;
ev_msg.kev_subclass = KEV_ND6_SUBCLASS;
ev_msg.event_code = code;
bzero(&nd6_ra_msg_data, sizeof(nd6_ra_msg_data));
if (mtu > 0 && mtu >= IPV6_MMTU) {
nd6_ra_msg_data.mtu = mtu;
nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_MTU;
}
if (list_length > 0 && prefix_list != NULL) {
nd6_ra_msg_data.list_length = list_length;
nd6_ra_msg_data.flags |= KEV_ND6_DATA_VALID_PREFIX;
}
while (itr != NULL && nd6_ra_msg_data.list_index < list_length) {
SOCKADDR_COPY(&itr->pr.ndpr_prefix, &nd6_ra_msg_data.prefix.prefix,
sizeof(nd6_ra_msg_data.prefix.prefix));
nd6_ra_msg_data.prefix.raflags = itr->pr.ndpr_raf;
nd6_ra_msg_data.prefix.prefixlen = itr->pr.ndpr_plen;
nd6_ra_msg_data.prefix.origin = PR_ORIG_RA;
nd6_ra_msg_data.prefix.vltime = itr->pr.ndpr_vltime;
nd6_ra_msg_data.prefix.pltime = itr->pr.ndpr_pltime;
nd6_ra_msg_data.prefix.expire = ndpr_getexpire(&itr->pr);
nd6_ra_msg_data.prefix.flags = itr->pr.ndpr_stateflags;
nd6_ra_msg_data.prefix.refcnt = itr->pr.ndpr_addrcnt;
nd6_ra_msg_data.prefix.if_index = itr->pr.ndpr_ifp->if_index;
/* send the message up */
ev_msg.dv[0].data_ptr = &nd6_ra_msg_data;
ev_msg.dv[0].data_length = sizeof(nd6_ra_msg_data);
ev_msg.dv[1].data_length = 0;
dlil_post_complete_msg(NULL, &ev_msg);
/* clean up for the next prefix */
bzero(&nd6_ra_msg_data.prefix, sizeof(nd6_ra_msg_data.prefix));
itr = itr->next;
nd6_ra_msg_data.list_index++;
}
}
/*
* Regenerate deprecated/invalidated temporary address
*/
static int
regen_tmpaddr(struct in6_ifaddr *ia6)
{
struct ifaddr *ifa;
struct ifnet *ifp;
struct in6_ifaddr *public_ifa6 = NULL;
uint64_t timenow = net_uptime();
ifp = ia6->ia_ifa.ifa_ifp;
ifnet_lock_shared(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
struct in6_ifaddr *it6;
IFA_LOCK(ifa);
if (ifa->ifa_addr->sa_family != AF_INET6) {
IFA_UNLOCK(ifa);
continue;
}
it6 = (struct in6_ifaddr *)ifa;
/* ignore no autoconf addresses. */
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) {
IFA_UNLOCK(ifa);
continue;
}
/* ignore autoconf addresses with different prefixes. */
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) {
IFA_UNLOCK(ifa);
continue;
}
/*
* Now we are looking at an autoconf address with the same
* prefix as ours. If the address is temporary and is still
* preferred, do not create another one. It would be rare, but
* could happen, for example, when we resume a laptop PC after
* a long period.
*/
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
!IFA6_IS_DEPRECATED(it6, timenow)) {
IFA_UNLOCK(ifa);
if (public_ifa6 != NULL) {
ifa_remref(&public_ifa6->ia_ifa);
}
public_ifa6 = NULL;
break;
}
/*
* This is a public autoconf address that has the same prefix
* as ours. If it is preferred, keep it. We can't break the
* loop here, because there may be a still-preferred temporary
* address with the prefix.
*/
if (!IFA6_IS_DEPRECATED(it6, timenow)) {
ifa_addref(ifa); /* for public_ifa6 */
IFA_UNLOCK(ifa);
if (public_ifa6 != NULL) {
ifa_remref(&public_ifa6->ia_ifa);
}
public_ifa6 = it6;
} else {
IFA_UNLOCK(ifa);
}
}
ifnet_lock_done(ifp);
if (public_ifa6 != NULL) {
int e;
if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
" tmp addr,errno=%d\n", e);
ifa_remref(&public_ifa6->ia_ifa);
return -1;
}
ifa_remref(&public_ifa6->ia_ifa);
return 0;
}
return -1;
}
static void
nd6_purge_interface_default_routers(struct ifnet *ifp)
{
struct nd_defrouter *dr = NULL;
struct nd_defrouter *ndr = NULL;
struct nd_drhead nd_defrouter_tmp = {};
TAILQ_INIT(&nd_defrouter_tmp);
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED);
TAILQ_FOREACH_SAFE(dr, &nd_defrouter_list, dr_entry, ndr) {
if (dr->ifp != ifp) {
continue;
}
/*
* Remove the entry from default router list
* and add it to the temp list.
* nd_defrouter_tmp will be a local temporary
* list as no one else can get the same
* removed entry once it is removed from default
* router list.
* Remove the reference after calling defrtrlist_del.
*
* The uninstalled entries have to be iterated first
* when we call defrtrlist_del.
* This is to ensure that we don't end up calling
* default router selection when there are other
* uninstalled candidate default routers on
* the interface.
* If we don't respect that order, we may end
* up missing out on some entries.
*
* For that reason, installed ones must be inserted
* at the tail and uninstalled ones at the head
*/
TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry);
if (dr->stateflags & NDDRF_INSTALLED) {
TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry);
} else {
TAILQ_INSERT_HEAD(&nd_defrouter_tmp, dr, dr_entry);
}
}
/*
* The following call to defrtrlist_del should be
* safe as we are iterating a local list of
* default routers.
*
* We don't really need nd6_mutex here but keeping
* it as it is to avoid changing assertios held in
* the functions in the call-path.
*/
TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, ndr) {
TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry);
defrtrlist_del(dr, NULL);
NDDR_REMREF(dr); /* remove list reference */
}
}
static void
nd6_purge_interface_prefixes(struct ifnet *ifp)
{
boolean_t removed = FALSE;
struct nd_prefix *pr = NULL;
struct nd_prefix *npr = NULL;
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED);
/* Nuke prefix list entries toward ifp */
for (pr = nd_prefix.lh_first; pr; pr = npr) {
NDPR_LOCK(pr);
npr = pr->ndpr_next;
if (pr->ndpr_ifp == ifp &&
!(pr->ndpr_stateflags & NDPRF_DEFUNCT)) {
/*
* Because if_detach() does *not* release prefixes
* while purging addresses the reference count will
* still be above zero. We therefore reset it to
* make sure that the prefix really gets purged.
*/
pr->ndpr_addrcnt = 0;
/*
* Previously, pr->ndpr_addr is removed as well,
* but I strongly believe we don't have to do it.
* nd6_purge() is only called from in6_ifdetach(),
* which removes all the associated interface addresses
* by itself.
* (jinmei@kame.net 20010129)
*/
NDPR_ADDREF(pr);
prelist_remove(pr);
NDPR_UNLOCK(pr);
NDPR_REMREF(pr);
removed = TRUE;
npr = nd_prefix.lh_first;
} else {
NDPR_UNLOCK(pr);
}
}
if (removed) {
pfxlist_onlink_check();
}
}
static void
nd6_router_select_rti_entries(struct ifnet *ifp)
{
struct nd_route_info *rti = NULL;
struct nd_route_info *rti_next = NULL;
nd6_rti_list_wait(__func__);
TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) {
defrouter_select(ifp, &rti->nd_rti_router_list);
}
nd6_rti_list_signal_done();
}
static void
nd6_purge_interface_rti_entries(struct ifnet *ifp)
{
struct nd_route_info *rti = NULL;
struct nd_route_info *rti_next = NULL;
nd6_rti_list_wait(__func__);
TAILQ_FOREACH_SAFE(rti, &nd_rti_list, nd_rti_entry, rti_next) {
struct nd_route_info rti_tmp = {};
struct nd_defrouter *dr = NULL;
struct nd_defrouter *ndr = NULL;
rti_tmp.nd_rti_prefix = rti->nd_rti_prefix;
rti_tmp.nd_rti_prefixlen = rti->nd_rti_prefixlen;
TAILQ_INIT(&rti_tmp.nd_rti_router_list);
TAILQ_FOREACH_SAFE(dr, &rti->nd_rti_router_list, dr_entry, ndr) {
/*
* If ifp is provided, skip the entries that don't match.
* Else it is treated as a purge.
*/
if (ifp != NULL && dr->ifp != ifp) {
continue;
}
/*
* Remove the entry from rti's router list
* and add it to the temp list.
* Remove the reference after calling defrtrlist_del.
*
* The uninstalled entries have to be iterated first
* when we call defrtrlist_del.
* This is to ensure that we don't end up calling
* router selection when there are other
* uninstalled candidate default routers on
* the interface.
* If we don't respect that order, we may end
* up missing out on some entries.
*
* For that reason, installed ones must be inserted
* at the tail and uninstalled ones at the head
*/
TAILQ_REMOVE(&rti->nd_rti_router_list, dr, dr_entry);
if (dr->stateflags & NDDRF_INSTALLED) {
TAILQ_INSERT_TAIL(&rti_tmp.nd_rti_router_list, dr, dr_entry);
} else {
TAILQ_INSERT_HEAD(&rti_tmp.nd_rti_router_list, dr, dr_entry);
}
}
/*
* The following call to defrtrlist_del should be
* safe as we are iterating a local list of
* routers.
*
* We don't really need nd6_mutex here but keeping
* it as it is to avoid changing assertios held in
* the functions in the call-path.
*/
TAILQ_FOREACH_SAFE(dr, &rti_tmp.nd_rti_router_list, dr_entry, ndr) {
TAILQ_REMOVE(&rti_tmp.nd_rti_router_list, dr, dr_entry);
defrtrlist_del(dr, &rti->nd_rti_router_list);
NDDR_REMREF(dr); /* remove list reference */
}
/*
* The above may have removed an entry from default router list.
* If it did and the list is now empty, remove the rti as well.
*/
if (TAILQ_EMPTY(&rti->nd_rti_router_list)) {
TAILQ_REMOVE(&nd_rti_list, rti, nd_rti_entry);
ndrti_free(rti);
}
}
nd6_rti_list_signal_done();
}
static void
nd6_purge_interface_llinfo(struct ifnet *ifp)
{
struct llinfo_nd6 *ln = NULL;
/* Note that rt->rt_ifp may not be the same as ifp,
* due to KAME goto ours hack. See RTM_RESOLVE case in
* nd6_rtrequest(), and ip6_input().
*/
again:
lck_mtx_lock(rnh_lock);
ln = llinfo_nd6.ln_next;
while (ln != NULL && ln != &llinfo_nd6) {
struct rtentry *rt;
struct llinfo_nd6 *nln;
nln = ln->ln_next;
rt = ln->ln_rt;
RT_LOCK(rt);
if (rt->rt_gateway != NULL &&
rt->rt_gateway->sa_family == AF_LINK &&
SDL(rt->rt_gateway)->sdl_index == ifp->if_index) {
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
/*
* See comments on nd6_service() for reasons why
* this loop is repeated; we bite the costs of
* going thru the same llinfo_nd6 more than once
* here, since this purge happens during detach,
* and that unlike the timer case, it's possible
* there's more than one purges happening at the
* same time (thus a flag wouldn't buy anything).
*/
nd6_free(rt);
RT_REMREF(rt);
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
goto again;
} else {
RT_UNLOCK(rt);
}
ln = nln;
}
lck_mtx_unlock(rnh_lock);
}
/*
* Nuke neighbor cache/prefix/default router management table, right before
* ifp goes away.
*/
void
nd6_purge(struct ifnet *ifp)
{
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(nd6_mutex);
/* Nuke default router list entries toward ifp */
nd6_purge_interface_default_routers(ifp);
/* Nuke prefix list entries toward ifp */
nd6_purge_interface_prefixes(ifp);
/* Nuke route info option entries toward ifp */
nd6_purge_interface_rti_entries(ifp);
lck_mtx_unlock(nd6_mutex);
/* cancel default outgoing interface setting */
if (nd6_defifindex == ifp->if_index) {
nd6_setdefaultiface(0);
}
/*
* Perform default router selection even when we are a router,
* if Scoped Routing is enabled.
* XXX ?Should really not be needed since when defrouter_select
* was changed to work on interface.
*/
lck_mtx_lock(nd6_mutex);
/* refresh default router list */
defrouter_select(ifp, NULL);
lck_mtx_unlock(nd6_mutex);
/* Nuke neighbor cache entries for the ifp. */
nd6_purge_interface_llinfo(ifp);
}
/*
* Upon success, the returned route will be locked and the caller is
* responsible for releasing the reference and doing RT_UNLOCK(rt).
* This routine does not require rnh_lock to be held by the caller,
* although it needs to be indicated of such a case in order to call
* the correct variant of the relevant routing routines.
*/
struct rtentry *
nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp, int rt_locked)
{
struct rtentry *rt __single;
struct sockaddr_in6 sin6;
unsigned int ifscope;
SOCKADDR_ZERO(&sin6, sizeof(sin6));
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = *addr6;
ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE;
if (rt_locked) {
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
rt = rtalloc1_scoped_locked(SA(&sin6), create, 0, ifscope);
} else {
rt = rtalloc1_scoped(SA(&sin6), create, 0, ifscope);
}
if (rt != NULL) {
RT_LOCK(rt);
if ((rt->rt_flags & RTF_LLINFO) == 0) {
/*
* This is the case for the default route.
* If we want to create a neighbor cache for the
* address, we should free the route for the
* destination and allocate an interface route.
*/
if (create) {
RT_UNLOCK(rt);
if (rt_locked) {
rtfree_locked(rt);
} else {
rtfree(rt);
}
rt = NULL;
}
}
}
if (rt == NULL) {
if (create && ifp) {
struct ifaddr *ifa;
u_int32_t ifa_flags;
int e;
/*
* If no route is available and create is set,
* we allocate a host route for the destination
* and treat it like an interface route.
* This hack is necessary for a neighbor which can't
* be covered by our own prefix.
*/
ifa = ifaof_ifpforaddr(SA(&sin6), ifp);
if (ifa == NULL) {
return NULL;
}
/*
* Create a new route. RTF_LLINFO is necessary
* to create a Neighbor Cache entry for the
* destination in nd6_rtrequest which will be
* called in rtrequest via ifa->ifa_rtrequest.
*/
if (!rt_locked) {
lck_mtx_lock(rnh_lock);
}
IFA_LOCK_SPIN(ifa);
ifa_flags = ifa->ifa_flags;
IFA_UNLOCK(ifa);
e = rtrequest_scoped_locked(RTM_ADD, SA(&sin6), ifa->ifa_addr, SA(&all1_sa),
(ifa_flags | RTF_HOST | RTF_LLINFO) & ~RTF_CLONING, &rt, ifscope);
if (e != 0) {
if (e != EEXIST) {
log(LOG_ERR, "%s: failed to add route "
"for a neighbor(%s), errno=%d\n",
__func__, ip6_sprintf(addr6), e);
}
}
if (!rt_locked) {
lck_mtx_unlock(rnh_lock);
}
ifa_remref(ifa);
if (rt == NULL) {
return NULL;
}
RT_LOCK(rt);
if (rt->rt_llinfo) {
struct llinfo_nd6 *ln = rt->rt_llinfo;
boolean_t nud_enabled = FALSE;
/*
* The IPv6 initialization of the loopback interface
* may happen after another interface gets assigned
* an IPv6 address.
* To avoid asserting treat local routes as special
* case.
*/
if (rt->rt_ifp != lo_ifp) {
struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp);
VERIFY((NULL != ndi) && (TRUE == ndi->initialized));
nud_enabled = !!(ndi->flags & ND6_IFF_PERFORMNUD);
}
/*
* For interface's that do not perform NUD
* neighbor cache entres must always be marked
* reachable with no expiry
*/
if (nud_enabled) {
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE);
} else {
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE);
ln_setexpire(ln, 0);
}
}
} else {
return NULL;
}
}
RT_LOCK_ASSERT_HELD(rt);
/*
* Validation for the entry.
* Note that the check for rt_llinfo is necessary because a cloned
* route from a parent route that has the L flag (e.g. the default
* route to a p2p interface) may have the flag, too, while the
* destination is not actually a neighbor.
* XXX: we can't use rt->rt_ifp to check for the interface, since
* it might be the loopback interface if the entry is for our
* own address on a non-loopback interface. Instead, we should
* use rt->rt_ifa->ifa_ifp, which would specify the REAL
* interface.
* Note also that ifa_ifp and ifp may differ when we connect two
* interfaces to a same link, install a link prefix to an interface,
* and try to install a neighbor cache on an interface that does not
* have a route to the prefix.
*
* If the address is from a proxied prefix, the ifa_ifp and ifp might
* not match, because nd6_na_input() could have modified the ifp
* of the route to point to the interface where the NA arrived on,
* hence the test for RTF_PROXY.
*/
if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
(ifp && rt->rt_ifa->ifa_ifp != ifp &&
!(rt->rt_flags & RTF_PROXY))) {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
if (create) {
log(LOG_DEBUG, "%s: failed to lookup %s "
"(if = %s)\n", __func__, ip6_sprintf(addr6),
ifp ? if_name(ifp) : "unspec");
/* xxx more logs... kazu */
}
return NULL;
}
/*
* Caller needs to release reference and call RT_UNLOCK(rt).
*/
return rt;
}
/*
* Test whether a given IPv6 address is a neighbor or not, ignoring
* the actual neighbor cache. The neighbor cache is ignored in order
* to not reenter the routing code from within itself.
*/
static int
nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
{
struct nd_prefix *pr;
struct ifaddr *dstaddr;
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED);
/*
* A link-local address is always a neighbor.
* XXX: a link does not necessarily specify a single interface.
*/
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
struct sockaddr_in6 sin6_copy;
u_int32_t zone;
/*
* We need sin6_copy since sa6_recoverscope() may modify the
* content (XXX).
*/
sin6_copy = *addr;
if (sa6_recoverscope(&sin6_copy, FALSE)) {
return 0; /* XXX: should be impossible */
}
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) {
return 0;
}
if (sin6_copy.sin6_scope_id == zone) {
return 1;
} else {
return 0;
}
}
/*
* If the address matches one of our addresses,
* it should be a neighbor.
* If the address matches one of our on-link prefixes, it should be a
* neighbor.
*/
for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
NDPR_LOCK(pr);
if (pr->ndpr_ifp != ifp) {
NDPR_UNLOCK(pr);
continue;
}
if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
NDPR_UNLOCK(pr);
continue;
}
if (in6_are_masked_addr_scope_equal(&pr->ndpr_prefix.sin6_addr, pr->ndpr_prefix.sin6_scope_id,
&addr->sin6_addr, addr->sin6_scope_id, &pr->ndpr_mask)) {
NDPR_UNLOCK(pr);
return 1;
}
NDPR_UNLOCK(pr);
}
/*
* If the address is assigned on the node of the other side of
* a p2p interface, the address should be a neighbor.
*/
dstaddr = ifa_ifwithdstaddr(SA(addr));
if (dstaddr != NULL) {
if (dstaddr->ifa_ifp == ifp) {
ifa_remref(dstaddr);
return 1;
}
ifa_remref(dstaddr);
dstaddr = NULL;
}
return 0;
}
/*
* Detect if a given IPv6 address identifies a neighbor on a given link.
* XXX: should take care of the destination of a p2p link?
*/
int
nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp,
int rt_locked)
{
struct rtentry *rt;
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(nd6_mutex);
if (nd6_is_new_addr_neighbor(addr, ifp)) {
lck_mtx_unlock(nd6_mutex);
return 1;
}
lck_mtx_unlock(nd6_mutex);
/*
* Even if the address matches none of our addresses, it might be
* in the neighbor cache.
*/
if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp, rt_locked)) != NULL) {
RT_LOCK_ASSERT_HELD(rt);
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
return 1;
}
return 0;
}
/*
* Free an nd6 llinfo entry.
* Since the function would cause significant changes in the kernel, DO NOT
* make it global, unless you have a strong reason for the change, and are sure
* that the change is safe.
*/
void
nd6_free(struct rtentry *rt)
{
struct llinfo_nd6 *ln = NULL;
struct in6_addr in6 = {};
struct nd_defrouter *dr = NULL;
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
RT_LOCK_ASSERT_NOTHELD(rt);
lck_mtx_lock(nd6_mutex);
RT_LOCK(rt);
RT_ADDREF_LOCKED(rt); /* Extra ref */
ln = rt->rt_llinfo;
in6 = SIN6(rt_key(rt))->sin6_addr;
/*
* Prevent another thread from modifying rt_key, rt_gateway
* via rt_setgate() after the rt_lock is dropped by marking
* the route as defunct.
*/
rt->rt_flags |= RTF_CONDEMNED;
/*
* We used to have pfctlinput(PRC_HOSTDEAD) here. Even though it is
* not harmful, it was not really necessary. Perform default router
* selection even when we are a router, if Scoped Routing is enabled.
*/
/* XXX TDB Handle lists in route information option as well */
dr = defrouter_lookup(NULL, &SIN6(rt_key(rt))->sin6_addr, rt->rt_ifp);
if ((ln && ln->ln_router) || dr) {
/*
* rt6_flush must be called whether or not the neighbor
* is in the Default Router List.
* See a corresponding comment in nd6_na_input().
*/
RT_UNLOCK(rt);
lck_mtx_unlock(nd6_mutex);
rt6_flush(&in6, rt->rt_ifp);
lck_mtx_lock(nd6_mutex);
} else {
RT_UNLOCK(rt);
}
if (dr) {
NDDR_REMREF(dr);
/*
* Unreachablity of a router might affect the default
* router selection and on-link detection of advertised
* prefixes.
*/
/*
* Temporarily fake the state to choose a new default
* router and to perform on-link determination of
* prefixes correctly.
* Below the state will be set correctly,
* or the entry itself will be deleted.
*/
RT_LOCK_SPIN(rt);
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE);
/*
* Since defrouter_select() does not affect the
* on-link determination and MIP6 needs the check
* before the default router selection, we perform
* the check now.
*/
RT_UNLOCK(rt);
pfxlist_onlink_check();
/*
* refresh default router list
*/
defrouter_select(rt->rt_ifp, NULL);
/* Loop through all RTI's as well and trigger router selection. */
nd6_router_select_rti_entries(rt->rt_ifp);
}
RT_LOCK_ASSERT_NOTHELD(rt);
lck_mtx_unlock(nd6_mutex);
/*
* Detach the route from the routing tree and the list of neighbor
* caches, and disable the route entry not to be used in already
* cached routes.
*/
(void) rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL);
/* Extra ref held above; now free it */
rtfree(rt);
}
void
nd6_rtrequest(int req, struct rtentry *rt, struct sockaddr *sa)
{
#pragma unused(sa)
struct sockaddr *gate = rt->rt_gateway;
struct llinfo_nd6 *ln = rt->rt_llinfo;
static struct sockaddr_dl null_sdl =
{ .sdl_len = sizeof(null_sdl), .sdl_family = AF_LINK };
struct ifnet *ifp = rt->rt_ifp;
struct ifaddr *ifa;
uint64_t timenow;
char buf[MAX_IPv6_STR_LEN];
boolean_t nud_enabled = FALSE;
/*
* The IPv6 initialization of the loopback interface
* may happen after another interface gets assigned
* an IPv6 address.
* To avoid asserting treat local routes as special
* case.
*/
if (rt->rt_ifp != lo_ifp) {
struct nd_ifinfo *ndi = ND_IFINFO(rt->rt_ifp);
VERIFY((NULL != ndi) && (TRUE == ndi->initialized));
nud_enabled = !!(ndi->flags & ND6_IFF_PERFORMNUD);
}
VERIFY(nd6_init_done);
LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED);
RT_LOCK_ASSERT_HELD(rt);
/*
* We have rnh_lock held, see if we need to schedule the timer;
* we might do this again below during RTM_RESOLVE, but doing it
* now handles all other cases.
*/
if (nd6_sched_timeout_want) {
nd6_sched_timeout(NULL, NULL);
}
if (rt->rt_flags & RTF_GATEWAY) {
return;
}
if (!nd6_need_cache(ifp) && !(rt->rt_flags & RTF_HOST)) {
/*
* This is probably an interface direct route for a link
* which does not need neighbor caches (e.g. fe80::%lo0/64).
* We do not need special treatment below for such a route.
* Moreover, the RTF_LLINFO flag which would be set below
* would annoy the ndp(8) command.
*/
return;
}
if (req == RTM_RESOLVE) {
int no_nd_cache;
if (!nd6_need_cache(ifp)) { /* stf case */
no_nd_cache = 1;
} else {
struct sockaddr_in6 sin6;
rtkey_to_sa6(rt, &sin6);
/*
* nd6_is_addr_neighbor() may call nd6_lookup(),
* therefore we drop rt_lock to avoid deadlock
* during the lookup.
*/
RT_ADDREF_LOCKED(rt);
RT_UNLOCK(rt);
no_nd_cache = !nd6_is_addr_neighbor(&sin6, ifp, 1);
RT_LOCK(rt);
RT_REMREF_LOCKED(rt);
}
/*
* FreeBSD and BSD/OS often make a cloned host route based
* on a less-specific route (e.g. the default route).
* If the less specific route does not have a "gateway"
* (this is the case when the route just goes to a p2p or an
* stf interface), we'll mistakenly make a neighbor cache for
* the host route, and will see strange neighbor solicitation
* for the corresponding destination. In order to avoid the
* confusion, we check if the destination of the route is
* a neighbor in terms of neighbor discovery, and stop the
* process if not. Additionally, we remove the LLINFO flag
* so that ndp(8) will not try to get the neighbor information
* of the destination.
*/
if (no_nd_cache) {
rt->rt_flags &= ~RTF_LLINFO;
return;
}
}
timenow = net_uptime();
switch (req) {
case RTM_ADD:
/*
* There is no backward compatibility :)
*
* if ((rt->rt_flags & RTF_HOST) == 0 &&
* SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
* rt->rt_flags |= RTF_CLONING;
*/
if ((rt->rt_flags & RTF_CLONING) ||
((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
/*
* Case 1: This route should come from a route to
* interface (RTF_CLONING case) or the route should be
* treated as on-link but is currently not
* (RTF_LLINFO && ln == NULL case).
*/
if (rt_setgate(rt, rt_key(rt), SA(&null_sdl)) == 0) {
gate = rt->rt_gateway;
SDL(gate)->sdl_type = ifp->if_type;
SDL(gate)->sdl_index = ifp->if_index;
/*
* In case we're called before 1.0 sec.
* has elapsed.
*/
if (ln != NULL) {
ln_setexpire(ln,
(ifp->if_eflags & IFEF_IPV6_ND6ALT)
? 0 : MAX(timenow, 1));
}
}
if (rt->rt_flags & RTF_CLONING) {
break;
}
}
/*
* In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
* We don't do that here since llinfo is not ready yet.
*
* There are also couple of other things to be discussed:
* - unsolicited NA code needs improvement beforehand
* - RFC4861 says we MAY send multicast unsolicited NA
* (7.2.6 paragraph 4), however, it also says that we
* SHOULD provide a mechanism to prevent multicast NA storm.
* we don't have anything like it right now.
* note that the mechanism needs a mutual agreement
* between proxies, which means that we need to implement
* a new protocol, or a new kludge.
* - from RFC4861 6.2.4, host MUST NOT send an unsolicited RA.
* we need to check ip6forwarding before sending it.
* (or should we allow proxy ND configuration only for
* routers? there's no mention about proxy ND from hosts)
*/
OS_FALLTHROUGH;
case RTM_RESOLVE:
if (!(ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK))) {
/*
* Address resolution isn't necessary for a point to
* point link, so we can skip this test for a p2p link.
*/
if (gate->sa_family != AF_LINK ||
gate->sa_len < sizeof(null_sdl)) {
/* Don't complain in case of RTM_ADD */
if (req == RTM_RESOLVE) {
log(LOG_ERR, "%s: route to %s has bad "
"gateway address (sa_family %u "
"sa_len %u) on %s\n", __func__,
inet_ntop(AF_INET6,
&SIN6(rt_key(rt))->sin6_addr, buf,
sizeof(buf)), gate->sa_family,
gate->sa_len, if_name(ifp));
}
break;
}
SDL(gate)->sdl_type = ifp->if_type;
SDL(gate)->sdl_index = ifp->if_index;
}
if (ln != NULL) {
break; /* This happens on a route change */
}
/*
* Case 2: This route may come from cloning, or a manual route
* add with a LL address.
*/
rt->rt_llinfo = ln = nd6_llinfo_alloc(Z_WAITOK);
nd6_allocated++;
rt->rt_llinfo_get_ri = nd6_llinfo_get_ri;
rt->rt_llinfo_get_iflri = nd6_llinfo_get_iflri;
rt->rt_llinfo_purge = nd6_llinfo_purge;
rt->rt_llinfo_free = nd6_llinfo_free;
rt->rt_llinfo_refresh = nd6_llinfo_refresh;
rt->rt_flags |= RTF_LLINFO;
ln->ln_rt = rt;
/* this is required for "ndp" command. - shin */
/*
* For interface's that do not perform NUD
* neighbor cache entries must always be marked
* reachable with no expiry
*/
if ((req == RTM_ADD) || !nud_enabled) {
/*
* gate should have some valid AF_LINK entry,
* and ln->ln_expire should have some lifetime
* which is specified by ndp command.
*/
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE);
ln_setexpire(ln, 0);
} else {
/*
* When req == RTM_RESOLVE, rt is created and
* initialized in rtrequest(), so rt_expire is 0.
*/
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_NOSTATE);
/* In case we're called before 1.0 sec. has elapsed */
ln_setexpire(ln, (ifp->if_eflags & IFEF_IPV6_ND6ALT) ?
0 : MAX(timenow, 1));
}
LN_INSERTHEAD(ln);
nd6_inuse++;
/* We have at least one entry; arm the timer if not already */
nd6_sched_timeout(NULL, NULL);
/*
* If we have too many cache entries, initiate immediate
* purging for some "less recently used" entries. Note that
* we cannot directly call nd6_free() here because it would
* cause re-entering rtable related routines triggering an LOR
* problem.
*/
if (ip6_neighborgcthresh > 0 &&
nd6_inuse >= ip6_neighborgcthresh) {
int i;
for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) {
struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev;
struct rtentry *rt_end = ln_end->ln_rt;
/* Move this entry to the head */
RT_LOCK(rt_end);
LN_DEQUEUE(ln_end);
LN_INSERTHEAD(ln_end);
if (ln_end->ln_expire == 0) {
RT_UNLOCK(rt_end);
continue;
}
if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) {
ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_STALE);
} else {
ND6_CACHE_STATE_TRANSITION(ln_end, ND6_LLINFO_PURGE);
}
ln_setexpire(ln_end, timenow);
RT_UNLOCK(rt_end);
}
}
/*
* check if rt_key(rt) is one of my address assigned
* to the interface.
*/
ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
&SIN6(rt_key(rt))->sin6_addr);
if (ifa != NULL) {
caddr_t macp = nd6_ifptomac(ifp);
ln_setexpire(ln, 0);
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE);
if (macp != NULL) {
Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
SDL(gate)->sdl_alen = ifp->if_addrlen;
}
if (nd6_useloopback) {
if (rt->rt_ifp != lo_ifp) {
/*
* Purge any link-layer info caching.
*/
if (rt->rt_llinfo_purge != NULL) {
rt->rt_llinfo_purge(rt);
}
/*
* Adjust route ref count for the
* interfaces.
*/
if (rt->rt_if_ref_fn != NULL) {
rt->rt_if_ref_fn(lo_ifp, 1);
rt->rt_if_ref_fn(rt->rt_ifp,
-1);
}
}
rt->rt_ifp = lo_ifp;
/*
* If rmx_mtu is not locked, update it
* to the MTU used by the new interface.
*/
if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) {
rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu;
}
/*
* Make sure rt_ifa be equal to the ifaddr
* corresponding to the address.
* We need this because when we refer
* rt_ifa->ia6_flags in ip6_input, we assume
* that the rt_ifa points to the address instead
* of the loopback address.
*/
if (ifa != rt->rt_ifa) {
rtsetifa(rt, ifa);
}
}
ifa_remref(ifa);
} else if (rt->rt_flags & RTF_ANNOUNCE) {
ln_setexpire(ln, 0);
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_REACHABLE);
/* join solicited node multicast for proxy ND */
if (ifp->if_flags & IFF_MULTICAST) {
struct in6_addr llsol;
struct in6_multi *in6m;
int error;
llsol = SIN6(rt_key(rt))->sin6_addr;
llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (in6_setscope(&llsol, ifp, NULL)) {
break;
}
error = in6_mc_join(ifp, &llsol,
NULL, &in6m, 0);
if (error) {
nd6log(error, "%s: failed to join "
"%s (errno=%d)\n", if_name(ifp),
ip6_sprintf(&llsol), error);
} else {
IN6M_REMREF(in6m);
}
}
}
break;
case RTM_DELETE:
if (ln == NULL) {
break;
}
/* leave from solicited node multicast for proxy ND */
if ((rt->rt_flags & RTF_ANNOUNCE) &&
(ifp->if_flags & IFF_MULTICAST)) {
struct in6_addr llsol;
struct in6_multi *in6m;
llsol = SIN6(rt_key(rt))->sin6_addr;
llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (in6_setscope(&llsol, ifp, NULL) == 0) {
in6_multihead_lock_shared();
IN6_LOOKUP_MULTI(&llsol, ifp, in6m);
in6_multihead_lock_done();
if (in6m != NULL) {
in6_mc_leave(in6m, NULL);
IN6M_REMREF(in6m);
}
}
}
nd6_inuse--;
/*
* Unchain it but defer the actual freeing until the route
* itself is to be freed. rt->rt_llinfo still points to
* llinfo_nd6, and likewise, ln->ln_rt stil points to this
* route entry, except that RTF_LLINFO is now cleared.
*/
if (ln->ln_flags & ND6_LNF_IN_USE) {
LN_DEQUEUE(ln);
}
/*
* Purge any link-layer info caching.
*/
if (rt->rt_llinfo_purge != NULL) {
rt->rt_llinfo_purge(rt);
}
rt->rt_flags &= ~RTF_LLINFO;
if (ln->ln_hold != NULL) {
m_freem_list(ln->ln_hold);
ln->ln_hold = NULL;
}
}
}
static int
nd6_siocgdrlst(void *data, int data_is_64)
{
struct in6_drlist_32 *drl_32;
struct nd_defrouter *dr;
int i = 0;
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED);
dr = TAILQ_FIRST(&nd_defrouter_list);
/* XXX Handle mapped defrouter entries */
/* For 64-bit process */
if (data_is_64) {
struct in6_drlist_64 *drl_64;
drl_64 = kalloc_type(struct in6_drlist_64,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
/* preserve the interface name */
bcopy(data, drl_64, sizeof(drl_64->ifname));
while (dr && i < DRLSTSIZ) {
drl_64->defrouter[i].rtaddr = dr->rtaddr;
if (IN6_IS_ADDR_LINKLOCAL(
&drl_64->defrouter[i].rtaddr)) {
/* XXX: need to this hack for KAME stack */
drl_64->defrouter[i].rtaddr.s6_addr16[1] = 0;
} else {
log(LOG_ERR,
"default router list contains a "
"non-linklocal address(%s)\n",
ip6_sprintf(&drl_64->defrouter[i].rtaddr));
}
drl_64->defrouter[i].flags = dr->flags;
drl_64->defrouter[i].rtlifetime = (u_short)dr->rtlifetime;
drl_64->defrouter[i].expire = (u_long)nddr_getexpire(dr);
drl_64->defrouter[i].if_index = dr->ifp->if_index;
i++;
dr = TAILQ_NEXT(dr, dr_entry);
}
bcopy(drl_64, data, sizeof(*drl_64));
kfree_type(struct in6_drlist_64, drl_64);
return 0;
}
/* For 32-bit process */
drl_32 = kalloc_type(struct in6_drlist_32, Z_WAITOK | Z_ZERO | Z_NOFAIL);
/* preserve the interface name */
bcopy(data, drl_32, sizeof(drl_32->ifname));
while (dr != NULL && i < DRLSTSIZ) {
drl_32->defrouter[i].rtaddr = dr->rtaddr;
if (IN6_IS_ADDR_LINKLOCAL(&drl_32->defrouter[i].rtaddr)) {
/* XXX: need to this hack for KAME stack */
drl_32->defrouter[i].rtaddr.s6_addr16[1] = 0;
} else {
log(LOG_ERR,
"default router list contains a "
"non-linklocal address(%s)\n",
ip6_sprintf(&drl_32->defrouter[i].rtaddr));
}
drl_32->defrouter[i].flags = dr->flags;
drl_32->defrouter[i].rtlifetime = (u_short)dr->rtlifetime;
drl_32->defrouter[i].expire = (u_int32_t)nddr_getexpire(dr);
drl_32->defrouter[i].if_index = dr->ifp->if_index;
i++;
dr = TAILQ_NEXT(dr, dr_entry);
}
bcopy(drl_32, data, sizeof(*drl_32));
kfree_type(struct in6_drlist_32, drl_32);
return 0;
}
/*
* XXX meaning of fields, especialy "raflags", is very
* differnet between RA prefix list and RR/static prefix list.
* how about separating ioctls into two?
*/
static int
nd6_siocgprlst(void *data, int data_is_64)
{
struct in6_prlist_32 *prl_32;
struct nd_prefix *pr;
int i = 0;
LCK_MTX_ASSERT(nd6_mutex, LCK_MTX_ASSERT_OWNED);
pr = nd_prefix.lh_first;
/* XXX Handle mapped defrouter entries */
/* For 64-bit process */
if (data_is_64) {
struct in6_prlist_64 *prl_64;
prl_64 = kalloc_type(struct in6_prlist_64,
Z_WAITOK | Z_ZERO | Z_NOFAIL);
/* preserve the interface name */
bcopy(data, prl_64, sizeof(prl_64->ifname));
while (pr && i < PRLSTSIZ) {
struct nd_pfxrouter *pfr;
int j;
uint32_t ifscope;
NDPR_LOCK(pr);
(void) in6_embedscope(&prl_64->prefix[i].prefix,
&pr->ndpr_prefix, NULL, NULL, NULL, &ifscope);
prl_64->prefix[i].prefix.s6_addr16[1] = htons((uint16_t)ifscope);
prl_64->prefix[i].raflags = pr->ndpr_raf;
prl_64->prefix[i].prefixlen = pr->ndpr_plen;
prl_64->prefix[i].vltime = pr->ndpr_vltime;
prl_64->prefix[i].pltime = pr->ndpr_pltime;
prl_64->prefix[i].if_index = pr->ndpr_ifp->if_index;
prl_64->prefix[i].expire = (u_long)ndpr_getexpire(pr);
pfr = pr->ndpr_advrtrs.lh_first;
j = 0;
while (pfr) {
if (j < DRLSTSIZ) {
#define RTRADDR prl_64->prefix[i].advrtr[j]
RTRADDR = pfr->router->rtaddr;
if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
/* XXX: hack for KAME */
RTRADDR.s6_addr16[1] = 0;
} else {
log(LOG_ERR,
"a router(%s) advertises "
"a prefix with "
"non-link local address\n",
ip6_sprintf(&RTRADDR));
}
#undef RTRADDR
}
j++;
pfr = pfr->pfr_next;
}
ASSERT(j <= USHRT_MAX);
prl_64->prefix[i].advrtrs = (u_short)j;
prl_64->prefix[i].origin = PR_ORIG_RA;
NDPR_UNLOCK(pr);
i++;
pr = pr->ndpr_next;
}
bcopy(prl_64, data, sizeof(*prl_64));
kfree_type(struct in6_prlist_64, prl_64);
return 0;
}
/* For 32-bit process */
prl_32 = kalloc_type(struct in6_prlist_32, Z_WAITOK | Z_ZERO | Z_NOFAIL);
/* preserve the interface name */
bcopy(data, prl_32, sizeof(prl_32->ifname));
while (pr && i < PRLSTSIZ) {
struct nd_pfxrouter *pfr;
int j;
uint32_t ifscope;
NDPR_LOCK(pr);
(void) in6_embedscope(&prl_32->prefix[i].prefix,
&pr->ndpr_prefix, NULL, NULL, NULL, &ifscope);
prl_32->prefix[i].prefix.s6_addr16[1] = htons((uint16_t)ifscope);
prl_32->prefix[i].raflags = pr->ndpr_raf;
prl_32->prefix[i].prefixlen = pr->ndpr_plen;
prl_32->prefix[i].vltime = pr->ndpr_vltime;
prl_32->prefix[i].pltime = pr->ndpr_pltime;
prl_32->prefix[i].if_index = pr->ndpr_ifp->if_index;
prl_32->prefix[i].expire = (u_int32_t)ndpr_getexpire(pr);
pfr = pr->ndpr_advrtrs.lh_first;
j = 0;
while (pfr) {
if (j < DRLSTSIZ) {
#define RTRADDR prl_32->prefix[i].advrtr[j]
RTRADDR = pfr->router->rtaddr;
if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
/* XXX: hack for KAME */
RTRADDR.s6_addr16[1] = 0;
} else {
log(LOG_ERR,
"a router(%s) advertises "
"a prefix with "
"non-link local address\n",
ip6_sprintf(&RTRADDR));
}
#undef RTRADDR
}
j++;
pfr = pfr->pfr_next;
}
ASSERT(j <= USHRT_MAX);
prl_32->prefix[i].advrtrs = (u_short)j;
prl_32->prefix[i].origin = PR_ORIG_RA;
NDPR_UNLOCK(pr);
i++;
pr = pr->ndpr_next;
}
bcopy(prl_32, data, sizeof(*prl_32));
kfree_type(struct in6_prlist_32, prl_32);
return 0;
}
int
nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
{
struct nd_defrouter *dr;
struct nd_prefix *pr;
struct rtentry *rt;
int error = 0;
VERIFY(ifp != NULL);
switch (cmd) {
case SIOCGDRLST_IN6_32: /* struct in6_drlist_32 */
case SIOCGDRLST_IN6_64: /* struct in6_drlist_64 */
/*
* obsolete API, use sysctl under net.inet6.icmp6
*/
lck_mtx_lock(nd6_mutex);
error = nd6_siocgdrlst(data, cmd == SIOCGDRLST_IN6_64);
lck_mtx_unlock(nd6_mutex);
break;
case SIOCGPRLST_IN6_32: /* struct in6_prlist_32 */
case SIOCGPRLST_IN6_64: /* struct in6_prlist_64 */
/*
* obsolete API, use sysctl under net.inet6.icmp6
*/
lck_mtx_lock(nd6_mutex);
error = nd6_siocgprlst(data, cmd == SIOCGPRLST_IN6_64);
lck_mtx_unlock(nd6_mutex);
break;
case OSIOCGIFINFO_IN6: /* struct in6_ondireq */
case SIOCGIFINFO_IN6: { /* struct in6_ondireq */
u_int32_t linkmtu;
struct in6_ondireq *ondi = (struct in6_ondireq *)(void *)data;
struct nd_ifinfo *ndi;
/*
* SIOCGIFINFO_IN6 ioctl is encoded with in6_ondireq
* instead of in6_ndireq, so we treat it as such.
*/
ndi = ND_IFINFO(ifp);
if ((NULL == ndi) || (FALSE == ndi->initialized)) {
error = EINVAL;
break;
}
lck_mtx_lock(&ndi->lock);
linkmtu = IN6_LINKMTU(ifp);
bcopy(&linkmtu, &ondi->ndi.linkmtu, sizeof(linkmtu));
bcopy(&ndi->maxmtu, &ondi->ndi.maxmtu,
sizeof(u_int32_t));
bcopy(&ndi->basereachable, &ondi->ndi.basereachable,
sizeof(u_int32_t));
bcopy(&ndi->reachable, &ondi->ndi.reachable,
sizeof(u_int32_t));
bcopy(&ndi->retrans, &ondi->ndi.retrans,
sizeof(u_int32_t));
bcopy(&ndi->flags, &ondi->ndi.flags,
sizeof(u_int32_t));
bcopy(&ndi->recalctm, &ondi->ndi.recalctm,
sizeof(int));
ondi->ndi.chlim = ndi->chlim;
/*
* The below truncation is fine as we mostly use it for
* debugging purpose.
*/
ondi->ndi.receivedra = (uint8_t)ndi->ndefrouters;
ondi->ndi.collision_count = (uint8_t)ndi->cga_collision_count;
lck_mtx_unlock(&ndi->lock);
break;
}
case SIOCSIFINFO_FLAGS: { /* struct in6_ndireq */
/*
* XXX BSD has a bunch of checks here to ensure
* that interface disabled flag is not reset if
* link local address has failed DAD.
* Investigate that part.
*/
struct in6_ndireq *cndi = (struct in6_ndireq *)(void *)data;
u_int32_t oflags, flags;
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
/* XXX: almost all other fields of cndi->ndi is unused */
if ((NULL == ndi) || !ndi->initialized) {
error = EINVAL;
break;
}
lck_mtx_lock(&ndi->lock);
oflags = ndi->flags;
bcopy(&cndi->ndi.flags, &(ndi->flags), sizeof(flags));
flags = ndi->flags;
lck_mtx_unlock(&ndi->lock);
if (oflags == flags) {
break;
}
error = nd6_setifinfo(ifp, oflags, flags);
break;
}
case SIOCSNDFLUSH_IN6: /* struct in6_ifreq */
/* flush default router list */
/*
* xxx sumikawa: should not delete route if default
* route equals to the top of default router list
*
* XXX TODO: Needs to be done for RTI as well
* Is very specific flush command with ndp for default routers.
*/
lck_mtx_lock(nd6_mutex);
defrouter_reset();
defrouter_select(ifp, NULL);
lck_mtx_unlock(nd6_mutex);
/* xxx sumikawa: flush prefix list */
break;
case SIOCSPFXFLUSH_IN6: { /* struct in6_ifreq */
/* flush all the prefix advertised by routers */
struct nd_prefix *next = NULL;
lck_mtx_lock(nd6_mutex);
for (pr = nd_prefix.lh_first; pr; pr = next) {
struct in6_ifaddr *ia = NULL;
bool iterate_pfxlist_again = false;
next = pr->ndpr_next;
NDPR_LOCK(pr);
if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) {
NDPR_UNLOCK(pr);
continue; /* XXX */
}
if (ifp != lo_ifp && pr->ndpr_ifp != ifp) {
NDPR_UNLOCK(pr);
continue;
}
/* do we really have to remove addresses as well? */
NDPR_ADDREF(pr);
NDPR_UNLOCK(pr);
lck_rw_lock_exclusive(&in6_ifaddr_rwlock);
bool from_begining = true;
while (from_begining) {
from_begining = false;
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
IFA_LOCK(&ia->ia_ifa);
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) {
IFA_UNLOCK(&ia->ia_ifa);
continue;
}
if (ia->ia6_ndpr == pr) {
ifa_addref(&ia->ia_ifa);
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in6_ifaddr_rwlock);
lck_mtx_unlock(nd6_mutex);
in6_purgeaddr(&ia->ia_ifa);
ifa_remref(&ia->ia_ifa);
lck_mtx_lock(nd6_mutex);
lck_rw_lock_exclusive(
&in6_ifaddr_rwlock);
/*
* Purging the address caused
* in6_ifaddr_rwlock to be
* dropped and
* reacquired; therefore search again
* from the beginning of in6_ifaddrs.
* The same applies for the prefix list.
*/
iterate_pfxlist_again = true;
from_begining = true;
break;
}
IFA_UNLOCK(&ia->ia_ifa);
}
}
lck_rw_done(&in6_ifaddr_rwlock);
NDPR_LOCK(pr);
prelist_remove(pr);
NDPR_UNLOCK(pr);
pfxlist_onlink_check();
NDPR_REMREF(pr);
if (iterate_pfxlist_again) {
next = nd_prefix.lh_first;
}
}
lck_mtx_unlock(nd6_mutex);
break;
}
case SIOCSRTRFLUSH_IN6: { /* struct in6_ifreq */
/* flush all the default routers */
struct nd_defrouter *next;
struct nd_drhead nd_defrouter_tmp;
TAILQ_INIT(&nd_defrouter_tmp);
lck_mtx_lock(nd6_mutex);
if ((dr = TAILQ_FIRST(&nd_defrouter_list)) != NULL) {
/*
* The first entry of the list may be stored in
* the routing table, so we'll delete it later.
*/
for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
next = TAILQ_NEXT(dr, dr_entry);
if (ifp == lo_ifp || dr->ifp == ifp) {
/*
* Remove the entry from default router list
* and add it to the temp list.
* nd_defrouter_tmp will be a local temporary
* list as no one else can get the same
* removed entry once it is removed from default
* router list.
* Remove the reference after calling defrtrlist_de
*/
TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry);
TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry);
}
}
dr = TAILQ_FIRST(&nd_defrouter_list);
if (ifp == lo_ifp ||
dr->ifp == ifp) {
TAILQ_REMOVE(&nd_defrouter_list, dr, dr_entry);
TAILQ_INSERT_TAIL(&nd_defrouter_tmp, dr, dr_entry);
}
}
/*
* Keep the following separate from the above iteration of
* nd_defrouter because it's not safe to call
* defrtrlist_del while iterating global default
* router list. Global list has to be traversed
* while holding nd6_mutex throughout.
*
* The following call to defrtrlist_del should be
* safe as we are iterating a local list of
* default routers.
*/
TAILQ_FOREACH_SAFE(dr, &nd_defrouter_tmp, dr_entry, next) {
TAILQ_REMOVE(&nd_defrouter_tmp, dr, dr_entry);
defrtrlist_del(dr, NULL);
NDDR_REMREF(dr); /* remove list reference */
}
/* For now flush RTI routes here as well to avoid any regressions */
nd6_purge_interface_rti_entries((ifp == lo_ifp) ? NULL : ifp);
lck_mtx_unlock(nd6_mutex);
break;
}
case SIOCGNBRINFO_IN6_32: { /* struct in6_nbrinfo_32 */
struct llinfo_nd6 *ln;
struct in6_nbrinfo_32 nbi_32;
struct in6_addr nb_addr; /* make local for safety */
bcopy(data, &nbi_32, sizeof(nbi_32));
nb_addr = nbi_32.addr;
/*
* XXX: KAME specific hack for scoped addresses
* XXXX: for other scopes than link-local?
*/
if (in6_embedded_scope && (IN6_IS_ADDR_LINKLOCAL(&nbi_32.addr) ||
IN6_IS_ADDR_MC_LINKLOCAL(&nbi_32.addr))) {
u_int16_t *idp =
(u_int16_t *)(void *)&nb_addr.s6_addr[2];
if (*idp == 0) {
*idp = htons(ifp->if_index);
}
}
/* Callee returns a locked route upon success */
if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) {
error = EINVAL;
break;
}
RT_LOCK_ASSERT_HELD(rt);
ln = rt->rt_llinfo;
nbi_32.state = ln->ln_state;
nbi_32.asked = ln->ln_asked;
nbi_32.isrouter = ln->ln_router;
nbi_32.expire = (int)ln_getexpire(ln);
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
bcopy(&nbi_32, data, sizeof(nbi_32));
break;
}
case SIOCGNBRINFO_IN6_64: { /* struct in6_nbrinfo_64 */
struct llinfo_nd6 *ln;
struct in6_nbrinfo_64 nbi_64;
struct in6_addr nb_addr; /* make local for safety */
bcopy(data, &nbi_64, sizeof(nbi_64));
nb_addr = nbi_64.addr;
/*
* XXX: KAME specific hack for scoped addresses
* XXXX: for other scopes than link-local?
*/
if (in6_embedded_scope && (IN6_IS_ADDR_LINKLOCAL(&nbi_64.addr) ||
IN6_IS_ADDR_MC_LINKLOCAL(&nbi_64.addr))) {
u_int16_t *idp =
(u_int16_t *)(void *)&nb_addr.s6_addr[2];
if (*idp == 0) {
*idp = htons(ifp->if_index);
}
}
/* Callee returns a locked route upon success */
if ((rt = nd6_lookup(&nb_addr, 0, ifp, 0)) == NULL) {
error = EINVAL;
break;
}
RT_LOCK_ASSERT_HELD(rt);
ln = rt->rt_llinfo;
nbi_64.state = ln->ln_state;
nbi_64.asked = ln->ln_asked;
nbi_64.isrouter = ln->ln_router;
nbi_64.expire = (int)ln_getexpire(ln);
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
bcopy(&nbi_64, data, sizeof(nbi_64));
break;
}
case SIOCGDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */
case SIOCGDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */
struct in6_ndifreq_64 *ndif_64 =
(struct in6_ndifreq_64 *)(void *)data;
struct in6_ndifreq_32 *ndif_32 =
(struct in6_ndifreq_32 *)(void *)data;
if (cmd == SIOCGDEFIFACE_IN6_64) {
u_int64_t j = nd6_defifindex;
__nochk_bcopy(&j, &ndif_64->ifindex, sizeof(j));
} else {
bcopy(&nd6_defifindex, &ndif_32->ifindex,
sizeof(u_int32_t));
}
break;
}
case SIOCSDEFIFACE_IN6_32: /* struct in6_ndifreq_32 */
case SIOCSDEFIFACE_IN6_64: { /* struct in6_ndifreq_64 */
struct in6_ndifreq_64 *ndif_64 =
(struct in6_ndifreq_64 *)(void *)data;
struct in6_ndifreq_32 *ndif_32 =
(struct in6_ndifreq_32 *)(void *)data;
u_int32_t idx;
if (cmd == SIOCSDEFIFACE_IN6_64) {
u_int64_t j;
__nochk_bcopy(&ndif_64->ifindex, &j, sizeof(j));
idx = (u_int32_t)j;
} else {
bcopy(&ndif_32->ifindex, &idx, sizeof(idx));
}
error = nd6_setdefaultiface(idx);
return error;
/* NOTREACHED */
}
case SIOCGIFCGAPREP_IN6_32:
case SIOCGIFCGAPREP_IN6_64: {
/* get CGA parameters */
union {
struct in6_cgareq_32 *cga32;
struct in6_cgareq_64 *cga64;
void *data;
} cgareq_u;
struct nd_ifinfo *ndi;
struct in6_cga_modifier *ndi_cga_mod;
struct in6_cga_modifier *req_cga_mod;
ndi = ND_IFINFO(ifp);
if ((NULL == ndi) || !ndi->initialized) {
error = EINVAL;
break;
}
cgareq_u.data = data;
req_cga_mod = (cmd == SIOCGIFCGAPREP_IN6_64)
? &(cgareq_u.cga64->cgar_cgaprep.cga_modifier)
: &(cgareq_u.cga32->cgar_cgaprep.cga_modifier);
lck_mtx_lock(&ndi->lock);
ndi_cga_mod = &(ndi->local_cga_modifier);
bcopy(ndi_cga_mod, req_cga_mod, sizeof(*req_cga_mod));
lck_mtx_unlock(&ndi->lock);
break;
}
case SIOCSIFCGAPREP_IN6_32:
case SIOCSIFCGAPREP_IN6_64:
{
/* set CGA parameters */
struct in6_cgareq cgareq;
int is64;
struct nd_ifinfo *ndi;
struct in6_cga_modifier *ndi_cga_mod;
struct in6_cga_modifier *req_cga_mod;
ndi = ND_IFINFO(ifp);
if ((NULL == ndi) || !ndi->initialized) {
error = EINVAL;
break;
}
is64 = (cmd == SIOCSIFCGAPREP_IN6_64);
in6_cgareq_copy_from_user(data, is64, &cgareq);
req_cga_mod = &cgareq.cgar_cgaprep.cga_modifier;
lck_mtx_lock(&ndi->lock);
ndi_cga_mod = &(ndi->local_cga_modifier);
bcopy(req_cga_mod, ndi_cga_mod, sizeof(*ndi_cga_mod));
ndi->cga_initialized = TRUE;
ndi->cga_collision_count = 0;
lck_mtx_unlock(&ndi->lock);
break;
}
default:
break;
}
return error;
}
/*
* Create neighbor cache entry and cache link-layer address,
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
*/
void
nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
int lladdrlen, int type, int code, int *did_update)
{
#pragma unused(lladdrlen)
struct rtentry *rt = NULL;
struct llinfo_nd6 *ln = NULL;
int is_newentry;
struct sockaddr_dl *sdl = NULL;
int do_update;
int olladdr;
int llchange;
short newstate = 0;
uint64_t timenow;
boolean_t sched_timeout = FALSE;
struct nd_ifinfo *ndi = NULL;
if (ifp == NULL) {
panic("ifp == NULL in nd6_cache_lladdr");
}
if (from == NULL) {
panic("from == NULL in nd6_cache_lladdr");
}
if (did_update != NULL) {
did_update = 0;
}
/* nothing must be updated for unspecified address */
if (IN6_IS_ADDR_UNSPECIFIED(from)) {
return;
}
/*
* Validation about ifp->if_addrlen and lladdrlen must be done in
* the caller.
*/
timenow = net_uptime();
rt = nd6_lookup(from, 0, ifp, 0);
if (rt == NULL) {
if ((rt = nd6_lookup(from, 1, ifp, 0)) == NULL) {
return;
}
RT_LOCK_ASSERT_HELD(rt);
is_newentry = 1;
} else {
RT_LOCK_ASSERT_HELD(rt);
/* do nothing if static ndp is set */
if (rt->rt_flags & RTF_STATIC) {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
return;
}
is_newentry = 0;
}
if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
fail:
RT_UNLOCK(rt);
nd6_free(rt);
rtfree(rt);
return;
}
ln = (struct llinfo_nd6 *)rt->rt_llinfo;
if (ln == NULL) {
goto fail;
}
if (rt->rt_gateway == NULL) {
goto fail;
}
if (rt->rt_gateway->sa_family != AF_LINK) {
goto fail;
}
sdl = SDL(rt->rt_gateway);
olladdr = (sdl->sdl_alen) ? 1 : 0;
if (olladdr && lladdr) {
if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) {
llchange = 1;
} else {
llchange = 0;
}
} else {
llchange = 0;
}
/*
* newentry olladdr lladdr llchange (*=record)
* 0 n n -- (1)
* 0 y n -- (2)
* 0 n y -- (3) * STALE
* 0 y y n (4) *
* 0 y y y (5) * STALE
* 1 -- n -- (6) NOSTATE(= PASSIVE)
* 1 -- y -- (7) * STALE
*/
if (lladdr != NULL) { /* (3-5) and (7) */
/*
* Record source link-layer address
* XXX is it dependent to ifp->if_type?
*/
sdl->sdl_alen = ifp->if_addrlen;
bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
/* cache the gateway (sender HW) address */
nd6_llreach_alloc(rt, ifp, LLADDR(sdl), sdl->sdl_alen, FALSE);
}
if (is_newentry == 0) {
if ((!olladdr && lladdr != NULL) || /* (3) */
(olladdr && lladdr != NULL && llchange)) { /* (5) */
do_update = 1;
newstate = ND6_LLINFO_STALE;
} else { /* (1-2,4) */
do_update = 0;
}
} else {
do_update = 1;
if (lladdr == NULL) { /* (6) */
newstate = ND6_LLINFO_NOSTATE;
} else { /* (7) */
newstate = ND6_LLINFO_STALE;
}
}
/*
* For interface's that do not perform NUD or NDP
* neighbor cache entres must always be marked
* reachable with no expiry
*/
ndi = ND_IFINFO(ifp);
VERIFY((NULL != ndi) && (TRUE == ndi->initialized));
if ((ndi && !(ndi->flags & ND6_IFF_PERFORMNUD)) ||
(ifp->if_eflags & IFEF_IPV6_ND6ALT)) {
newstate = ND6_LLINFO_REACHABLE;
ln_setexpire(ln, 0);
}
if (do_update) {
/*
* Update the state of the neighbor cache.
*/
ND6_CACHE_STATE_TRANSITION(ln, newstate);
if ((ln->ln_state == ND6_LLINFO_STALE) ||
(ln->ln_state == ND6_LLINFO_REACHABLE)) {
struct mbuf *m = ln->ln_hold;
/*
* XXX: since nd6_output() below will cause
* state tansition to DELAY and reset the timer,
* we must set the timer now, although it is actually
* meaningless.
*/
if (ln->ln_state == ND6_LLINFO_STALE) {
ln_setexpire(ln, timenow + nd6_gctimer);
}
ln->ln_hold = NULL;
if (m != NULL) {
struct sockaddr_in6 sin6;
rtkey_to_sa6(rt, &sin6);
/*
* we assume ifp is not a p2p here, so just
* set the 2nd argument as the 1st one.
*/
RT_UNLOCK(rt);
nd6_output_list(ifp, ifp, m, &sin6, rt, NULL);
RT_LOCK(rt);
}
} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
/* probe right away */
ln_setexpire(ln, timenow);
sched_timeout = TRUE;
}
}
/*
* ICMP6 type dependent behavior.
*
* NS: clear IsRouter if new entry
* RS: clear IsRouter
* RA: set IsRouter if there's lladdr
* redir: clear IsRouter if new entry
*
* RA case, (1):
* The spec says that we must set IsRouter in the following cases:
* - If lladdr exist, set IsRouter. This means (1-5).
* - If it is old entry (!newentry), set IsRouter. This means (7).
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
* A quetion arises for (1) case. (1) case has no lladdr in the
* neighbor cache, this is similar to (6).
* This case is rare but we figured that we MUST NOT set IsRouter.
*
* newentry olladdr lladdr llchange NS RS RA redir
* D R
* 0 n n -- (1) c ? s
* 0 y n -- (2) c s s
* 0 n y -- (3) c s s
* 0 y y n (4) c s s
* 0 y y y (5) c s s
* 1 -- n -- (6) c c c s
* 1 -- y -- (7) c c s c s
*
* (c=clear s=set)
*/
switch (type & 0xff) {
case ND_NEIGHBOR_SOLICIT:
/*
* New entry must have is_router flag cleared.
*/
if (is_newentry) { /* (6-7) */
ln->ln_router = 0;
}
break;
case ND_REDIRECT:
/*
* If the ICMP message is a Redirect to a better router, always
* set the is_router flag. Otherwise, if the entry is newly
* created, then clear the flag. [RFC 4861, sec 8.3]
*/
if (code == ND_REDIRECT_ROUTER) {
ln->ln_router = 1;
} else if (is_newentry) { /* (6-7) */
ln->ln_router = 0;
}
break;
case ND_ROUTER_SOLICIT:
/*
* is_router flag must always be cleared.
*/
ln->ln_router = 0;
break;
case ND_ROUTER_ADVERT:
/*
* Mark an entry with lladdr as a router.
*/
if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
(is_newentry && lladdr)) { /* (7) */
ln->ln_router = 1;
}
break;
}
if (do_update) {
int route_ev_code = 0;
if (llchange) {
route_ev_code = ROUTE_LLENTRY_CHANGED;
} else {
route_ev_code = ROUTE_LLENTRY_RESOLVED;
}
/* Enqueue work item to invoke callback for this route entry */
route_event_enqueue_nwk_wq_entry(rt, NULL, route_ev_code, NULL, TRUE);
if (ln->ln_router || (rt->rt_flags & RTF_ROUTER)) {
struct radix_node_head *rnh = NULL;
struct in6_addr rt_addr = SIN6(rt_key(rt))->sin6_addr;
struct ifnet *rt_ifp = rt->rt_ifp;
struct route_event rt_ev;
route_event_init(&rt_ev, rt, NULL, llchange ? ROUTE_LLENTRY_CHANGED :
ROUTE_LLENTRY_RESOLVED);
/*
* We already have a valid reference on rt.
* The function frees that before returning.
* We therefore don't need an extra reference here
*/
RT_UNLOCK(rt);
defrouter_set_reachability(&rt_addr, rt_ifp, TRUE);
lck_mtx_lock(rnh_lock);
rnh = rt_tables[AF_INET6];
if (rnh != NULL) {
(void) rnh->rnh_walktree(rnh, route_event_walktree,
(void *)&rt_ev);
}
lck_mtx_unlock(rnh_lock);
RT_LOCK(rt);
}
}
if (did_update != NULL) {
*did_update = do_update;
}
/*
* When the link-layer address of a router changes, select the
* best router again. In particular, when the neighbor entry is newly
* created, it might affect the selection policy.
* Question: can we restrict the first condition to the "is_newentry"
* case?
*
* Note: Perform default router selection even when we are a router,
* if Scoped Routing is enabled.
*/
if (do_update && ln->ln_router) {
/*
* XXX TODO: This should also be iterated over router list
* for route information option's router lists as well.
*/
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
lck_mtx_lock(nd6_mutex);
defrouter_select(ifp, NULL);
nd6_router_select_rti_entries(ifp);
lck_mtx_unlock(nd6_mutex);
} else {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
}
if (sched_timeout) {
lck_mtx_lock(rnh_lock);
nd6_sched_timeout(NULL, NULL);
lck_mtx_unlock(rnh_lock);
}
}
static void
nd6_slowtimo(void *arg)
{
#pragma unused(arg)
struct nd_ifinfo *nd6if = NULL;
struct ifnet *ifp = NULL;
ifnet_head_lock_shared();
for (ifp = ifnet_head.tqh_first; ifp;
ifp = ifp->if_link.tqe_next) {
nd6if = ND_IFINFO(ifp);
if ((NULL == nd6if) || (FALSE == nd6if->initialized)) {
continue;
}
lck_mtx_lock(&nd6if->lock);
if (nd6if->basereachable && /* already initialized */
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
/*
* Since reachable time rarely changes by router
* advertisements, we SHOULD insure that a new random
* value gets recomputed at least once every few hours.
* (RFC 4861, 6.3.4)
*/
nd6if->recalctm = nd6_recalc_reachtm_interval;
nd6if->reachable =
ND_COMPUTE_RTIME(nd6if->basereachable);
}
lck_mtx_unlock(&nd6if->lock);
}
ifnet_head_done();
timeout(nd6_slowtimo, NULL, ND6_SLOWTIMER_INTERVAL * hz);
}
int
nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv)
{
return nd6_output_list(ifp, origifp, m0, dst, hint0, adv);
}
/*
* nd6_output_list()
*
* Assumption: route determination for first packet can be correctly applied to
* all packets in the chain.
*/
#define senderr(e) { error = (e); goto bad; }
int
nd6_output_list(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
struct sockaddr_in6 *dst, struct rtentry *hint0, struct flowadv *adv)
{
struct rtentry *rt = hint0, *hint = hint0;
struct llinfo_nd6 *ln = NULL;
int error = 0;
uint64_t timenow;
struct rtentry *rtrele = NULL;
struct nd_ifinfo *ndi = NULL;
if (rt != NULL) {
RT_LOCK_SPIN(rt);
RT_ADDREF_LOCKED(rt);
}
if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr) || !nd6_need_cache(ifp)) {
if (rt != NULL) {
RT_UNLOCK(rt);
}
goto sendpkt;
}
/*
* Next hop determination. Because we may involve the gateway route
* in addition to the original route, locking is rather complicated.
* The general concept is that regardless of whether the route points
* to the original route or to the gateway route, this routine takes
* an extra reference on such a route. This extra reference will be
* released at the end.
*
* Care must be taken to ensure that the "hint0" route never gets freed
* via rtfree(), since the caller may have stored it inside a struct
* route with a reference held for that placeholder.
*
* This logic is similar to, though not exactly the same as the one
* used by route_to_gwroute().
*/
if (rt != NULL) {
/*
* We have a reference to "rt" by now (or below via rtalloc1),
* which will either be released or freed at the end of this
* routine.
*/
RT_LOCK_ASSERT_HELD(rt);
if (!(rt->rt_flags & RTF_UP)) {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
if ((hint = rt = rtalloc1_scoped(SA(dst), 1, 0,
ifp->if_index)) != NULL) {
RT_LOCK_SPIN(rt);
if (rt->rt_ifp != ifp) {
/* XXX: loop care? */
RT_UNLOCK(rt);
error = nd6_output_list(ifp, origifp, m0,
dst, rt, adv);
rtfree(rt);
return error;
}
} else {
senderr(EHOSTUNREACH);
}
}
if (rt->rt_flags & RTF_GATEWAY) {
struct rtentry *gwrt;
struct in6_ifaddr *ia6 = NULL;
struct sockaddr_in6 gw6;
rtgw_to_sa6(rt, &gw6);
/*
* Must drop rt_lock since nd6_is_addr_neighbor()
* calls nd6_lookup() and acquires rnh_lock.
*/
RT_UNLOCK(rt);
/*
* We skip link-layer address resolution and NUD
* if the gateway is not a neighbor from ND point
* of view, regardless of the value of nd_ifinfo.flags.
* The second condition is a bit tricky; we skip
* if the gateway is our own address, which is
* sometimes used to install a route to a p2p link.
*/
if (!nd6_is_addr_neighbor(&gw6, ifp, 0) ||
(ia6 = in6ifa_ifpwithaddr(ifp, &gw6.sin6_addr))) {
/*
* We allow this kind of tricky route only
* when the outgoing interface is p2p.
* XXX: we may need a more generic rule here.
*/
if (ia6 != NULL) {
ifa_remref(&ia6->ia_ifa);
}
if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
senderr(EHOSTUNREACH);
}
goto sendpkt;
}
RT_LOCK_SPIN(rt);
gw6 = *(SIN6(rt->rt_gateway));
/* If hint is now down, give up */
if (!(rt->rt_flags & RTF_UP)) {
RT_UNLOCK(rt);
senderr(EHOSTUNREACH);
}
/* If there's no gateway route, look it up */
if ((gwrt = rt->rt_gwroute) == NULL) {
RT_UNLOCK(rt);
goto lookup;
}
/* Become a regular mutex */
RT_CONVERT_LOCK(rt);
/*
* Take gwrt's lock while holding route's lock;
* this is okay since gwrt never points back
* to rt, so no lock ordering issues.
*/
RT_LOCK_SPIN(gwrt);
if (!(gwrt->rt_flags & RTF_UP)) {
rt->rt_gwroute = NULL;
RT_UNLOCK(gwrt);
RT_UNLOCK(rt);
rtfree(gwrt);
lookup:
lck_mtx_lock(rnh_lock);
gwrt = rtalloc1_scoped_locked(SA(&gw6), 1, 0,
ifp->if_index);
RT_LOCK(rt);
/*
* Bail out if the route is down, no route
* to gateway, circular route, or if the
* gateway portion of "rt" has changed.
*/
if (!(rt->rt_flags & RTF_UP) ||
gwrt == NULL || gwrt == rt ||
!equal(SA(&gw6), rt->rt_gateway)) {
if (gwrt == rt) {
RT_REMREF_LOCKED(gwrt);
gwrt = NULL;
}
RT_UNLOCK(rt);
if (gwrt != NULL) {
rtfree_locked(gwrt);
}
lck_mtx_unlock(rnh_lock);
senderr(EHOSTUNREACH);
}
VERIFY(gwrt != NULL);
/*
* Set gateway route; callee adds ref to gwrt;
* gwrt has an extra ref from rtalloc1() for
* this routine.
*/
rt_set_gwroute(rt, rt_key(rt), gwrt);
RT_UNLOCK(rt);
lck_mtx_unlock(rnh_lock);
/* Remember to release/free "rt" at the end */
rtrele = rt;
rt = gwrt;
} else {
RT_ADDREF_LOCKED(gwrt);
RT_UNLOCK(gwrt);
RT_UNLOCK(rt);
/* Remember to release/free "rt" at the end */
rtrele = rt;
rt = gwrt;
}
VERIFY(rt == gwrt);
/*
* This is an opportunity to revalidate the parent
* route's gwroute, in case it now points to a dead
* route entry. Parent route won't go away since the
* clone (hint) holds a reference to it. rt == gwrt.
*/
RT_LOCK_SPIN(hint);
if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) ==
(RTF_WASCLONED | RTF_UP)) {
struct rtentry *prt = hint->rt_parent;
VERIFY(prt != NULL);
RT_CONVERT_LOCK(hint);
RT_ADDREF(prt);
RT_UNLOCK(hint);
rt_revalidate_gwroute(prt, rt);
RT_REMREF(prt);
} else {
RT_UNLOCK(hint);
}
RT_LOCK_SPIN(rt);
/* rt == gwrt; if it is now down, give up */
if (!(rt->rt_flags & RTF_UP)) {
RT_UNLOCK(rt);
rtfree(rt);
rt = NULL;
/* "rtrele" == original "rt" */
senderr(EHOSTUNREACH);
}
}
/* Become a regular mutex */
RT_CONVERT_LOCK(rt);
}
/*
* Address resolution or Neighbor Unreachability Detection
* for the next hop.
* At this point, the destination of the packet must be a unicast
* or an anycast address(i.e. not a multicast).
*/
/* Look up the neighbor cache for the nexthop */
if (rt && (rt->rt_flags & RTF_LLINFO) != 0) {
ln = rt->rt_llinfo;
} else {
struct sockaddr_in6 sin6;
/*
* Clear out Scope ID field in case it is set.
*/
sin6 = *dst;
if (in6_embedded_scope) {
sin6.sin6_scope_id = 0;
}
/*
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
* the condition below is not very efficient. But we believe
* it is tolerable, because this should be a rare case.
* Must drop rt_lock since nd6_is_addr_neighbor() calls
* nd6_lookup() and acquires rnh_lock.
*/
if (rt != NULL) {
RT_UNLOCK(rt);
}
if (nd6_is_addr_neighbor(&sin6, ifp, 0)) {
/* "rtrele" may have been used, so clean up "rt" now */
if (rt != NULL) {
/* Don't free "hint0" */
if (rt == hint0) {
RT_REMREF(rt);
} else {
rtfree(rt);
}
}
/* Callee returns a locked route upon success */
rt = nd6_lookup(&dst->sin6_addr, 1, ifp, 0);
if (rt != NULL) {
RT_LOCK_ASSERT_HELD(rt);
ln = rt->rt_llinfo;
}
} else if (rt != NULL) {
RT_LOCK(rt);
}
}
if (!ln || !rt) {
if (rt != NULL) {
RT_UNLOCK(rt);
}
ndi = ND_IFINFO(ifp);
VERIFY(ndi != NULL && ndi->initialized);
lck_mtx_lock(&ndi->lock);
if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
!(ndi->flags & ND6_IFF_PERFORMNUD)) {
lck_mtx_unlock(&ndi->lock);
log(LOG_DEBUG,
"nd6_output: can't allocate llinfo for %s "
"(ln=0x%llx, rt=0x%llx)\n",
ip6_sprintf(&dst->sin6_addr),
(uint64_t)VM_KERNEL_ADDRPERM(ln),
(uint64_t)VM_KERNEL_ADDRPERM(rt));
senderr(EIO); /* XXX: good error? */
}
lck_mtx_unlock(&ndi->lock);
goto sendpkt; /* send anyway */
}
net_update_uptime();
timenow = net_uptime();
/* We don't have to do link-layer address resolution on a p2p link. */
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
ln->ln_state < ND6_LLINFO_REACHABLE) {
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_STALE);
ln_setexpire(ln, timenow + nd6_gctimer);
}
/*
* The first time we send a packet to a neighbor whose entry is
* STALE, we have to change the state to DELAY and a sets a timer to
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
* neighbor unreachability detection on expiration.
* (RFC 4861 7.3.3)
*/
if (ln->ln_state == ND6_LLINFO_STALE) {
ln->ln_asked = 0;
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_DELAY);
ln_setexpire(ln, timenow + nd6_delay);
/* N.B.: we will re-arm the timer below. */
_CASSERT(ND6_LLINFO_DELAY > ND6_LLINFO_INCOMPLETE);
}
/*
* If the neighbor cache entry has a state other than INCOMPLETE
* (i.e. its link-layer address is already resolved), just
* send the packet.
*/
if (ln->ln_state > ND6_LLINFO_INCOMPLETE) {
RT_UNLOCK(rt);
/*
* Move this entry to the head of the queue so that it is
* less likely for this entry to be a target of forced
* garbage collection (see nd6_rtrequest()). Do this only
* if the entry is non-permanent (as permanent ones will
* never be purged), and if the number of active entries
* is at least half of the threshold.
*/
if (ln->ln_state == ND6_LLINFO_DELAY ||
(ln->ln_expire != 0 && ip6_neighborgcthresh > 0 &&
nd6_inuse >= (ip6_neighborgcthresh >> 1))) {
lck_mtx_lock(rnh_lock);
if (ln->ln_state == ND6_LLINFO_DELAY) {
nd6_sched_timeout(NULL, NULL);
}
if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 &&
nd6_inuse >= (ip6_neighborgcthresh >> 1)) {
RT_LOCK_SPIN(rt);
if (ln->ln_flags & ND6_LNF_IN_USE) {
LN_DEQUEUE(ln);
LN_INSERTHEAD(ln);
}
RT_UNLOCK(rt);
}
lck_mtx_unlock(rnh_lock);
}
goto sendpkt;
}
/*
* If this is a prefix proxy route, record the inbound interface
* so that it can be excluded from the list of interfaces eligible
* for forwarding the proxied NS in nd6_prproxy_ns_output().
*/
if (rt->rt_flags & RTF_PROXY) {
ln->ln_exclifp = ((origifp == ifp) ? NULL : origifp);
}
/*
* There is a neighbor cache entry, but no ethernet address
* response yet. Replace the held mbuf (if any) with this
* latest one.
*
* This code conforms to the rate-limiting rule described in Section
* 7.2.2 of RFC 4861, because the timer is set correctly after sending
* an NS below.
*/
if (ln->ln_state == ND6_LLINFO_NOSTATE) {
ND6_CACHE_STATE_TRANSITION(ln, ND6_LLINFO_INCOMPLETE);
}
if (ln->ln_hold) {
m_freem_list(ln->ln_hold);
}
ln->ln_hold = m0;
if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
ln->ln_asked++;
ndi = ND_IFINFO(ifp);
VERIFY(ndi != NULL && ndi->initialized);
lck_mtx_lock(&ndi->lock);
ln_setexpire(ln, timenow + ndi->retrans / 1000);
lck_mtx_unlock(&ndi->lock);
RT_UNLOCK(rt);
/* We still have a reference on rt (for ln) */
if (ip6_forwarding) {
nd6_prproxy_ns_output(ifp, origifp, NULL,
&dst->sin6_addr, ln);
} else {
nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, NULL);
}
lck_mtx_lock(rnh_lock);
nd6_sched_timeout(NULL, NULL);
lck_mtx_unlock(rnh_lock);
} else {
RT_UNLOCK(rt);
}
/*
* Move this entry to the head of the queue so that it is
* less likely for this entry to be a target of forced
* garbage collection (see nd6_rtrequest()). Do this only
* if the entry is non-permanent (as permanent ones will
* never be purged), and if the number of active entries
* is at least half of the threshold.
*/
if (ln->ln_expire != 0 && ip6_neighborgcthresh > 0 &&
nd6_inuse >= (ip6_neighborgcthresh >> 1)) {
lck_mtx_lock(rnh_lock);
RT_LOCK_SPIN(rt);
if (ln->ln_flags & ND6_LNF_IN_USE) {
LN_DEQUEUE(ln);
LN_INSERTHEAD(ln);
}
/* Clean up "rt" now while we can */
if (rt == hint0) {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
} else {
RT_UNLOCK(rt);
rtfree_locked(rt);
}
rt = NULL; /* "rt" has been taken care of */
lck_mtx_unlock(rnh_lock);
}
error = 0;
goto release;
sendpkt:
if (rt != NULL) {
RT_LOCK_ASSERT_NOTHELD(rt);
}
/* discard the packet if IPv6 operation is disabled on the interface */
if (ifp->if_eflags & IFEF_IPV6_DISABLED) {
error = ENETDOWN; /* better error? */
goto bad;
}
if (ifp->if_flags & IFF_LOOPBACK) {
/* forwarding rules require the original scope_id */
m0->m_pkthdr.rcvif = origifp;
error = dlil_output(origifp, PF_INET6, m0, (caddr_t)rt,
SA(dst), 0, adv);
goto release;
} else {
/* Do not allow loopback address to wind up on a wire */
struct ip6_hdr *ip6 = mtod(m0, struct ip6_hdr *);
if ((IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src) ||
IN6_IS_ADDR_LOOPBACK(&ip6->ip6_dst))) {
ip6stat.ip6s_badscope++;
error = EADDRNOTAVAIL;
goto bad;
}
}
if (rt != NULL) {
RT_LOCK_SPIN(rt);
/* Mark use timestamp */
if (rt->rt_llinfo != NULL) {
nd6_llreach_use(rt->rt_llinfo);
}
RT_UNLOCK(rt);
}
struct mbuf *mcur = m0;
uint32_t pktcnt = 0;
while (mcur) {
if (hint != NULL && nstat_collect) {
int scnt;
if ((mcur->m_pkthdr.csum_flags & CSUM_TSO_IPV6) &&
(mcur->m_pkthdr.tso_segsz > 0)) {
scnt = mcur->m_pkthdr.len / mcur->m_pkthdr.tso_segsz;
} else {
scnt = 1;
}
nstat_route_tx(hint, scnt, mcur->m_pkthdr.len, 0);
}
pktcnt++;
mcur->m_pkthdr.rcvif = NULL;
mcur = mcur->m_nextpkt;
}
if (pktcnt > ip6_maxchainsent) {
ip6_maxchainsent = pktcnt;
}
error = dlil_output(ifp, PF_INET6, m0, (caddr_t)rt, SA(dst), 0, adv);
goto release;
bad:
if (m0 != NULL) {
m_freem_list(m0);
}
release:
/* Clean up "rt" unless it's already been done */
if (rt != NULL) {
RT_LOCK_SPIN(rt);
if (rt == hint0) {
RT_REMREF_LOCKED(rt);
RT_UNLOCK(rt);
} else {
RT_UNLOCK(rt);
rtfree(rt);
}
}
/* And now clean up "rtrele" if there is any */
if (rtrele != NULL) {
RT_LOCK_SPIN(rtrele);
if (rtrele == hint0) {
RT_REMREF_LOCKED(rtrele);
RT_UNLOCK(rtrele);
} else {
RT_UNLOCK(rtrele);
rtfree(rtrele);
}
}
return error;
}
#undef senderr
int
nd6_need_cache(struct ifnet *ifp)
{
/*
* XXX: we currently do not make neighbor cache on any interface
* other than ARCnet, Ethernet, FDDI and GIF.
*
* RFC2893 says:
* - unidirectional tunnels needs no ND
*/
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
case IFT_IEEE1394:
case IFT_L2VLAN:
case IFT_IEEE8023ADLAG:
#if IFT_IEEE80211
case IFT_IEEE80211:
#endif
case IFT_GIF: /* XXX need more cases? */
case IFT_PPP:
#if IFT_TUNNEL
case IFT_TUNNEL:
#endif
case IFT_BRIDGE:
case IFT_CELLULAR:
return 1;
default:
return 0;
}
}
int
nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m,
struct sockaddr *dst, u_char *desten)
{
int i;
struct sockaddr_dl *sdl;
if (m->m_flags & M_MCAST) {
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_FDDI:
case IFT_L2VLAN:
case IFT_IEEE8023ADLAG:
#if IFT_IEEE80211
case IFT_IEEE80211:
#endif
case IFT_BRIDGE:
ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, desten);
return 1;
case IFT_IEEE1394:
for (i = 0; i < ifp->if_addrlen; i++) {
desten[i] = ~0;
}
return 1;
case IFT_ARCNET:
*desten = 0;
return 1;
default:
return 0; /* caller will free mbuf */
}
}
if (rt == NULL) {
/* this could happen, if we could not allocate memory */
return 0; /* caller will free mbuf */
}
RT_LOCK(rt);
if (rt->rt_gateway->sa_family != AF_LINK) {
printf("nd6_storelladdr: something odd happens\n");
RT_UNLOCK(rt);
return 0; /* caller will free mbuf */
}
sdl = SDL(rt->rt_gateway);
if (sdl->sdl_alen == 0) {
/* this should be impossible, but we bark here for debugging */
printf("nd6_storelladdr: sdl_alen == 0\n");
RT_UNLOCK(rt);
return 0; /* caller will free mbuf */
}
bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
RT_UNLOCK(rt);
return 1;
}
/*
* This is the ND pre-output routine; care must be taken to ensure that
* the "hint" route never gets freed via rtfree(), since the caller may
* have stored it inside a struct route with a reference held for that
* placeholder.
*/
errno_t
nd6_lookup_ipv6(ifnet_t ifp, const struct sockaddr_in6 *ip6_dest,
struct sockaddr_dl *ll_dest, size_t ll_dest_len, route_t hint,
mbuf_t packet)
{
route_t route __single = hint;
errno_t result = 0;
struct sockaddr_dl *sdl = NULL;
size_t copy_len;
if (ifp == NULL || ip6_dest == NULL) {
return EINVAL;
}
if (ip6_dest->sin6_family != AF_INET6) {
return EAFNOSUPPORT;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) {
return ENETDOWN;
}
if (hint != NULL) {
/*
* Callee holds a reference on the route and returns
* with the route entry locked, upon success.
*/
result = route_to_gwroute(SA(ip6_dest), hint, &route);
if (result != 0) {
return result;
}
if (route != NULL) {
RT_LOCK_ASSERT_HELD(route);
}
}
if ((packet != NULL && (packet->m_flags & M_MCAST) != 0) ||
((ifp->if_flags & IFF_MULTICAST) &&
IN6_IS_ADDR_MULTICAST(&ip6_dest->sin6_addr))) {
if (route != NULL) {
RT_UNLOCK(route);
}
result = dlil_resolve_multi(ifp, SA(ip6_dest), SA(ll_dest), ll_dest_len);
if (route != NULL) {
RT_LOCK(route);
}
goto release;
} else if (route == NULL) {
/*
* rdar://24596652
* For unicast, lookup existing ND6 entries but
* do not trigger a resolution
*/
lck_mtx_lock(rnh_lock);
route = rt_lookup(TRUE,
__DECONST(struct sockaddr *, ip6_dest), NULL,
rt_tables[AF_INET6], ifp->if_index);
lck_mtx_unlock(rnh_lock);
if (route != NULL) {
RT_LOCK(route);
}
}
if (route == NULL) {
/*
* This could happen, if we could not allocate memory or
* if route_to_gwroute() didn't return a route.
*/
result = ENOBUFS;
goto release;
}
if (route->rt_gateway->sa_family != AF_LINK) {
nd6log0(error, "%s: route %s on %s%d gateway address not AF_LINK\n",
__func__, ip6_sprintf(&ip6_dest->sin6_addr),
route->rt_ifp->if_name, route->rt_ifp->if_unit);
result = EADDRNOTAVAIL;
goto release;
}
sdl = SDL(route->rt_gateway);
if (sdl->sdl_alen == 0) {
/* this should be impossible, but we bark here for debugging */
nd6log(error, "%s: route %s on %s%d sdl_alen == 0\n", __func__,
ip6_sprintf(&ip6_dest->sin6_addr), route->rt_ifp->if_name,
route->rt_ifp->if_unit);
result = EHOSTUNREACH;
goto release;
}
copy_len = sdl->sdl_len <= ll_dest_len ? sdl->sdl_len : ll_dest_len;
SOCKADDR_COPY(sdl, ll_dest, copy_len);
release:
if (route != NULL) {
if (route == hint) {
RT_REMREF_LOCKED(route);
RT_UNLOCK(route);
} else {
RT_UNLOCK(route);
rtfree(route);
}
}
return result;
}
#if (DEVELOPMENT || DEBUG)
static int sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS;
SYSCTL_PROC(_net_inet6_icmp6, OID_AUTO, nd6_lookup_ipv6,
CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_LOCKED, 0, 0,
sysctl_nd6_lookup_ipv6, "S", "");
int
sysctl_nd6_lookup_ipv6 SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
int error = 0;
struct nd6_lookup_ipv6_args nd6_lookup_ipv6_args;
ifnet_t ifp = NULL;
/*
* Only root can lookup MAC addresses
*/
error = proc_suser(current_proc());
if (error != 0) {
nd6log0(error, "%s: proc_suser() error %d\n",
__func__, error);
goto done;
}
if (req->oldptr == USER_ADDR_NULL) {
req->oldidx = sizeof(struct nd6_lookup_ipv6_args);
}
if (req->newptr == USER_ADDR_NULL) {
goto done;
}
if (req->oldlen != sizeof(struct nd6_lookup_ipv6_args) ||
req->newlen != sizeof(struct nd6_lookup_ipv6_args)) {
error = EINVAL;
nd6log0(error, "%s: bad req, error %d\n",
__func__, error);
goto done;
}
error = SYSCTL_IN(req, &nd6_lookup_ipv6_args,
sizeof(struct nd6_lookup_ipv6_args));
if (error != 0) {
nd6log0(error, "%s: SYSCTL_IN() error %d\n",
__func__, error);
goto done;
}
if (nd6_lookup_ipv6_args.ll_dest_len > sizeof(nd6_lookup_ipv6_args.ll_dest_)) {
error = EINVAL;
nd6log0(error, "%s: bad ll_dest_len, error %d\n",
__func__, error);
goto done;
}
/* Make sure to terminate the string */
nd6_lookup_ipv6_args.ifname[IFNAMSIZ - 1] = 0;
error = ifnet_find_by_name(nd6_lookup_ipv6_args.ifname, &ifp);
if (error != 0) {
nd6log0(error, "%s: ifnet_find_by_name() error %d\n",
__func__, error);
goto done;
}
error = nd6_lookup_ipv6(ifp, &nd6_lookup_ipv6_args.ip6_dest,
&nd6_lookup_ipv6_args.ll_dest_._sdl,
nd6_lookup_ipv6_args.ll_dest_len, NULL, NULL);
if (error != 0) {
nd6log0(error, "%s: nd6_lookup_ipv6() error %d\n",
__func__, error);
goto done;
}
error = SYSCTL_OUT(req, &nd6_lookup_ipv6_args,
sizeof(struct nd6_lookup_ipv6_args));
if (error != 0) {
nd6log0(error, "%s: SYSCTL_OUT() error %d\n",
__func__, error);
goto done;
}
done:
return error;
}
#endif /* (DEVELOPEMENT || DEBUG) */
int
nd6_setifinfo(struct ifnet *ifp, u_int32_t before, u_int32_t after)
{
uint32_t b, a;
int err = 0;
/*
* Handle ND6_IFF_IFDISABLED
*/
if ((before & ND6_IFF_IFDISABLED) ||
(after & ND6_IFF_IFDISABLED)) {
b = (before & ND6_IFF_IFDISABLED);
a = (after & ND6_IFF_IFDISABLED);
if (b != a && (err = nd6_if_disable(ifp,
((int32_t)(a - b) > 0))) != 0) {
goto done;
}
}
/*
* Handle ND6_IFF_PROXY_PREFIXES
*/
if ((before & ND6_IFF_PROXY_PREFIXES) ||
(after & ND6_IFF_PROXY_PREFIXES)) {
b = (before & ND6_IFF_PROXY_PREFIXES);
a = (after & ND6_IFF_PROXY_PREFIXES);
if (b != a && (err = nd6_if_prproxy(ifp,
((int32_t)(a - b) > 0))) != 0) {
goto done;
}
}
done:
return err;
}
/*
* Enable/disable IPv6 on an interface, called as part of
* setting/clearing ND6_IFF_IFDISABLED, or during DAD failure.
*/
int
nd6_if_disable(struct ifnet *ifp, boolean_t enable)
{
if (enable) {
if_set_eflags(ifp, IFEF_IPV6_DISABLED);
} else {
if_clear_eflags(ifp, IFEF_IPV6_DISABLED);
}
return 0;
}
static int
nd6_sysctl_drlist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
char pbuf[MAX_IPv6_STR_LEN];
struct nd_defrouter *dr;
int error = 0;
if (req->newptr != USER_ADDR_NULL) {
return EPERM;
}
/* XXX Handle mapped defrouter entries */
lck_mtx_lock(nd6_mutex);
if (proc_is64bit(req->p)) {
struct in6_defrouter_64 d;
bzero(&d, sizeof(d));
d.rtaddr.sin6_family = AF_INET6;
d.rtaddr.sin6_len = sizeof(d.rtaddr);
TAILQ_FOREACH(dr, &nd_defrouter_list, dr_entry) {
d.rtaddr.sin6_addr = dr->rtaddr;
if (in6_recoverscope(&d.rtaddr,
&dr->rtaddr, dr->ifp) != 0) {
log(LOG_ERR, "scope error in default router "
"list (%s)\n", inet_ntop(AF_INET6,
&dr->rtaddr, pbuf, sizeof(pbuf)));
}
d.flags = dr->flags;
d.stateflags = dr->stateflags;
d.rtlifetime = (u_short)dr->rtlifetime;
d.expire = (int)nddr_getexpire(dr);
d.if_index = dr->ifp->if_index;
error = SYSCTL_OUT(req, &d, sizeof(d));
if (error != 0) {
break;
}
}
} else {
struct in6_defrouter_32 d;
bzero(&d, sizeof(d));
d.rtaddr.sin6_family = AF_INET6;
d.rtaddr.sin6_len = sizeof(d.rtaddr);
TAILQ_FOREACH(dr, &nd_defrouter_list, dr_entry) {
d.rtaddr.sin6_addr = dr->rtaddr;
if (in6_recoverscope(&d.rtaddr,
&dr->rtaddr, dr->ifp) != 0) {
log(LOG_ERR, "scope error in default router "
"list (%s)\n", inet_ntop(AF_INET6,
&dr->rtaddr, pbuf, sizeof(pbuf)));
}
d.flags = dr->flags;
d.stateflags = dr->stateflags;
d.rtlifetime = (u_short)dr->rtlifetime;
d.expire = (int)nddr_getexpire(dr);
d.if_index = dr->ifp->if_index;
error = SYSCTL_OUT(req, &d, sizeof(d));
if (error != 0) {
break;
}
}
}
lck_mtx_unlock(nd6_mutex);
return error;
}
static int
nd6_sysctl_prlist SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
char pbuf[MAX_IPv6_STR_LEN];
struct nd_pfxrouter *pfr;
struct sockaddr_in6 s6;
struct nd_prefix *pr;
int error = 0;
if (req->newptr != USER_ADDR_NULL) {
return EPERM;
}
SOCKADDR_ZERO(&s6, sizeof(s6));
s6.sin6_family = AF_INET6;
s6.sin6_len = sizeof(s6);
/* XXX Handle mapped defrouter entries */
lck_mtx_lock(nd6_mutex);
if (proc_is64bit(req->p)) {
struct in6_prefix_64 p;
bzero(&p, sizeof(p));
p.origin = PR_ORIG_RA;
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
NDPR_LOCK(pr);
p.prefix = pr->ndpr_prefix;
if (in6_recoverscope(&p.prefix,
&pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) {
log(LOG_ERR, "scope error in "
"prefix list (%s)\n", inet_ntop(AF_INET6,
&p.prefix.sin6_addr, pbuf, sizeof(pbuf)));
}
p.raflags = pr->ndpr_raf;
p.prefixlen = pr->ndpr_plen;
p.vltime = pr->ndpr_vltime;
p.pltime = pr->ndpr_pltime;
p.if_index = pr->ndpr_ifp->if_index;
p.expire = (u_long)ndpr_getexpire(pr);
p.refcnt = pr->ndpr_addrcnt;
p.flags = pr->ndpr_stateflags;
p.advrtrs = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
p.advrtrs++;
error = SYSCTL_OUT(req, &p, sizeof(p));
if (error != 0) {
NDPR_UNLOCK(pr);
break;
}
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
s6.sin6_addr = pfr->router->rtaddr;
if (in6_recoverscope(&s6, &pfr->router->rtaddr,
pfr->router->ifp) != 0) {
log(LOG_ERR,
"scope error in prefix list (%s)\n",
inet_ntop(AF_INET6, &s6.sin6_addr,
pbuf, sizeof(pbuf)));
}
error = SYSCTL_OUT(req, &s6, sizeof(s6));
if (error != 0) {
break;
}
}
NDPR_UNLOCK(pr);
if (error != 0) {
break;
}
}
} else {
struct in6_prefix_32 p;
bzero(&p, sizeof(p));
p.origin = PR_ORIG_RA;
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
NDPR_LOCK(pr);
p.prefix = pr->ndpr_prefix;
if (in6_recoverscope(&p.prefix,
&pr->ndpr_prefix.sin6_addr, pr->ndpr_ifp) != 0) {
log(LOG_ERR,
"scope error in prefix list (%s)\n",
inet_ntop(AF_INET6, &p.prefix.sin6_addr,
pbuf, sizeof(pbuf)));
}
p.raflags = pr->ndpr_raf;
p.prefixlen = pr->ndpr_plen;
p.vltime = pr->ndpr_vltime;
p.pltime = pr->ndpr_pltime;
p.if_index = pr->ndpr_ifp->if_index;
p.expire = (u_int32_t)ndpr_getexpire(pr);
p.refcnt = pr->ndpr_addrcnt;
p.flags = pr->ndpr_stateflags;
p.advrtrs = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
p.advrtrs++;
error = SYSCTL_OUT(req, &p, sizeof(p));
if (error != 0) {
NDPR_UNLOCK(pr);
break;
}
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
s6.sin6_addr = pfr->router->rtaddr;
if (in6_recoverscope(&s6, &pfr->router->rtaddr,
pfr->router->ifp) != 0) {
log(LOG_ERR,
"scope error in prefix list (%s)\n",
inet_ntop(AF_INET6, &s6.sin6_addr,
pbuf, sizeof(pbuf)));
}
error = SYSCTL_OUT(req, &s6, sizeof(s6));
if (error != 0) {
break;
}
}
NDPR_UNLOCK(pr);
if (error != 0) {
break;
}
}
}
lck_mtx_unlock(nd6_mutex);
return error;
}
void
in6_ifaddr_set_dadprogress(struct in6_ifaddr *ia)
{
struct ifnet* ifp = ia->ia_ifp;
uint32_t flags = IN6_IFF_TENTATIVE;
uint32_t optdad = nd6_optimistic_dad;
struct nd_ifinfo *ndi = NULL;
ndi = ND_IFINFO(ifp);
VERIFY((NULL != ndi) && (TRUE == ndi->initialized));
if (!(ndi->flags & ND6_IFF_DAD)) {
return;
}
if (optdad) {
if (ifp->if_ipv6_router_mode == IPV6_ROUTER_MODE_EXCLUSIVE) {
optdad = 0;
} else {
lck_mtx_lock(&ndi->lock);
if ((ndi->flags & ND6_IFF_REPLICATED) != 0) {
optdad = 0;
}
lck_mtx_unlock(&ndi->lock);
}
}
if (optdad) {
if ((optdad & ND6_OPTIMISTIC_DAD_LINKLOCAL) &&
IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) {
flags = IN6_IFF_OPTIMISTIC;
} else if ((optdad & ND6_OPTIMISTIC_DAD_AUTOCONF) &&
(ia->ia6_flags & IN6_IFF_AUTOCONF)) {
if (ia->ia6_flags & IN6_IFF_TEMPORARY) {
if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) {
flags = IN6_IFF_OPTIMISTIC;
}
} else if (ia->ia6_flags & IN6_IFF_SECURED) {
if (optdad & ND6_OPTIMISTIC_DAD_SECURED) {
flags = IN6_IFF_OPTIMISTIC;
}
} else {
/*
* Keeping the behavior for temp and CGA
* SLAAC addresses to have a knob for optimistic
* DAD.
* Other than that if ND6_OPTIMISTIC_DAD_AUTOCONF
* is set, we should default to optimistic
* DAD.
* For now this means SLAAC addresses with interface
* identifier derived from modified EUI-64 bit
* identifiers.
*/
flags = IN6_IFF_OPTIMISTIC;
}
} else if ((optdad & ND6_OPTIMISTIC_DAD_DYNAMIC) &&
(ia->ia6_flags & IN6_IFF_DYNAMIC)) {
if (ia->ia6_flags & IN6_IFF_TEMPORARY) {
if (optdad & ND6_OPTIMISTIC_DAD_TEMPORARY) {
flags = IN6_IFF_OPTIMISTIC;
}
} else {
flags = IN6_IFF_OPTIMISTIC;
}
} else if ((optdad & ND6_OPTIMISTIC_DAD_MANUAL) &&
(ia->ia6_flags & IN6_IFF_OPTIMISTIC)) {
/*
* rdar://17483438
* Bypass tentative for address assignments
* not covered above (e.g. manual) upon request
*/
if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr) &&
!(ia->ia6_flags & IN6_IFF_AUTOCONF) &&
!(ia->ia6_flags & IN6_IFF_DYNAMIC)) {
flags = IN6_IFF_OPTIMISTIC;
}
}
}
ia->ia6_flags &= ~(IN6_IFF_DUPLICATED | IN6_IFF_DADPROGRESS);
ia->ia6_flags |= flags;
nd6log2(debug, "%s - %s ifp %s ia6_flags 0x%x\n",
__func__,
ip6_sprintf(&ia->ia_addr.sin6_addr),
if_name(ia->ia_ifp),
ia->ia6_flags);
}