gems-kernel/source/THIRDPARTY/xnu/bsd/netinet6/udp6_usrreq.c
2024-06-03 11:29:39 -05:00

1366 lines
37 KiB
C

/*
* Copyright (c) 2000-2022 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $FreeBSD: src/sys/netinet6/udp6_usrreq.c,v 1.6.2.6 2001/07/29 19:32:40 ume Exp $ */
/* $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_var.h 8.1 (Berkeley) 6/10/93
*/
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/param.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <net/if.h>
#include <net/route.h>
#include <net/if_types.h>
#include <net/ntstat.h>
#include <net/dlil.h>
#include <net/net_api_stats.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/udp_log.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_pcb.h>
#include <netinet/icmp6.h>
#include <netinet6/udp6_var.h>
#include <netinet6/ip6protosw.h>
#if IPSEC
#include <netinet6/ipsec.h>
#include <netinet6/ipsec6.h>
#include <netinet6/esp6.h>
#include <netkey/key.h>
extern int ipsec_bypass;
extern int esp_udp_encap_port;
#endif /* IPSEC */
#if NECP
#include <net/necp.h>
#endif /* NECP */
#if FLOW_DIVERT
#include <netinet/flow_divert.h>
#endif /* FLOW_DIVERT */
#if CONTENT_FILTER
#include <net/content_filter.h>
#endif /* CONTENT_FILTER */
#if SKYWALK
#include <skywalk/core/skywalk_var.h>
#endif /* SKYWALK */
#include <net/sockaddr_utils.h>
/*
* UDP protocol inplementation.
* Per RFC 768, August, 1980.
*/
static int udp6_abort(struct socket *);
static int udp6_attach(struct socket *, int, struct proc *);
static int udp6_bind(struct socket *, struct sockaddr *, struct proc *);
static int udp6_connectx(struct socket *, struct sockaddr *,
struct sockaddr *, struct proc *, uint32_t, sae_associd_t,
sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *);
static int udp6_detach(struct socket *);
static int udp6_disconnect(struct socket *);
static int udp6_disconnectx(struct socket *, sae_associd_t, sae_connid_t);
static int udp6_send(struct socket *, int, struct mbuf *, struct sockaddr *,
struct mbuf *, struct proc *);
static void udp6_append(struct inpcb *, struct ip6_hdr *,
struct sockaddr_in6 *, struct mbuf *, int, struct ifnet *);
static int udp6_input_checksum(struct mbuf *, struct udphdr *, int, int);
static int udp6_defunct(struct socket *);
struct pr_usrreqs udp6_usrreqs = {
.pru_abort = udp6_abort,
.pru_attach = udp6_attach,
.pru_bind = udp6_bind,
.pru_connect = udp6_connect,
.pru_connectx = udp6_connectx,
.pru_control = in6_control,
.pru_detach = udp6_detach,
.pru_disconnect = udp6_disconnect,
.pru_disconnectx = udp6_disconnectx,
.pru_peeraddr = in6_mapped_peeraddr,
.pru_send = udp6_send,
.pru_shutdown = udp_shutdown,
.pru_sockaddr = in6_mapped_sockaddr,
.pru_sosend = sosend,
.pru_soreceive = soreceive,
.pru_defunct = udp6_defunct,
};
/*
* subroutine of udp6_input(), mainly for source code readability.
*/
static void
udp6_append(struct inpcb *last, struct ip6_hdr *ip6,
struct sockaddr_in6 *udp_in6, struct mbuf *n, int off, struct ifnet *ifp)
{
#pragma unused(ip6)
struct mbuf *opts = NULL;
int ret = 0;
boolean_t cell = IFNET_IS_CELLULAR(ifp);
boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
if ((last->in6p_flags & INP_CONTROLOPTS) != 0 ||
SOFLOW_ENABLED(last->in6p_socket) ||
SO_RECV_CONTROL_OPTS(last->in6p_socket)) {
ret = ip6_savecontrol(last, n, &opts);
if (ret != 0) {
m_freem(n);
m_freem(opts);
return;
}
}
m_adj(n, off);
if (nstat_collect) {
INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1);
INP_ADD_STAT(last, cell, wifi, wired, rxbytes, n->m_pkthdr.len);
inp_set_activity_bitmap(last);
}
so_recv_data_stat(last->in6p_socket, n, 0);
if (sbappendaddr(&last->in6p_socket->so_rcv,
SA(udp_in6), n, opts, NULL) == 0) {
udpstat.udps_fullsock++;
} else {
sorwakeup(last->in6p_socket);
}
}
int
udp6_input(struct mbuf **mp, int *offp, int proto)
{
#pragma unused(proto)
struct mbuf *m = *mp;
struct ifnet *ifp;
struct ip6_hdr *ip6;
struct udphdr *uh;
struct inpcb *in6p;
struct mbuf *opts = NULL;
int off = *offp;
int plen, ulen, ret = 0;
boolean_t cell, wifi, wired;
struct sockaddr_in6 udp_in6;
struct inpcbinfo *pcbinfo = &udbinfo;
struct sockaddr_in6 fromsa;
u_int16_t pf_tag = 0;
boolean_t is_wake_pkt = false;
IP6_EXTHDR_CHECK(m, off, sizeof(struct udphdr), return IPPROTO_DONE);
/* Expect 32-bit aligned data pointer on strict-align platforms */
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
ifp = m->m_pkthdr.rcvif;
ip6 = mtod(m, struct ip6_hdr *);
cell = IFNET_IS_CELLULAR(ifp);
wifi = (!cell && IFNET_IS_WIFI(ifp));
wired = (!wifi && IFNET_IS_WIRED(ifp));
if (m->m_flags & M_PKTHDR) {
pf_tag = m_pftag(m)->pftag_tag;
if (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT) {
is_wake_pkt = true;
}
}
udpstat.udps_ipackets++;
plen = ntohs(ip6->ip6_plen) - off + sizeof(*ip6);
uh = (struct udphdr *)(void *)((caddr_t)ip6 + off);
ulen = ntohs((u_short)uh->uh_ulen);
if (plen != ulen) {
udpstat.udps_badlen++;
IF_UDP_STATINC(ifp, badlength);
goto bad;
}
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0) {
IF_UDP_STATINC(ifp, port0);
goto bad;
}
/*
* Checksum extended UDP header and data.
*/
if (udp6_input_checksum(m, uh, off, ulen)) {
goto bad;
}
/*
* Construct sockaddr format source address.
*/
init_sin6(&fromsa, m);
fromsa.sin6_port = uh->uh_sport;
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
int reuse_sock = 0, mcast_delivered = 0;
struct ip6_moptions *imo;
/*
* Deliver a multicast datagram to all sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multicasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* In a case that laddr should be set to the link-local
* address (this happens in RIPng), the multicast address
* specified in the received packet does not match with
* laddr. To cure this situation, the matching is relaxed
* if the receiving interface is the same as one specified
* in the socket and if the destination multicast address
* matches one of the multicast groups specified in the socket.
*/
/*
* Construct sockaddr format source address.
*/
init_sin6(&udp_in6, m); /* general init */
udp_in6.sin6_port = uh->uh_sport;
/*
* KAME note: usually we drop udphdr from mbuf here.
* We need udphdr for IPsec processing so we do that later.
*/
/*
* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/
lck_rw_lock_shared(&pcbinfo->ipi_lock);
LIST_FOREACH(in6p, &udb, inp_list) {
#if IPSEC
int skipit;
#endif /* IPSEC */
if ((in6p->inp_vflag & INP_IPV6) == 0) {
continue;
}
if (inp_restricted_recv(in6p, ifp)) {
continue;
}
/*
* Skip unbound sockets before taking the lock on the socket as
* the test with the destination port in the header will fail
*/
if (in6p->in6p_lport == 0) {
continue;
}
if (in_pcb_checkstate(in6p, WNT_ACQUIRE, 0) ==
WNT_STOPUSING) {
continue;
}
udp_lock(in6p->in6p_socket, 1, 0);
if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) ==
WNT_STOPUSING) {
udp_unlock(in6p->in6p_socket, 1, 0);
continue;
}
if (in6p->in6p_lport != uh->uh_dport) {
udp_unlock(in6p->in6p_socket, 1, 0);
continue;
}
/*
* Handle socket delivery policy for any-source
* and source-specific multicast. [RFC3678]
*/
imo = in6p->in6p_moptions;
if (imo && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
struct sockaddr_in6 mcaddr;
int blocked;
IM6O_LOCK(imo);
SOCKADDR_ZERO(&mcaddr, sizeof(struct sockaddr_in6));
mcaddr.sin6_len = sizeof(struct sockaddr_in6);
mcaddr.sin6_family = AF_INET6;
mcaddr.sin6_addr = ip6->ip6_dst;
blocked = im6o_mc_filter(imo, ifp,
&mcaddr, &fromsa);
IM6O_UNLOCK(imo);
if (blocked != MCAST_PASS) {
udp_unlock(in6p->in6p_socket, 1, 0);
if (blocked == MCAST_NOTSMEMBER ||
blocked == MCAST_MUTED) {
udpstat.udps_filtermcast++;
}
continue;
}
}
if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) &&
(!in6_are_addr_equal_scoped(&in6p->in6p_faddr,
&ip6->ip6_src, in6p->inp_fifscope, ifp->if_index) ||
in6p->in6p_fport != uh->uh_sport)) {
udp_unlock(in6p->in6p_socket, 1, 0);
continue;
}
reuse_sock = in6p->inp_socket->so_options &
(SO_REUSEPORT | SO_REUSEADDR);
#if NECP
skipit = 0;
if (!necp_socket_is_allowed_to_send_recv_v6(in6p,
uh->uh_dport, uh->uh_sport, &ip6->ip6_dst,
&ip6->ip6_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
/* do not inject data to pcb */
skipit = 1;
}
if (skipit == 0)
#endif /* NECP */
{
struct mbuf *n = NULL;
/*
* KAME NOTE: do not
* m_copy(m, offset, ...) below.
* sbappendaddr() expects M_PKTHDR,
* and m_copy() will copy M_PKTHDR
* only if offset is 0.
*/
if (reuse_sock) {
n = m_copy(m, 0, M_COPYALL);
}
udp6_append(in6p, ip6, &udp_in6, m,
off + sizeof(struct udphdr), ifp);
mcast_delivered++;
m = n;
}
if (is_wake_pkt) {
soevent(in6p->in6p_socket,
SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT);
}
udp_unlock(in6p->in6p_socket, 1, 0);
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that an application will never
* clear these options after setting them.
*/
if (reuse_sock == 0 || m == NULL) {
break;
}
/*
* Expect 32-bit aligned data pointer on strict-align
* platforms.
*/
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
/*
* Recompute IP and UDP header pointers for new mbuf
*/
ip6 = mtod(m, struct ip6_hdr *);
uh = (struct udphdr *)(void *)((caddr_t)ip6 + off);
}
lck_rw_done(&pcbinfo->ipi_lock);
if (mcast_delivered == 0) {
/*
* No matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/
udpstat.udps_noport++;
udpstat.udps_noportmcast++;
IF_UDP_STATINC(ifp, port_unreach);
goto bad;
}
/* free the extra copy of mbuf or skipped by NECP */
if (m != NULL) {
m_freem(m);
}
return IPPROTO_DONE;
}
#if IPSEC
/*
* UDP to port 4500 with a payload where the first four bytes are
* not zero is a UDP encapsulated IPsec packet. Packets where
* the payload is one byte and that byte is 0xFF are NAT keepalive
* packets. Decapsulate the ESP packet and carry on with IPsec input
* or discard the NAT keep-alive.
*/
if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 &&
(uh->uh_dport == ntohs((u_short)esp_udp_encap_port) ||
uh->uh_sport == ntohs((u_short)esp_udp_encap_port))) {
/*
* Check if ESP or keepalive:
* 1. If the destination port of the incoming packet is 4500.
* 2. If the source port of the incoming packet is 4500,
* then check the SADB to match IP address and port.
*/
bool check_esp = true;
if (uh->uh_dport != ntohs((u_short)esp_udp_encap_port)) {
check_esp = key_checksa_present(AF_INET6, (caddr_t)&ip6->ip6_dst,
(caddr_t)&ip6->ip6_src, uh->uh_dport,
uh->uh_sport, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m));
}
if (check_esp) {
int payload_len = ulen - sizeof(struct udphdr) > 4 ? 4 :
ulen - sizeof(struct udphdr);
if (m->m_len < off + sizeof(struct udphdr) + payload_len) {
if ((m = m_pullup(m, off + sizeof(struct udphdr) +
payload_len)) == NULL) {
udpstat.udps_hdrops++;
goto bad;
}
/*
* Expect 32-bit aligned data pointer on strict-align
* platforms.
*/
MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
ip6 = mtod(m, struct ip6_hdr *);
uh = (struct udphdr *)(void *)((caddr_t)ip6 + off);
}
/* Check for NAT keepalive packet */
if (payload_len == 1 && *(u_int8_t*)
((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) {
goto bad;
} else if (payload_len == 4 && *(u_int32_t*)(void *)
((caddr_t)uh + sizeof(struct udphdr)) != 0) {
/* UDP encapsulated IPsec packet to pass through NAT */
/* preserve the udp header */
*offp = off + sizeof(struct udphdr);
return esp6_input(mp, offp, IPPROTO_UDP);
}
}
}
#endif /* IPSEC */
/*
* Locate pcb for datagram.
*/
in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_src, uh->uh_sport, ip6_input_getsrcifscope(m),
&ip6->ip6_dst, uh->uh_dport, ip6_input_getdstifscope(m), 1, m->m_pkthdr.rcvif);
if (in6p == NULL) {
IF_UDP_STATINC(ifp, port_unreach);
if (udp_log_in_vain) {
char buf[INET6_ADDRSTRLEN];
strlcpy(buf, ip6_sprintf(&ip6->ip6_dst), sizeof(buf));
if (udp_log_in_vain < 3) {
log(LOG_INFO, "Connection attempt to UDP "
"%s:%d from %s:%d\n", buf,
ntohs(uh->uh_dport),
ip6_sprintf(&ip6->ip6_src),
ntohs(uh->uh_sport));
} else if (!(m->m_flags & (M_BCAST | M_MCAST)) &&
!in6_are_addr_equal_scoped(&ip6->ip6_dst, &ip6->ip6_src, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m))) {
log(LOG_INFO, "Connection attempt "
"to UDP %s:%d from %s:%d\n", buf,
ntohs(uh->uh_dport),
ip6_sprintf(&ip6->ip6_src),
ntohs(uh->uh_sport));
}
}
udpstat.udps_noport++;
if (m->m_flags & M_MCAST) {
printf("UDP6: M_MCAST is set in a unicast packet.\n");
udpstat.udps_noportmcast++;
IF_UDP_STATINC(ifp, badmcast);
goto bad;
}
icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
return IPPROTO_DONE;
}
/*
* Construct sockaddr format source address.
* Stuff source address and datagram in user buffer.
*/
udp_lock(in6p->in6p_socket, 1, 0);
#if NECP
if (!necp_socket_is_allowed_to_send_recv_v6(in6p, uh->uh_dport,
uh->uh_sport, &ip6->ip6_dst, &ip6->ip6_src, ifp, pf_tag, NULL, NULL, NULL, NULL)) {
in_pcb_checkstate(in6p, WNT_RELEASE, 1);
udp_unlock(in6p->in6p_socket, 1, 0);
IF_UDP_STATINC(ifp, badipsec);
goto bad;
}
#endif /* NECP */
if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) {
udp_unlock(in6p->in6p_socket, 1, 0);
IF_UDP_STATINC(ifp, cleanup);
goto bad;
}
init_sin6(&udp_in6, m); /* general init */
udp_in6.sin6_port = uh->uh_sport;
if ((in6p->in6p_flags & INP_CONTROLOPTS) != 0 ||
SOFLOW_ENABLED(in6p->in6p_socket) ||
SO_RECV_CONTROL_OPTS(in6p->in6p_socket)) {
ret = ip6_savecontrol(in6p, m, &opts);
if (ret != 0) {
udp_unlock(in6p->in6p_socket, 1, 0);
goto bad;
}
}
m_adj(m, off + sizeof(struct udphdr));
if (nstat_collect) {
INP_ADD_STAT(in6p, cell, wifi, wired, rxpackets, 1);
INP_ADD_STAT(in6p, cell, wifi, wired, rxbytes, m->m_pkthdr.len);
inp_set_activity_bitmap(in6p);
}
so_recv_data_stat(in6p->in6p_socket, m, 0);
if (sbappendaddr(&in6p->in6p_socket->so_rcv,
SA(&udp_in6), m, opts, NULL) == 0) {
m = NULL;
opts = NULL;
udpstat.udps_fullsock++;
udp_unlock(in6p->in6p_socket, 1, 0);
goto bad;
}
if (is_wake_pkt) {
soevent(in6p->in6p_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT);
}
sorwakeup(in6p->in6p_socket);
udp_unlock(in6p->in6p_socket, 1, 0);
return IPPROTO_DONE;
bad:
if (m != NULL) {
m_freem(m);
}
if (opts != NULL) {
m_freem(opts);
}
return IPPROTO_DONE;
}
void
udp6_ctlinput(int cmd, struct sockaddr *sa, void *d, __unused struct ifnet *ifp)
{
struct udphdr uh;
struct ip6_hdr *ip6;
struct mbuf *m;
int off = 0;
struct ip6ctlparam *ip6cp = NULL;
struct icmp6_hdr *icmp6 = NULL;
const struct sockaddr_in6 *sa6_src = NULL;
void *cmdarg = NULL;
void (*notify)(struct inpcb *, int) = udp_notify;
struct inpcb *in6p;
struct udp_portonly {
u_int16_t uh_sport;
u_int16_t uh_dport;
} *uhp;
if (sa->sa_family != AF_INET6 ||
sa->sa_len != sizeof(struct sockaddr_in6)) {
return;
}
if ((unsigned)cmd >= PRC_NCMDS) {
return;
}
if (PRC_IS_REDIRECT(cmd)) {
notify = in6_rtchange;
d = NULL;
} else if (cmd == PRC_HOSTDEAD) {
d = NULL;
} else if (inet6ctlerrmap[cmd] == 0) {
return;
}
/* if the parameter is from icmp6, decode it. */
if (d != NULL) {
ip6cp = (struct ip6ctlparam *)d;
icmp6 = ip6cp->ip6c_icmp6;
m = ip6cp->ip6c_m;
ip6 = ip6cp->ip6c_ip6;
off = ip6cp->ip6c_off;
cmdarg = ip6cp->ip6c_cmdarg;
sa6_src = ip6cp->ip6c_src;
} else {
m = NULL;
ip6 = NULL;
cmdarg = NULL;
sa6_src = &sa6_any;
}
if (ip6 != NULL) {
#if SKYWALK
union sockaddr_in_4_6 sock_laddr;
struct protoctl_ev_val prctl_ev_val;
#endif /* SKYWALK */
/*
* XXX: We assume that when IPV6 is non NULL,
* M and OFF are valid.
*/
/* check if we can safely examine src and dst ports */
if (m->m_pkthdr.len < off + sizeof(*uhp)) {
return;
}
bzero(&uh, sizeof(uh));
m_copydata(m, off, sizeof(*uhp), (caddr_t)&uh);
in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_dst, uh.uh_dport, ip6_input_getdstifscope(m),
&ip6->ip6_src, uh.uh_sport, ip6_input_getsrcifscope(m), 0, NULL);
if (cmd == PRC_MSGSIZE && in6p != NULL && !uuid_is_null(in6p->necp_client_uuid)) {
uuid_t null_uuid;
uuid_clear(null_uuid);
necp_update_flow_protoctl_event(null_uuid, in6p->necp_client_uuid,
PRC_MSGSIZE, ntohl(icmp6->icmp6_mtu), 0);
/*
* Avoid setting so_error when using Network.framework
* since the notification of PRC_MSGSIZE has been delivered
* through NECP.
*/
in6_pcbnotify(&udbinfo, sa, uh.uh_dport,
SA(ip6cp->ip6c_src), uh.uh_sport,
cmd, cmdarg, NULL);
} else {
in6_pcbnotify(&udbinfo, sa, uh.uh_dport,
SA(ip6cp->ip6c_src), uh.uh_sport,
cmd, cmdarg, notify);
}
#if SKYWALK
bzero(&prctl_ev_val, sizeof(prctl_ev_val));
bzero(&sock_laddr, sizeof(sock_laddr));
if (cmd == PRC_MSGSIZE && icmp6 != NULL) {
prctl_ev_val.val = ntohl(icmp6->icmp6_mtu);
}
sock_laddr.sin6.sin6_family = AF_INET6;
sock_laddr.sin6.sin6_len = sizeof(sock_laddr.sin6);
sock_laddr.sin6.sin6_addr = ip6->ip6_src;
protoctl_event_enqueue_nwk_wq_entry(ifp,
SA(&sock_laddr), sa,
uh.uh_sport, uh.uh_dport, IPPROTO_UDP,
cmd, &prctl_ev_val);
#endif /* SKYWALK */
}
/*
* XXX The else condition here was broken for a long time.
* Fixing it made us deliver notification correctly but broke
* some frameworks that didn't handle it well.
* For now we have removed it and will revisit it later.
*/
}
static int
udp6_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
panic("%s: so=%p null inp", __func__, so);
/* NOTREACHED */
}
soisdisconnected(so);
in6_pcbdetach(inp);
return 0;
}
static int
udp6_attach(struct socket *so, int proto, struct proc *p)
{
#pragma unused(proto)
struct inpcb *inp;
int error;
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error) {
return error;
}
}
inp = sotoinpcb(so);
if (inp != NULL) {
return EINVAL;
}
error = in_pcballoc(so, &udbinfo, p);
if (error) {
return error;
}
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV6;
if (ip6_mapped_addr_on) {
inp->inp_vflag |= INP_IPV4;
}
inp->in6p_hops = -1; /* use kernel default */
inp->in6p_cksum = -1; /* just to be sure */
/*
* XXX: ugly!!
* IPv4 TTL initialization is necessary for an IPv6 socket as well,
* because the socket may be bound to an IPv6 wildcard address,
* which may match an IPv4-mapped IPv6 address.
*/
inp->inp_ip_ttl = (u_char)ip_defttl;
if (nstat_collect) {
nstat_udp_new_pcb(inp);
}
return 0;
}
static int
udp6_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
/*
* Another thread won the binding race so do not change inp_vflag
*/
if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) {
return EINVAL;
}
const uint8_t old_flags = inp->inp_vflag;
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
struct sockaddr_in6 *sin6_p;
sin6_p = SIN6(nam);
if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) {
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_V4MAPPEDV6;
} else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
struct sockaddr_in sin;
in6_sin6_2_sin(&sin, sin6_p);
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
inp->inp_vflag |= INP_V4MAPPEDV6;
error = in_pcbbind(inp, SA(&sin), p);
if (error != 0) {
inp->inp_vflag = old_flags;
}
return error;
}
}
error = in6_pcbbind(inp, nam, p);
if (error != 0) {
inp->inp_vflag = old_flags;
}
UDP_LOG_BIND(inp, error);
return error;
}
int
udp6_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
{
struct inpcb *inp;
int error;
struct sockaddr_in6 *sin6_p = SIN6(nam);
#if defined(NECP) && defined(FLOW_DIVERT)
int should_use_flow_divert = 0;
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
#if defined(NECP) && defined(FLOW_DIVERT)
should_use_flow_divert = necp_socket_should_use_flow_divert(inp);
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
/*
* It is possible that the socket is bound to v4 mapped v6 address.
* Post that do not allow connect to a v6 endpoint.
*/
if (inp->inp_vflag & INP_V4MAPPEDV6 &&
!IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) {
sin6_p->sin6_addr.s6_addr[10] = 0xff;
sin6_p->sin6_addr.s6_addr[11] = 0xff;
} else {
return EINVAL;
}
}
if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) {
struct sockaddr_in sin;
const uint8_t old_flags = inp->inp_vflag;
if (inp->inp_faddr.s_addr != INADDR_ANY) {
return EISCONN;
}
if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
so->so_flags1 |= SOF1_CONNECT_COUNTED;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected);
}
in6_sin6_2_sin(&sin, sin6_p);
#if defined(NECP) && defined(FLOW_DIVERT)
if (should_use_flow_divert) {
goto do_flow_divert;
}
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
inp->inp_vflag |= INP_IPV4;
inp->inp_vflag &= ~INP_IPV6;
inp->inp_vflag |= INP_V4MAPPEDV6;
error = in_pcbconnect(inp, SA(&sin), p, IFSCOPE_NONE, NULL);
if (error == 0) {
#if NECP
/* Update NECP client with connected five-tuple */
if (!uuid_is_null(inp->necp_client_uuid)) {
socket_unlock(so, 0);
necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
socket_lock(so, 0);
}
#endif /* NECP */
soisconnected(so);
} else {
inp->inp_vflag = old_flags;
}
UDP_LOG_CONNECT(inp, error);
return error;
}
}
if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
return EISCONN;
}
if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) {
so->so_flags1 |= SOF1_CONNECT_COUNTED;
INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet6_dgram_connected);
}
#if defined(NECP) && defined(FLOW_DIVERT)
do_flow_divert:
if (should_use_flow_divert) {
error = flow_divert_pcb_init(so);
if (error == 0) {
error = flow_divert_connect_out(so, nam, p);
}
return error;
}
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
error = in6_pcbconnect(inp, nam, p);
if (error == 0) {
/* should be non mapped addr */
if (ip6_mapped_addr_on ||
(inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
inp->inp_vflag &= ~INP_IPV4;
inp->inp_vflag |= INP_IPV6;
}
#if NECP
/* Update NECP client with connected five-tuple */
if (!uuid_is_null(inp->necp_client_uuid)) {
socket_unlock(so, 0);
necp_client_assign_from_socket(so->last_pid, inp->necp_client_uuid, inp);
socket_lock(so, 0);
}
#endif /* NECP */
soisconnected(so);
if (inp->inp_flowhash == 0) {
inp_calc_flowhash(inp);
ASSERT(inp->inp_flowhash != 0);
}
/* update flowinfo - RFC 6437 */
if (inp->inp_flow == 0 &&
inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
inp->inp_flow |=
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
}
inp->inp_connect_timestamp = mach_continuous_time();
}
UDP_LOG_CONNECT(inp, error);
return error;
}
static int
udp6_connectx(struct socket *so, struct sockaddr *src,
struct sockaddr *dst, struct proc *p, uint32_t ifscope,
sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
{
return udp_connectx_common(so, AF_INET6, src, dst,
p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written);
}
static int
udp6_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
UDP_LOG_CONNECTION_SUMMARY(inp);
in6_pcbdetach(inp);
return 0;
}
static int
udp6_disconnect(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL
#if NECP
|| (necp_socket_should_use_flow_divert(inp))
#endif /* NECP */
) {
return inp == NULL ? EINVAL : EPROTOTYPE;
}
if (inp->inp_vflag & INP_IPV4) {
struct pr_usrreqs *pru;
pru = ip_protox[IPPROTO_UDP]->pr_usrreqs;
return (*pru->pru_disconnect)(so);
}
if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
return ENOTCONN;
}
UDP_LOG_CONNECTION_SUMMARY(inp);
in6_pcbdisconnect(inp);
/* reset flow-controlled state, just in case */
inp_reset_fc_state(inp);
inp->in6p_laddr = in6addr_any;
inp->inp_lifscope = IFSCOPE_NONE;
inp->in6p_last_outifp = NULL;
#if SKYWALK
if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
netns_set_ifnet(&inp->inp_netns_token, NULL);
}
#endif /* SKYWALK */
so->so_state &= ~SS_ISCONNECTED; /* XXX */
return 0;
}
static int
udp6_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid)
{
#pragma unused(cid)
if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) {
return EINVAL;
}
return udp6_disconnect(so);
}
static int
udp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct proc *p)
{
struct inpcb *inp;
int error = 0;
#if defined(NECP) && defined(FLOW_DIVERT)
int should_use_flow_divert = 0;
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
#if CONTENT_FILTER
struct m_tag *cfil_tag = NULL;
struct sockaddr *cfil_faddr = NULL;
#endif
inp = sotoinpcb(so);
if (inp == NULL) {
error = EINVAL;
goto bad;
}
#if CONTENT_FILTER
//If socket is subject to UDP Content Filter and unconnected, get addr from tag.
if (CFIL_DGRAM_FILTERED(so) && !addr && IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
cfil_tag = cfil_dgram_get_socket_state(m, NULL, NULL, &cfil_faddr, NULL);
if (cfil_tag) {
addr = SA(cfil_faddr);
}
}
#endif
#if defined(NECP) && defined(FLOW_DIVERT)
should_use_flow_divert = necp_socket_should_use_flow_divert(inp);
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
if (addr != NULL) {
if (addr->sa_len != sizeof(struct sockaddr_in6)) {
error = EINVAL;
goto bad;
}
if (addr->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
goto bad;
}
}
if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
int hasv4addr;
struct sockaddr_in6 *sin6 = NULL;
if (addr == NULL) {
hasv4addr = (inp->inp_vflag & INP_IPV4);
} else {
sin6 = SIN6(addr);
hasv4addr =
IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0;
}
if (hasv4addr) {
struct pr_usrreqs *pru;
if (sin6 != NULL) {
in6_sin6_2_sin_in_sock(addr);
}
#if defined(NECP) && defined(FLOW_DIVERT)
if (should_use_flow_divert) {
goto do_flow_divert;
}
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
pru = ip_protox[IPPROTO_UDP]->pr_usrreqs;
error = ((*pru->pru_send)(so, flags, m, addr,
control, p));
#if CONTENT_FILTER
if (cfil_tag) {
m_tag_free(cfil_tag);
}
#endif
/* addr will just be freed in sendit(). */
return error;
}
}
#if defined(NECP) && defined(FLOW_DIVERT)
do_flow_divert:
if (should_use_flow_divert) {
/* Implicit connect */
error = flow_divert_implicit_data_out(so, flags, m, addr, control, p);
#if CONTENT_FILTER
if (cfil_tag) {
m_tag_free(cfil_tag);
}
#endif
return error;
}
#endif /* defined(NECP) && defined(FLOW_DIVERT) */
#if SKYWALK
sk_protect_t protect = sk_async_transmit_protect();
#endif /* SKYWALK */
error = udp6_output(inp, m, addr, control, p);
#if SKYWALK
sk_async_transmit_unprotect(protect);
#endif /* SKYWALK */
#if CONTENT_FILTER
if (cfil_tag) {
m_tag_free(cfil_tag);
}
#endif
return error;
bad:
VERIFY(error != 0);
if (m != NULL) {
m_freem(m);
}
if (control != NULL) {
m_freem(control);
}
#if CONTENT_FILTER
if (cfil_tag) {
m_tag_free(cfil_tag);
}
#endif
return error;
}
/*
* Checksum extended UDP header and data.
*/
static int
udp6_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen)
{
struct ifnet *ifp = m->m_pkthdr.rcvif;
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
if (!(m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
uh->uh_sum == 0) {
/* UDP/IPv6 checksum is mandatory (RFC2460) */
/*
* If checksum was already validated, ignore this check.
* This is necessary for transport-mode ESP, which may be
* getting UDP payloads without checksums when the network
* has a NAT64.
*/
udpstat.udps_nosum++;
goto badsum;
}
if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
(m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
(m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
uh->uh_sum = m->m_pkthdr.csum_rx_val;
} else {
uint32_t sum = m->m_pkthdr.csum_rx_val;
uint32_t start = m->m_pkthdr.csum_rx_start;
int32_t trailer = (m_pktlen(m) - (off + ulen));
/*
* Perform 1's complement adjustment of octets
* that got included/excluded in the hardware-
* calculated checksum value. Also take care
* of any trailing bytes and subtract out
* their partial sum.
*/
ASSERT(trailer >= 0);
if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
(start != off || trailer != 0)) {
uint32_t swbytes = (uint32_t)trailer;
uint16_t s = 0, d = 0;
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
s = ip6->ip6_src.s6_addr16[1];
ip6->ip6_src.s6_addr16[1] = 0;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
d = ip6->ip6_dst.s6_addr16[1];
ip6->ip6_dst.s6_addr16[1] = 0;
}
/* callee folds in sum */
sum = m_adj_sum16(m, start, off, ulen, sum);
if (off > start) {
swbytes += (off - start);
} else {
swbytes += (start - off);
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
ip6->ip6_src.s6_addr16[1] = s;
}
if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
ip6->ip6_dst.s6_addr16[1] = d;
}
if (swbytes != 0) {
udp_in_cksum_stats(swbytes);
}
if (trailer != 0) {
m_adj(m, -trailer);
}
}
uh->uh_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
sum + htonl(ulen + IPPROTO_UDP));
}
uh->uh_sum ^= 0xffff;
} else {
udp_in6_cksum_stats(ulen);
uh->uh_sum = in6_cksum(m, IPPROTO_UDP, off, ulen);
}
if (uh->uh_sum != 0) {
badsum:
udpstat.udps_badsum++;
IF_UDP_STATINC(ifp, badchksum);
return -1;
}
return 0;
}
int
udp6_defunct(struct socket *so)
{
struct ip_moptions *imo;
struct ip6_moptions *im6o;
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == NULL) {
return EINVAL;
}
im6o = inp->in6p_moptions;
inp->in6p_moptions = NULL;
if (im6o != NULL) {
struct proc *p = current_proc();
SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop ipv6 multicast memberships",
__func__, proc_pid(p), proc_best_name(p),
so->so_gencnt);
IM6O_REMREF(im6o);
}
imo = inp->inp_moptions;
if (imo != NULL) {
struct proc *p = current_proc();
SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop ipv4 multicast memberships",
__func__, proc_pid(p), proc_best_name(p),
so->so_gencnt);
inp->inp_moptions = NULL;
IMO_REMREF(imo);
}
return 0;
}