gems-kernel/source/THIRDPARTY/xnu/bsd/netkey/key.c
2024-06-03 11:29:39 -05:00

10550 lines
264 KiB
C

/*
* Copyright (c) 2008-2023 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* $FreeBSD: src/sys/netkey/key.c,v 1.16.2.13 2002/07/24 18:17:40 ume Exp $ */
/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This code is referd to RFC 2367
*/
#include <machine/endian.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <sys/mcache.h>
#include <kern/clock.h>
#include <kern/locks.h>
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_var.h>
#include <netinet/ip6.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#include <net/pfkeyv2.h>
#include <netkey/keydb.h>
#include <netkey/key.h>
#include <netkey/keysock.h>
#include <netkey/key_debug.h>
#include <stdarg.h>
#include <libkern/crypto/rand.h>
#include <netinet6/ipsec.h>
#include <netinet6/ipsec6.h>
#include <netinet6/ah.h>
#include <netinet6/ah6.h>
#if IPSEC_ESP
#include <netinet6/esp.h>
#include <netinet6/esp6.h>
#endif
/* randomness */
#include <sys/random.h>
#include <net/net_osdep.h>
#if SKYWALK
#include <skywalk/namespace/flowidns.h>
#endif /* SKYWALK */
#define FULLMASK 0xff
static LCK_GRP_DECLARE(sadb_mutex_grp, "sadb");
LCK_MTX_DECLARE(sadb_mutex_data, &sadb_mutex_grp);
/*
* Note on SA reference counting:
* - SAs that are not in DEAD state will have (total external reference + 1)
* following value in reference count field. they cannot be freed and are
* referenced from SA header.
* - SAs that are in DEAD state will have (total external reference)
* in reference count field. they are ready to be freed. reference from
* SA header will be removed in key_delsav(), when the reference count
* field hits 0 (= no external reference other than from SA header.
*/
u_int32_t key_debug_level = 0; //### our sysctl is not dynamic
static int key_timehandler_running = 0;
static u_int key_spi_trycnt = 1000;
static u_int32_t key_spi_minval = 0x100;
static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
static u_int32_t policy_id = 0;
static u_int32_t key_int_random = 60; /*interval to initialize randseed,1(m)*/
static u_int32_t key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
static u_int32_t key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
static u_int32_t key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
static int key_preferred_oldsa = 0; /* preferred old sa rather than new sa.*/
__private_extern__ int natt_keepalive_interval = 20; /* interval between natt keepalives.*/
static u_int32_t ipsec_policy_count = 0;
static u_int32_t ipsec_sav_count = 0;
static u_int32_t acq_seq = 0;
static int key_tick_init_random = 0;
static u_int64_t up_time = 0;
__private_extern__ u_int64_t natt_now = 0;
static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */
static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */
static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1];
static LIST_HEAD(_custom_sahtree, secashead) custom_sahtree;
/* registed list */
#define SPIHASHSIZE 128
#define SPIHASH(x) (((x) ^ ((x) >> 16)) % SPIHASHSIZE)
static LIST_HEAD(_spihash, secasvar) spihash[SPIHASHSIZE];
#ifndef IPSEC_NONBLOCK_ACQUIRE
static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */
#endif
static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */
struct key_cb key_cb;
/* search order for SAs */
static const u_int saorder_state_valid_prefer_old[] = {
SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
};
static const u_int saorder_state_valid_prefer_new[] = {
SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
};
static const u_int saorder_state_alive[] = {
/* except DEAD */
SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
};
static const u_int saorder_state_any[] = {
SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
};
static const int minsize[] = {
sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
sizeof(struct sadb_sa), /* SADB_EXT_SA */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
0, /* SADB_X_EXT_KMPRIVATE */
sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
sizeof(struct sadb_session_id), /* SADB_EXT_SESSION_ID */
sizeof(struct sadb_sastat), /* SADB_EXT_SASTAT */
sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */
sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_START */
sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_END */
sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_START */
sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_END */
sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_SRC */
sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_DST */
sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */
};
static const int maxsize[] = {
sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
sizeof(struct sadb_sa_2), /* SADB_EXT_SA */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
0, /* SADB_EXT_ADDRESS_SRC */
0, /* SADB_EXT_ADDRESS_DST */
0, /* SADB_EXT_ADDRESS_PROXY */
0, /* SADB_EXT_KEY_AUTH */
0, /* SADB_EXT_KEY_ENCRYPT */
0, /* SADB_EXT_IDENTITY_SRC */
0, /* SADB_EXT_IDENTITY_DST */
0, /* SADB_EXT_SENSITIVITY */
0, /* SADB_EXT_PROPOSAL */
0, /* SADB_EXT_SUPPORTED_AUTH */
0, /* SADB_EXT_SUPPORTED_ENCRYPT */
sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
0, /* SADB_X_EXT_KMPRIVATE */
0, /* SADB_X_EXT_POLICY */
sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
0, /* SADB_EXT_SESSION_ID */
0, /* SADB_EXT_SASTAT */
sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */
0, /* SADB_X_EXT_ADDR_RANGE_SRC_START */
0, /* SADB_X_EXT_ADDR_RANGE_SRC_END */
0, /* SADB_X_EXT_ADDR_RANGE_DST_START */
0, /* SADB_X_EXT_ADDR_RANGE_DST_END */
0, /* SADB_EXT_MIGRATE_ADDRESS_SRC */
0, /* SADB_EXT_MIGRATE_ADDRESS_DST */
sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */
};
static int ipsec_esp_keymin = 256;
static int ipsec_esp_auth = 0;
static int ipsec_ah_keymin = 128;
SYSCTL_DECL(_net_key);
/* Thread safe: no accumulated state */
SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_debug_level, 0, "");
/* max count of trial for the decision of spi value */
SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_spi_trycnt, 0, "");
/* minimum spi value to allocate automatically. */
SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_spi_minval, 0, "");
/* maximun spi value to allocate automatically. */
SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_spi_maxval, 0, "");
/* interval to initialize randseed */
SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_int_random, 0, "");
/* lifetime for larval SA; thread safe due to > compare */
SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_larval_lifetime, 0, "");
/* counter for blocking to send SADB_ACQUIRE to IKEd */
SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_blockacq_count, 0, "");
/* lifetime for blocking to send SADB_ACQUIRE to IKEd: Thread safe, > compare */
SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_blockacq_lifetime, 0, "");
/* ESP auth */
SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW | CTLFLAG_LOCKED, \
&ipsec_esp_auth, 0, "");
/* minimum ESP key length */
SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \
&ipsec_esp_keymin, 0, "");
/* minimum AH key length */
SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \
&ipsec_ah_keymin, 0, "");
/* perfered old SA rather than new SA */
SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW | CTLFLAG_LOCKED, \
&key_preferred_oldsa, 0, "");
/* time between NATT keepalives in seconds, 0 disabled */
SYSCTL_INT(_net_key, KEYCTL_NATT_KEEPALIVE_INTERVAL, natt_keepalive_interval, CTLFLAG_RW | CTLFLAG_LOCKED, \
&natt_keepalive_interval, 0, "");
/* PF_KEY statistics */
SYSCTL_STRUCT(_net_key, KEYCTL_PFKEYSTAT, pfkeystat, CTLFLAG_RD | CTLFLAG_LOCKED, \
&pfkeystat, pfkeystat, "");
#ifndef LIST_FOREACH
#define LIST_FOREACH(elm, head, field) \
for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field))
#endif
#define __LIST_CHAINED(elm) \
(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
#define LIST_INSERT_TAIL(head, elm, type, field) \
do {\
struct type *curelm = LIST_FIRST(head); \
if (curelm == NULL) {\
LIST_INSERT_HEAD(head, elm, field); \
} else { \
while (LIST_NEXT(curelm, field)) \
curelm = LIST_NEXT(curelm, field);\
LIST_INSERT_AFTER(curelm, elm, field);\
}\
} while (0)
#define KEY_CHKSASTATE(head, sav, name) \
if ((head) != (sav)) { \
ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
(name), (head), (sav))); \
continue; \
} \
#define KEY_CHKSPDIR(head, sp, name) \
do { \
if ((head) != (sp)) { \
ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
"anyway continue.\n", \
(name), (head), (sp))); \
} \
} while (0)
/*
* set parameters into secpolicyindex buffer.
* Must allocate secpolicyindex buffer passed to this function.
*/
#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, ifp, s_s, s_e, d_s, d_e, idx) \
do { \
bzero((idx), sizeof(struct secpolicyindex)); \
(idx)->dir = (_dir); \
(idx)->prefs = (ps); \
(idx)->prefd = (pd); \
(idx)->ul_proto = (ulp); \
(idx)->internal_if = (ifp); \
if (s) bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \
if (d) bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \
if (s_s) bcopy((s_s), &(idx)->src_range.start, ((struct sockaddr *)(s_s))->sa_len); \
if (s_e) bcopy((s_e), &(idx)->src_range.end, ((struct sockaddr *)(s_e))->sa_len); \
if (d_s) bcopy((d_s), &(idx)->dst_range.start, ((struct sockaddr *)(d_s))->sa_len); \
if (d_e) bcopy((d_e), &(idx)->dst_range.end, ((struct sockaddr *)(d_e))->sa_len); \
} while (0)
/*
* set parameters into secasindex buffer.
* Must allocate secasindex buffer before calling this function.
*/
#define KEY_SETSECASIDX(p, m, r, s, d, ifi, idx) \
do { \
bzero((idx), sizeof(struct secasindex)); \
(idx)->proto = (p); \
(idx)->mode = (m); \
(idx)->reqid = (r); \
bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \
bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \
(idx)->ipsec_ifindex = (ifi); \
} while (0)
/* key statistics */
struct _keystat {
u_int32_t getspi_count; /* the avarage of count to try to get new SPI */
} keystat;
struct sadb_msghdr {
struct sadb_msg *msg;
struct sadb_ext *ext[SADB_EXT_MAX + 1];
int extoff[SADB_EXT_MAX + 1];
int extlen[SADB_EXT_MAX + 1];
};
static struct secpolicy *__key_getspbyid(u_int32_t id);
static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int, u_int16_t);
static int key_do_get_translated_port(struct secashead *, struct secasvar *, u_int);
static void key_delsp(struct secpolicy *);
static struct secpolicy *key_getsp(struct secpolicyindex *);
static u_int16_t key_newreqid(void);
static struct mbuf *key_gather_mbuf(struct mbuf *,
const struct sadb_msghdr *, int, int, int *);
static int key_spdadd(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static u_int32_t key_getnewspid(void);
static int key_spddelete(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_spddelete2(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_spdenable(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_spddisable(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_spdget(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_spdflush(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_spddump(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static struct mbuf *key_setdumpsp(struct secpolicy *,
u_int8_t, u_int32_t, u_int32_t);
static u_int key_getspreqmsglen(struct secpolicy *);
static int key_spdexpire(struct secpolicy *);
static struct secashead *key_newsah(struct secasindex *, ifnet_t, u_int, u_int8_t, u_int16_t);
static struct secasvar *key_newsav(struct mbuf *,
const struct sadb_msghdr *, struct secashead *, int *,
struct socket *);
static struct secashead *key_getsah(struct secasindex *, u_int16_t);
static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t);
static void key_setspi __P((struct secasvar *, u_int32_t));
static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t);
static int key_setsaval(struct secasvar *, struct mbuf *,
const struct sadb_msghdr *);
static int key_mature(struct secasvar *);
static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t,
u_int8_t, u_int32_t, u_int32_t);
static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t,
u_int32_t, pid_t, u_int16_t);
static struct mbuf *key_setsadbsa(struct secasvar *);
static struct mbuf *key_setsadbaddr(u_int16_t,
struct sockaddr *, size_t, u_int8_t);
static struct mbuf *key_setsadbipsecif(ifnet_t, ifnet_t, ifnet_t, u_int8_t);
static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t, u_int16_t);
static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t,
u_int32_t);
static struct mbuf *key_setsalifecurr(struct sadb_lifetime *);
static void *key_newbuf(const void *, u_int);
static int key_ismyaddr6(struct sockaddr_in6 *);
static void key_update_natt_keepalive_timestamp(struct secasvar *, struct secasvar *);
/* flags for key_cmpsaidx() */
#define CMP_HEAD 0x1 /* protocol, addresses. */
#define CMP_PORT 0x2 /* additionally HEAD, reqid, mode. */
#define CMP_REQID 0x4 /* additionally HEAD, reqid. */
#define CMP_MODE 0x8 /* additionally mode. */
#define CMP_EXACTLY 0xF /* all elements. */
static int key_cmpsaidx(struct secasindex *, struct secasindex *, int);
static int key_cmpspidx_exactly(struct secpolicyindex *,
struct secpolicyindex *);
static int key_cmpspidx_withmask(struct secpolicyindex *,
struct secpolicyindex *);
static int key_sockaddrcmp(struct sockaddr *, struct sockaddr *, int);
static int key_is_addr_in_range(struct sockaddr_storage *, struct secpolicyaddrrange *);
static int key_bbcmp(caddr_t, caddr_t, u_int);
static void key_srandom(void);
static u_int8_t key_satype2proto(u_int8_t);
static u_int8_t key_proto2satype(u_int16_t);
static int key_getspi(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static u_int32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *);
static int key_update(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *);
static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *);
static int key_delete(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *);
static void key_getcomb_setlifetime(struct sadb_comb *);
#if IPSEC_ESP
static struct mbuf *key_getcomb_esp(void);
#endif
static struct mbuf *key_getcomb_ah(void);
static struct mbuf *key_getprop(const struct secasindex *);
static int key_acquire(struct secasindex *, struct secpolicy *);
#ifndef IPSEC_NONBLOCK_ACQUIRE
static struct secacq *key_newacq(struct secasindex *);
static struct secacq *key_getacq(struct secasindex *);
static struct secacq *key_getacqbyseq(u_int32_t);
#endif
static struct secspacq *key_newspacq(struct secpolicyindex *);
static struct secspacq *key_getspacq(struct secpolicyindex *);
static int key_acquire2(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_register(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_expire(struct secasvar *);
static int key_flush(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *);
static int key_promisc(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_senderror(struct socket *, struct mbuf *, int);
static int key_validate_ext(const struct sadb_ext *, int);
static int key_align(struct mbuf *, struct sadb_msghdr *);
static struct mbuf *key_alloc_mbuf(int);
static int key_getsastat(struct socket *, struct mbuf *, const struct sadb_msghdr *);
static int key_migrate(struct socket *, struct mbuf *, const struct sadb_msghdr *);
static void bzero_keys(const struct sadb_msghdr *);
extern int ipsec_bypass;
extern int esp_udp_encap_port;
int ipsec_send_natt_keepalive(struct secasvar *sav);
bool ipsec_fill_offload_frame(ifnet_t ifp, struct secasvar *sav, struct ifnet_keepalive_offload_frame *frame, size_t frame_data_offset);
void key_init(struct protosw *, struct domain *);
static u_int64_t
key_get_continuous_time_ns(void)
{
u_int64_t current_time_ns = 0;
absolutetime_to_nanoseconds(mach_continuous_time(), &current_time_ns);
return current_time_ns;
}
static u_int64_t
key_convert_continuous_time_ns(u_int64_t time_value)
{
// Pass through 0 as it indicates value is not set
if (time_value == 0) {
return 0;
}
// Get current time
clock_sec_t time_sec;
clock_usec_t time_usec;
clock_get_calendar_microtime(&time_sec, &time_usec);
// Get time offset
const u_int64_t time_offset_ns = key_get_continuous_time_ns() - time_value;
const clock_sec_t time_offset_sec = time_offset_ns / NSEC_PER_SEC;
const clock_usec_t time_offset_usec = (u_int32_t)(time_offset_ns - (time_offset_sec * NSEC_PER_SEC)) / NSEC_PER_USEC;
// Subtract offset from current time
time_sec -= time_offset_sec;
if (time_offset_usec > time_usec) {
time_sec--;
time_usec = USEC_PER_SEC - (time_offset_usec - time_usec);
} else {
time_usec -= time_offset_usec;
}
// Return result rounded to nearest second
return time_sec + ((time_usec >= (USEC_PER_SEC / 2)) ? 1 : 0);
}
static void
key_get_flowid(struct secasvar *sav)
{
#if SKYWALK
struct flowidns_flow_key fk;
struct secashead *sah = sav->sah;
if ((sah->dir != IPSEC_DIR_OUTBOUND) && (sah->dir != IPSEC_DIR_ANY)) {
return;
}
bzero(&fk, sizeof(fk));
ASSERT(sah->saidx.src.ss_family == sah->saidx.dst.ss_family);
switch (sah->saidx.src.ss_family) {
case AF_INET:
ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in));
ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in));
fk.ffk_laddr_v4 =
((struct sockaddr_in *)&(sah->saidx.src))->sin_addr;
fk.ffk_raddr_v4 =
((struct sockaddr_in *)&(sah->saidx.dst))->sin_addr;
break;
case AF_INET6:
ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in6));
ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in6));
fk.ffk_laddr_v6 =
((struct sockaddr_in6 *)&(sah->saidx.src))->sin6_addr;
fk.ffk_raddr_v6 =
((struct sockaddr_in6 *)&(sah->saidx.dst))->sin6_addr;
break;
default:
VERIFY(0);
break;
}
ASSERT(sav->spi != 0);
fk.ffk_spi = sav->spi;;
fk.ffk_af = sah->saidx.src.ss_family;
fk.ffk_proto = (uint8_t)(sah->saidx.proto);
flowidns_allocate_flowid(FLOWIDNS_DOMAIN_IPSEC, &fk, &sav->flowid);
#else /* !SKYWALK */
sav->flowid = 0;
#endif /* !SKYWALK */
}
static void
key_release_flowid(struct secasvar *sav)
{
#if SKYWALK
if (sav->flowid != 0) {
flowidns_release_flowid(sav->flowid);
sav->flowid = 0;
}
#else /* !SKYWALK */
VERIFY(sav->flowid == 0);
#endif /* !SKYWALK */
}
/*
* PF_KEY init
* setup locks, and then init timer and associated data
*/
void
key_init(struct protosw *pp, struct domain *dp __unused)
{
static int key_initialized = 0;
int i;
VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED);
_CASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= _MHLEN);
_CASSERT(MAX_REPLAY_WINDOWS == MBUF_TC_MAX);
if (key_initialized) {
return;
}
key_initialized = 1;
for (i = 0; i < SPIHASHSIZE; i++) {
LIST_INIT(&spihash[i]);
}
bzero((caddr_t)&key_cb, sizeof(key_cb));
for (i = 0; i < IPSEC_DIR_MAX; i++) {
LIST_INIT(&sptree[i]);
}
ipsec_policy_count = 0;
LIST_INIT(&sahtree);
LIST_INIT(&custom_sahtree);
for (i = 0; i <= SADB_SATYPE_MAX; i++) {
LIST_INIT(&regtree[i]);
}
ipsec_sav_count = 0;
#ifndef IPSEC_NONBLOCK_ACQUIRE
LIST_INIT(&acqtree);
#endif
LIST_INIT(&spacqtree);
/* system default */
#if INET
ip4_def_policy.policy = IPSEC_POLICY_NONE;
ip4_def_policy.refcnt++; /*never reclaim this*/
#endif
ip6_def_policy.policy = IPSEC_POLICY_NONE;
ip6_def_policy.refcnt++; /*never reclaim this*/
key_timehandler_running = 0;
/* initialize key statistics */
keystat.getspi_count = 1;
esp_init();
#ifndef __APPLE__
printf("IPsec: Initialized Security Association Processing.\n");
#endif
}
static void
key_start_timehandler(void)
{
/* must be called while locked */
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
if (key_timehandler_running == 0) {
key_timehandler_running = 1;
(void)timeout((void *)key_timehandler, (void *)0, hz);
}
/* Turn off the ipsec bypass */
if (ipsec_bypass != 0) {
ipsec_bypass = 0;
}
}
/* %%% IPsec policy management */
/*
* allocating a SP for OUTBOUND or INBOUND packet.
* Must call key_freesp() later.
* OUT: NULL: not found
* others: found and return the pointer.
*/
struct secpolicy *
key_allocsp(
struct secpolicyindex *spidx,
u_int dir)
{
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (spidx == NULL) {
panic("key_allocsp: NULL pointer is passed.");
}
/* check direction */
switch (dir) {
case IPSEC_DIR_INBOUND:
case IPSEC_DIR_OUTBOUND:
break;
default:
panic("key_allocsp: Invalid direction is passed.");
}
/* get a SP entry */
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("*** objects\n");
kdebug_secpolicyindex(spidx));
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sp, &sptree[dir], chain) {
KEYDEBUG(KEYDEBUG_IPSEC_DATA,
printf("*** in SPD\n");
kdebug_secpolicyindex(&sp->spidx));
if (sp->state == IPSEC_SPSTATE_DEAD) {
continue;
}
/* If the policy is disabled, skip */
if (sp->disabled > 0) {
continue;
}
/* If the incoming spidx specifies bound if,
* ignore unbound policies*/
if (spidx->internal_if != NULL
&& (sp->spidx.internal_if == NULL || sp->ipsec_if == NULL)) {
continue;
}
if (key_cmpspidx_withmask(&sp->spidx, spidx)) {
goto found;
}
}
lck_mtx_unlock(sadb_mutex);
return NULL;
found:
/* found a SPD entry */
sp->lastused = key_get_continuous_time_ns();
sp->refcnt++;
lck_mtx_unlock(sadb_mutex);
/* sanity check */
KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp");
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP key_allocsp cause refcnt++:%d SP:0x%llx\n",
sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp)));
return sp;
}
/*
* return a policy that matches this particular inbound packet.
* XXX slow
*/
struct secpolicy *
key_gettunnel(
struct sockaddr *osrc,
struct sockaddr *odst,
struct sockaddr *isrc,
struct sockaddr *idst)
{
struct secpolicy *sp;
const int dir = IPSEC_DIR_INBOUND;
struct ipsecrequest *r1, *r2, *p;
struct sockaddr *os, *od, *is, *id;
struct secpolicyindex spidx;
if (isrc->sa_family != idst->sa_family) {
ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.",
isrc->sa_family, idst->sa_family));
return NULL;
}
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sp, &sptree[dir], chain) {
if (sp->state == IPSEC_SPSTATE_DEAD) {
continue;
}
r1 = r2 = NULL;
for (p = sp->req; p; p = p->next) {
if (p->saidx.mode != IPSEC_MODE_TUNNEL) {
continue;
}
r1 = r2;
r2 = p;
if (!r1) {
/* here we look at address matches only */
spidx = sp->spidx;
if (isrc->sa_len > sizeof(spidx.src) ||
idst->sa_len > sizeof(spidx.dst)) {
continue;
}
bcopy(isrc, &spidx.src, isrc->sa_len);
bcopy(idst, &spidx.dst, idst->sa_len);
if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) {
continue;
}
} else {
is = (struct sockaddr *)&r1->saidx.src;
id = (struct sockaddr *)&r1->saidx.dst;
if (key_sockaddrcmp(is, isrc, 0) ||
key_sockaddrcmp(id, idst, 0)) {
continue;
}
}
os = (struct sockaddr *)&r2->saidx.src;
od = (struct sockaddr *)&r2->saidx.dst;
if (key_sockaddrcmp(os, osrc, 0) ||
key_sockaddrcmp(od, odst, 0)) {
continue;
}
goto found;
}
}
lck_mtx_unlock(sadb_mutex);
return NULL;
found:
sp->lastused = key_get_continuous_time_ns();
sp->refcnt++;
lck_mtx_unlock(sadb_mutex);
return sp;
}
struct secasvar *
key_alloc_outbound_sav_for_interface(ifnet_t interface, int family,
struct sockaddr *src,
struct sockaddr *dst)
{
struct secashead *sah;
struct secasvar *sav;
u_int stateidx;
u_int state;
const u_int *saorder_state_valid;
int arraysize;
struct sockaddr_in *sin;
u_int16_t dstport;
bool strict = true;
if (interface == NULL) {
return NULL;
}
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(sadb_mutex);
do {
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (sah->ipsec_if == interface &&
(family == AF_INET6 || family == AF_INET) &&
sah->dir == IPSEC_DIR_OUTBOUND) {
if (strict &&
sah->saidx.mode == IPSEC_MODE_TRANSPORT &&
src != NULL && dst != NULL) {
// Validate addresses for transport mode
if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.src, src, 0) != 0) {
// Source doesn't match
continue;
}
if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.dst, dst, 0) != 0) {
// Destination doesn't match
continue;
}
}
/* This SAH is linked to the IPsec interface, and the right family. We found it! */
if (key_preferred_oldsa) {
saorder_state_valid = saorder_state_valid_prefer_old;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
} else {
saorder_state_valid = saorder_state_valid_prefer_new;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
}
sin = (struct sockaddr_in *)&sah->saidx.dst;
dstport = sin->sin_port;
if (sah->saidx.mode == IPSEC_MODE_TRANSPORT) {
sin->sin_port = IPSEC_PORT_ANY;
}
for (stateidx = 0; stateidx < arraysize; stateidx++) {
state = saorder_state_valid[stateidx];
sav = key_do_allocsa_policy(sah, state, dstport);
if (sav != NULL) {
lck_mtx_unlock(sadb_mutex);
return sav;
}
}
break;
}
}
if (strict) {
// If we didn't find anything, try again without strict
strict = false;
} else {
// We already were on the second try, bail
break;
}
} while (true);
lck_mtx_unlock(sadb_mutex);
return NULL;
}
/*
* allocating an SA entry for an *OUTBOUND* packet.
* checking each request entries in SP, and acquire an SA if need.
* OUT: 0: there are valid requests.
* ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
*/
int
key_checkrequest(
struct ipsecrequest *isr,
struct secasindex *saidx,
struct secasvar **sav)
{
u_int level;
int error;
struct sockaddr_in *sin;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
*sav = NULL;
/* sanity check */
if (isr == NULL || saidx == NULL) {
panic("key_checkrequest: NULL pointer is passed.");
}
/* check mode */
switch (saidx->mode) {
case IPSEC_MODE_TRANSPORT:
case IPSEC_MODE_TUNNEL:
break;
case IPSEC_MODE_ANY:
default:
panic("key_checkrequest: Invalid policy defined.");
}
/* get current level */
level = ipsec_get_reqlevel(isr);
/*
* key_allocsa_policy should allocate the oldest SA available.
* See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
*/
if (*sav == NULL) {
*sav = key_allocsa_policy(saidx);
}
/* When there is SA. */
if (*sav != NULL) {
return 0;
}
/* There is no SA.
*
* Remove dst port - used for special natt support - don't call
* key_acquire with it.
*/
if (saidx->mode == IPSEC_MODE_TRANSPORT) {
sin = (struct sockaddr_in *)&saidx->dst;
sin->sin_port = IPSEC_PORT_ANY;
}
if ((error = key_acquire(saidx, isr->sp)) != 0) {
/* XXX What should I do ? */
ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned "
"from key_acquire.\n", error));
return error;
}
return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0;
}
/*
* allocating a SA for policy entry from SAD.
* NOTE: searching SAD of aliving state.
* OUT: NULL: not found.
* others: found and return the pointer.
*/
u_int32_t sah_search_calls = 0;
u_int32_t sah_search_count = 0;
struct secasvar *
key_allocsa_policy(
struct secasindex *saidx)
{
struct secashead *sah;
struct secasvar *sav;
u_int stateidx, state;
const u_int *saorder_state_valid;
int arraysize;
struct sockaddr_in *sin;
u_int16_t dstport;
lck_mtx_lock(sadb_mutex);
sah_search_calls++;
LIST_FOREACH(sah, &sahtree, chain) {
sah_search_count++;
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE | CMP_REQID)) {
goto found;
}
}
lck_mtx_unlock(sadb_mutex);
return NULL;
found:
/*
* search a valid state list for outbound packet.
* This search order is important.
*/
if (key_preferred_oldsa) {
saorder_state_valid = saorder_state_valid_prefer_old;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
} else {
saorder_state_valid = saorder_state_valid_prefer_new;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
}
sin = (struct sockaddr_in *)&saidx->dst;
dstport = sin->sin_port;
if (saidx->mode == IPSEC_MODE_TRANSPORT) {
sin->sin_port = IPSEC_PORT_ANY;
}
for (stateidx = 0; stateidx < arraysize; stateidx++) {
state = saorder_state_valid[stateidx];
sav = key_do_allocsa_policy(sah, state, dstport);
if (sav != NULL) {
lck_mtx_unlock(sadb_mutex);
return sav;
}
}
lck_mtx_unlock(sadb_mutex);
return NULL;
}
static void
key_send_delete(struct secasvar *sav)
{
struct mbuf *m, *result;
u_int8_t satype;
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
panic("key_do_allocsa_policy: invalid proto is passed.");
}
m = key_setsadbmsg(SADB_DELETE, 0,
satype, 0, 0, (u_int16_t)(sav->refcnt - 1));
if (!m) {
goto msgfail;
}
result = m;
/* set sadb_address for saidx's. */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&sav->sah->saidx.src,
sav->sah->saidx.src.ss_len << 3,
IPSEC_ULPROTO_ANY);
if (!m) {
goto msgfail;
}
m_cat(result, m);
/* set sadb_address for saidx's. */
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&sav->sah->saidx.dst,
sav->sah->saidx.src.ss_len << 3,
IPSEC_ULPROTO_ANY);
if (!m) {
goto msgfail;
}
m_cat(result, m);
/* create SA extension */
m = key_setsadbsa(sav);
if (!m) {
goto msgfail;
}
m_cat(result, m);
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result,
sizeof(struct sadb_msg));
if (result == NULL) {
goto msgfail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX);
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
if (key_sendup_mbuf(NULL, result,
KEY_SENDUP_REGISTERED)) {
goto msgfail;
}
msgfail:
key_freesav(sav, KEY_SADB_LOCKED);
}
/*
* searching SAD with direction, protocol, mode and state.
* called by key_allocsa_policy().
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secasvar *
key_do_allocsa_policy(
struct secashead *sah,
u_int state,
u_int16_t dstport)
{
struct secasvar *sav, *nextsav, *candidate, *natt_candidate, *no_natt_candidate, *d;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* initialize */
candidate = NULL;
natt_candidate = NULL;
no_natt_candidate = NULL;
for (sav = LIST_FIRST(&sah->savtree[state]);
sav != NULL;
sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
/* sanity check */
KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy");
if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport &&
((sav->flags & SADB_X_EXT_NATT) != 0) &&
ntohs(dstport) != sav->remote_ike_port) {
continue;
}
if (sah->saidx.mode == IPSEC_MODE_TRANSPORT &&
((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) &&
ntohs(dstport) != sav->remote_ike_port) {
continue; /* skip this one - not a match - or not UDP */
}
if ((sah->saidx.mode == IPSEC_MODE_TUNNEL &&
((sav->flags & SADB_X_EXT_NATT) != 0)) ||
(sah->saidx.mode == IPSEC_MODE_TRANSPORT &&
((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) {
if (natt_candidate == NULL) {
natt_candidate = sav;
continue;
} else {
candidate = natt_candidate;
}
} else {
if (no_natt_candidate == NULL) {
no_natt_candidate = sav;
continue;
} else {
candidate = no_natt_candidate;
}
}
/* Which SA is the better ? */
/* sanity check 2 */
if (candidate->lft_c == NULL || sav->lft_c == NULL) {
panic("key_do_allocsa_policy: "
"lifetime_current is NULL.\n");
}
/* What the best method is to compare ? */
if (key_preferred_oldsa) {
if (candidate->lft_c->sadb_lifetime_addtime >
sav->lft_c->sadb_lifetime_addtime) {
if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) {
natt_candidate = sav;
} else {
no_natt_candidate = sav;
}
}
continue;
/*NOTREACHED*/
}
/* prefered new sa rather than old sa */
if (candidate->lft_c->sadb_lifetime_addtime <
sav->lft_c->sadb_lifetime_addtime) {
d = candidate;
if ((sah->saidx.mode == IPSEC_MODE_TUNNEL &&
((sav->flags & SADB_X_EXT_NATT) != 0)) ||
(sah->saidx.mode == IPSEC_MODE_TRANSPORT &&
((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) {
natt_candidate = sav;
} else {
no_natt_candidate = sav;
}
} else {
d = sav;
}
/*
* prepared to delete the SA when there is more
* suitable candidate and the lifetime of the SA is not
* permanent.
*/
if (d->lft_c->sadb_lifetime_addtime != 0) {
key_send_delete(d);
}
}
/* choose latest if both types present */
if (natt_candidate == NULL) {
candidate = no_natt_candidate;
} else if (no_natt_candidate == NULL) {
candidate = natt_candidate;
} else if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport) {
candidate = natt_candidate;
} else if (natt_candidate->lft_c->sadb_lifetime_addtime >
no_natt_candidate->lft_c->sadb_lifetime_addtime) {
candidate = natt_candidate;
} else {
candidate = no_natt_candidate;
}
if (candidate) {
candidate->refcnt++;
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP allocsa_policy cause "
"refcnt++:%d SA:0x%llx\n", candidate->refcnt,
(uint64_t)VM_KERNEL_ADDRPERM(candidate)));
}
return candidate;
}
/*
* allocating a SA entry for a *INBOUND* packet.
* Must call key_freesav() later.
* OUT: positive: pointer to a sav.
* NULL: not found, or error occurred.
*
* In the comparison, source address will be ignored for RFC2401 conformance.
* To quote, from section 4.1:
* A security association is uniquely identified by a triple consisting
* of a Security Parameter Index (SPI), an IP Destination Address, and a
* security protocol (AH or ESP) identifier.
* Note that, however, we do need to keep source address in IPsec SA.
* IKE specification and PF_KEY specification do assume that we
* keep source address in IPsec SA. We see a tricky situation here.
*/
struct secasvar *
key_allocsa(
u_int family,
caddr_t src,
caddr_t dst,
uint32_t dst_ifscope,
u_int proto,
u_int32_t spi)
{
return key_allocsa_extended(family, src, dst, dst_ifscope, proto, spi, NULL);
}
struct secasvar *
key_allocsa_extended(u_int family,
caddr_t src,
caddr_t dst,
uint32_t dst_ifscope,
u_int proto,
u_int32_t spi,
ifnet_t interface)
{
struct secasvar *sav, *match;
u_int stateidx, state, tmpidx, matchidx;
union sockaddr_in_4_6 dst_address = {};
const u_int *saorder_state_valid;
int arraysize;
bool dst_ll_address = false;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (src == NULL || dst == NULL) {
panic("key_allocsa: NULL pointer is passed.");
}
/*
* when both systems employ similar strategy to use a SA.
* the search order is important even in the inbound case.
*/
if (key_preferred_oldsa) {
saorder_state_valid = saorder_state_valid_prefer_old;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
} else {
saorder_state_valid = saorder_state_valid_prefer_new;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
}
/* check dst address */
switch (family) {
case AF_INET:
dst_address.sin.sin_family = AF_INET;
dst_address.sin.sin_len = sizeof(dst_address.sin);
memcpy(&dst_address.sin.sin_addr, dst, sizeof(dst_address.sin.sin_addr));
break;
case AF_INET6:
dst_address.sin6.sin6_family = AF_INET6;
dst_address.sin6.sin6_len = sizeof(dst_address.sin6);
memcpy(&dst_address.sin6.sin6_addr, dst, sizeof(dst_address.sin6.sin6_addr));
if (IN6_IS_SCOPE_LINKLOCAL(&dst_address.sin6.sin6_addr)) {
dst_ll_address = true;
/* kame fake scopeid */
dst_address.sin6.sin6_scope_id = dst_ifscope;
if (in6_embedded_scope) {
in6_verify_ifscope(&dst_address.sin6.sin6_addr, dst_address.sin6.sin6_scope_id);
dst_address.sin6.sin6_scope_id =
ntohs(dst_address.sin6.sin6_addr.s6_addr16[1]);
dst_address.sin6.sin6_addr.s6_addr16[1] = 0;
}
}
break;
default:
ipseclog((LOG_DEBUG, "key_allocsa: "
"unknown address family=%d.\n", family));
return NULL;
}
/*
* searching SAD.
* XXX: to be checked internal IP header somewhere. Also when
* IPsec tunnel packet is received. But ESP tunnel mode is
* encrypted so we can't check internal IP header.
*/
/*
* search a valid state list for inbound packet.
* the search order is not important.
*/
match = NULL;
matchidx = arraysize;
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) {
if (sav->spi != spi) {
continue;
}
if (interface != NULL &&
sav->sah->ipsec_if != interface) {
continue;
}
if (proto != sav->sah->saidx.proto) {
continue;
}
if (family != sav->sah->saidx.src.ss_family ||
family != sav->sah->saidx.dst.ss_family) {
continue;
}
tmpidx = arraysize;
for (stateidx = 0; stateidx < matchidx; stateidx++) {
state = saorder_state_valid[stateidx];
if (sav->state == state) {
tmpidx = stateidx;
break;
}
}
if (tmpidx >= matchidx) {
continue;
}
struct sockaddr_in6 tmp_sah_dst = {};
struct sockaddr *sah_dst = (struct sockaddr *)&sav->sah->saidx.dst;
if (dst_ll_address) {
if (!IN6_IS_SCOPE_LINKLOCAL(&(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr)) {
continue;
} else {
tmp_sah_dst.sin6_family = AF_INET6;
tmp_sah_dst.sin6_len = sizeof(tmp_sah_dst);
memcpy(&tmp_sah_dst.sin6_addr, &(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr, sizeof(tmp_sah_dst.sin6_addr));
tmp_sah_dst.sin6_scope_id = sav->sah->outgoing_if;
sah_dst = (struct sockaddr *)&tmp_sah_dst;
}
}
if (key_sockaddrcmp(SA(&dst_address.sa), sah_dst, 0) != 0) {
continue;
}
match = sav;
matchidx = tmpidx;
}
if (match) {
goto found;
}
/* not found */
lck_mtx_unlock(sadb_mutex);
return NULL;
found:
match->refcnt++;
lck_mtx_unlock(sadb_mutex);
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP allocsa cause refcnt++:%d SA:0x%llx\n",
match->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(match)));
return match;
}
/*
* This function checks whether a UDP packet with a random local port
* and a remote port of 4500 matches an SA in the kernel. If does match,
* send the packet to the ESP engine. If not, send the packet to the UDP protocol.
*/
bool
key_checksa_present(u_int family,
caddr_t local_addr,
caddr_t remote_addr,
u_int16_t local_port,
u_int16_t remote_port,
uint32_t source_ifscope,
uint32_t remote_ifscope)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (local_addr == NULL || remote_addr == NULL) {
panic("key_allocsa: NULL pointer is passed.");
}
/*
* searching SAD.
* XXX: to be checked internal IP header somewhere. Also when
* IPsec tunnel packet is received. But ESP tunnel mode is
* encrypted so we can't check internal IP header.
*/
/*
* search a valid state list for inbound packet.
* the search order is not important.
*/
struct secashead *sah = NULL;
bool found_sa = false;
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (sah->dir != IPSEC_DIR_OUTBOUND) {
continue;
}
if (family != sah->saidx.src.ss_family) {
continue;
}
struct sockaddr_in src_in = {};
struct sockaddr_in6 src_in6 = {};
/* check src address */
switch (family) {
case AF_INET:
src_in.sin_family = AF_INET;
src_in.sin_len = sizeof(src_in);
memcpy(&src_in.sin_addr, local_addr, sizeof(src_in.sin_addr));
if (key_sockaddrcmp((struct sockaddr*)&src_in,
(struct sockaddr *)&sah->saidx.src, 0) != 0) {
continue;
}
break;
case AF_INET6:
src_in6.sin6_family = AF_INET6;
src_in6.sin6_len = sizeof(src_in6);
memcpy(&src_in6.sin6_addr, local_addr, sizeof(src_in6.sin6_addr));
if (IN6_IS_SCOPE_LINKLOCAL(&src_in6.sin6_addr)) {
/* kame fake scopeid */
src_in6.sin6_scope_id = source_ifscope;
if (in6_embedded_scope) {
in6_verify_ifscope(&src_in6.sin6_addr, src_in6.sin6_scope_id);
src_in6.sin6_scope_id =
ntohs(src_in6.sin6_addr.s6_addr16[1]);
src_in6.sin6_addr.s6_addr16[1] = 0;
}
}
if (key_sockaddrcmp((struct sockaddr*)&src_in6,
(struct sockaddr *)&sah->saidx.src, 0) != 0) {
continue;
}
break;
default:
ipseclog((LOG_DEBUG, "key_checksa_present: "
"unknown address family=%d.\n",
family));
continue;
}
struct sockaddr_in dest_in = {};
struct sockaddr_in6 dest_in6 = {};
/* check dst address */
switch (family) {
case AF_INET:
dest_in.sin_family = AF_INET;
dest_in.sin_len = sizeof(dest_in);
memcpy(&dest_in.sin_addr, remote_addr, sizeof(dest_in.sin_addr));
if (key_sockaddrcmp((struct sockaddr*)&dest_in,
(struct sockaddr *)&sah->saidx.dst, 0) != 0) {
continue;
}
break;
case AF_INET6:
dest_in6.sin6_family = AF_INET6;
dest_in6.sin6_len = sizeof(dest_in6);
memcpy(&dest_in6.sin6_addr, remote_addr, sizeof(dest_in6.sin6_addr));
if (IN6_IS_SCOPE_LINKLOCAL(&dest_in6.sin6_addr)) {
/* kame fake scopeid */
dest_in6.sin6_scope_id = remote_ifscope;
if (in6_embedded_scope) {
in6_verify_ifscope(&dest_in6.sin6_addr, dest_in6.sin6_scope_id);
dest_in6.sin6_scope_id = ntohs(dest_in6.sin6_addr.s6_addr16[1]);
dest_in6.sin6_addr.s6_addr16[1] = 0;
}
}
if (key_sockaddrcmp((struct sockaddr*)&dest_in6,
(struct sockaddr *)&sah->saidx.dst, 0) != 0) {
continue;
}
break;
default:
ipseclog((LOG_DEBUG, "key_checksa_present: "
"unknown address family=%d.\n", family));
continue;
}
struct secasvar *nextsav = NULL;
for (u_int stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) {
u_int state = saorder_state_alive[stateidx];
for (struct secasvar *sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
/* sanity check */
if (sav->state != state) {
ipseclog((LOG_DEBUG, "key_checksa_present: "
"invalid sav->state "
"(state: %d SA: %d)\n",
state, sav->state));
continue;
}
if (sav->remote_ike_port != ntohs(remote_port)) {
continue;
}
if (sav->natt_encapsulated_src_port != local_port) {
continue;
}
found_sa = true;
break;
}
}
}
/* not found */
lck_mtx_unlock(sadb_mutex);
return found_sa;
}
u_int16_t
key_natt_get_translated_port(
struct secasvar *outsav)
{
struct secasindex saidx = {};
struct secashead *sah;
u_int stateidx, state;
const u_int *saorder_state_valid;
int arraysize;
/* get sa for incoming */
saidx.mode = outsav->sah->saidx.mode;
saidx.reqid = 0;
saidx.proto = outsav->sah->saidx.proto;
bcopy(&outsav->sah->saidx.src, &saidx.dst, sizeof(struct sockaddr_in));
bcopy(&outsav->sah->saidx.dst, &saidx.src, sizeof(struct sockaddr_in));
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE)) {
goto found;
}
}
lck_mtx_unlock(sadb_mutex);
return 0;
found:
/*
* Found sah - now go thru list of SAs and find
* matching remote ike port. If found - set
* sav->natt_encapsulated_src_port and return the port.
*/
/*
* search a valid state list for outbound packet.
* This search order is important.
*/
if (key_preferred_oldsa) {
saorder_state_valid = saorder_state_valid_prefer_old;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
} else {
saorder_state_valid = saorder_state_valid_prefer_new;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
}
for (stateidx = 0; stateidx < arraysize; stateidx++) {
state = saorder_state_valid[stateidx];
if (key_do_get_translated_port(sah, outsav, state)) {
lck_mtx_unlock(sadb_mutex);
return outsav->natt_encapsulated_src_port;
}
}
lck_mtx_unlock(sadb_mutex);
return 0;
}
static int
key_do_get_translated_port(
struct secashead *sah,
struct secasvar *outsav,
u_int state)
{
struct secasvar *currsav, *nextsav, *candidate;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* initilize */
candidate = NULL;
for (currsav = LIST_FIRST(&sah->savtree[state]);
currsav != NULL;
currsav = nextsav) {
nextsav = LIST_NEXT(currsav, chain);
/* sanity check */
KEY_CHKSASTATE(currsav->state, state, "key_do_get_translated_port");
if ((currsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) == 0 ||
currsav->remote_ike_port != outsav->remote_ike_port) {
continue;
}
if (candidate == NULL) {
candidate = currsav;
continue;
}
/* Which SA is the better ? */
/* sanity check 2 */
if (candidate->lft_c == NULL || currsav->lft_c == NULL) {
panic("key_do_get_translated_port: "
"lifetime_current is NULL.\n");
}
/* What the best method is to compare ? */
if (key_preferred_oldsa) {
if (candidate->lft_c->sadb_lifetime_addtime >
currsav->lft_c->sadb_lifetime_addtime) {
candidate = currsav;
}
continue;
/*NOTREACHED*/
}
/* prefered new sa rather than old sa */
if (candidate->lft_c->sadb_lifetime_addtime <
currsav->lft_c->sadb_lifetime_addtime) {
candidate = currsav;
}
}
if (candidate) {
outsav->natt_encapsulated_src_port = candidate->natt_encapsulated_src_port;
return 1;
}
return 0;
}
/*
* Must be called after calling key_allocsp().
*/
void
key_freesp(
struct secpolicy *sp,
int locked)
{
/* sanity check */
if (sp == NULL) {
panic("key_freesp: NULL pointer is passed.");
}
if (!locked) {
lck_mtx_lock(sadb_mutex);
} else {
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
}
sp->refcnt--;
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP freesp cause refcnt--:%d SP:0x%llx\n",
sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp)));
if (sp->refcnt == 0) {
key_delsp(sp);
}
if (!locked) {
lck_mtx_unlock(sadb_mutex);
}
return;
}
/*
* Must be called after calling key_allocsa().
* This function is called by key_freesp() to free some SA allocated
* for a policy.
*/
void
key_freesav(
struct secasvar *sav,
int locked)
{
/* sanity check */
if (sav == NULL) {
panic("key_freesav: NULL pointer is passed.");
}
if (!locked) {
lck_mtx_lock(sadb_mutex);
} else {
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
}
sav->refcnt--;
KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
printf("DP freesav cause refcnt--:%d SA:0x%llx SPI %u\n",
sav->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sav),
(u_int32_t)ntohl(sav->spi)));
if (sav->refcnt == 0) {
key_delsav(sav);
}
if (!locked) {
lck_mtx_unlock(sadb_mutex);
}
return;
}
/* %%% SPD management */
/*
* free security policy entry.
*/
static void
key_delsp(
struct secpolicy *sp)
{
/* sanity check */
if (sp == NULL) {
panic("key_delsp: NULL pointer is passed.");
}
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
sp->state = IPSEC_SPSTATE_DEAD;
if (sp->refcnt > 0) {
return; /* can't free */
}
/* remove from SP index */
if (__LIST_CHAINED(sp)) {
LIST_REMOVE(sp, chain);
ipsec_policy_count--;
}
if (sp->spidx.internal_if) {
ifnet_release(sp->spidx.internal_if);
sp->spidx.internal_if = NULL;
}
if (sp->ipsec_if) {
ifnet_release(sp->ipsec_if);
sp->ipsec_if = NULL;
}
if (sp->outgoing_if) {
ifnet_release(sp->outgoing_if);
sp->outgoing_if = NULL;
}
{
struct ipsecrequest *isr = sp->req, *nextisr;
while (isr != NULL) {
nextisr = isr->next;
kfree_type(struct ipsecrequest, isr);
isr = nextisr;
}
}
keydb_delsecpolicy(sp);
return;
}
/*
* search SPD
* OUT: NULL : not found
* others : found, pointer to a SP.
*/
static struct secpolicy *
key_getsp(
struct secpolicyindex *spidx)
{
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* sanity check */
if (spidx == NULL) {
panic("key_getsp: NULL pointer is passed.");
}
LIST_FOREACH(sp, &sptree[spidx->dir], chain) {
if (sp->state == IPSEC_SPSTATE_DEAD) {
continue;
}
if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
sp->refcnt++;
return sp;
}
}
return NULL;
}
/*
* get SP by index.
* OUT: NULL : not found
* others : found, pointer to a SP.
*/
struct secpolicy *
key_getspbyid(
u_int32_t id)
{
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(sadb_mutex);
sp = __key_getspbyid(id);
lck_mtx_unlock(sadb_mutex);
return sp;
}
static struct secpolicy *
__key_getspbyid(u_int32_t id)
{
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) {
if (sp->state == IPSEC_SPSTATE_DEAD) {
continue;
}
if (sp->id == id) {
sp->refcnt++;
return sp;
}
}
LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) {
if (sp->state == IPSEC_SPSTATE_DEAD) {
continue;
}
if (sp->id == id) {
sp->refcnt++;
return sp;
}
}
return NULL;
}
struct secpolicy *
key_newsp(void)
{
struct secpolicy *newsp = NULL;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
newsp = keydb_newsecpolicy();
if (!newsp) {
return newsp;
}
newsp->refcnt = 1;
newsp->req = NULL;
return newsp;
}
/*
* create secpolicy structure from sadb_x_policy structure.
* NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
* so must be set properly later.
*/
struct secpolicy *
key_msg2sp(
struct sadb_x_policy *xpl0,
size_t len,
int *error)
{
struct secpolicy *newsp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (xpl0 == NULL) {
panic("key_msg2sp: NULL pointer was passed.");
}
if (len < sizeof(*xpl0)) {
panic("key_msg2sp: invalid length.");
}
if (len != PFKEY_EXTLEN(xpl0)) {
ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n"));
*error = EINVAL;
return NULL;
}
if ((newsp = key_newsp()) == NULL) {
*error = ENOBUFS;
return NULL;
}
newsp->spidx.dir = xpl0->sadb_x_policy_dir;
newsp->policy = xpl0->sadb_x_policy_type;
/* check policy */
switch (xpl0->sadb_x_policy_type) {
case IPSEC_POLICY_DISCARD:
case IPSEC_POLICY_GENERATE:
case IPSEC_POLICY_NONE:
case IPSEC_POLICY_ENTRUST:
case IPSEC_POLICY_BYPASS:
newsp->req = NULL;
break;
case IPSEC_POLICY_IPSEC:
{
int tlen;
struct sadb_x_ipsecrequest *xisr;
struct ipsecrequest **p_isr = &newsp->req;
/* validity check */
if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
ipseclog((LOG_DEBUG,
"key_msg2sp: Invalid msg length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
while (tlen > 0) {
if (tlen < sizeof(*xisr)) {
ipseclog((LOG_DEBUG, "key_msg2sp: "
"invalid ipsecrequest.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
/* length check */
if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
ipseclog((LOG_DEBUG, "key_msg2sp: "
"invalid ipsecrequest length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
/* allocate request buffer */
*p_isr = kalloc_type(struct ipsecrequest,
Z_WAITOK_ZERO_NOFAIL);
switch (xisr->sadb_x_ipsecrequest_proto) {
case IPPROTO_ESP:
case IPPROTO_AH:
break;
default:
ipseclog((LOG_DEBUG,
"key_msg2sp: invalid proto type=%u\n",
xisr->sadb_x_ipsecrequest_proto));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EPROTONOSUPPORT;
return NULL;
}
(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
switch (xisr->sadb_x_ipsecrequest_mode) {
case IPSEC_MODE_TRANSPORT:
case IPSEC_MODE_TUNNEL:
break;
case IPSEC_MODE_ANY:
default:
ipseclog((LOG_DEBUG,
"key_msg2sp: invalid mode=%u\n",
xisr->sadb_x_ipsecrequest_mode));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
switch (xisr->sadb_x_ipsecrequest_level) {
case IPSEC_LEVEL_DEFAULT:
case IPSEC_LEVEL_USE:
case IPSEC_LEVEL_REQUIRE:
break;
case IPSEC_LEVEL_UNIQUE:
/* validity check */
/*
* If range violation of reqid, kernel will
* update it, don't refuse it.
*/
if (xisr->sadb_x_ipsecrequest_reqid
> IPSEC_MANUAL_REQID_MAX) {
ipseclog((LOG_DEBUG,
"key_msg2sp: reqid=%d range "
"violation, updated by kernel.\n",
xisr->sadb_x_ipsecrequest_reqid));
xisr->sadb_x_ipsecrequest_reqid = 0;
}
/* allocate new reqid id if reqid is zero. */
if (xisr->sadb_x_ipsecrequest_reqid == 0) {
u_int16_t reqid;
if ((reqid = key_newreqid()) == 0) {
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = ENOBUFS;
return NULL;
}
(*p_isr)->saidx.reqid = reqid;
xisr->sadb_x_ipsecrequest_reqid = reqid;
} else {
/* set it for manual keying. */
(*p_isr)->saidx.reqid =
xisr->sadb_x_ipsecrequest_reqid;
}
break;
default:
ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n",
xisr->sadb_x_ipsecrequest_level));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
/* set IP addresses if there */
if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
struct sockaddr *paddr;
if (tlen < xisr->sadb_x_ipsecrequest_len) {
ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
"address length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
paddr = (struct sockaddr *)(xisr + 1);
uint8_t src_len = paddr->sa_len;
/* +sizeof(uint8_t) for dst_len below */
if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + sizeof(uint8_t)) {
ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
"invalid source address length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
/* validity check */
if (paddr->sa_len
> sizeof((*p_isr)->saidx.src)) {
ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
"address length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
bcopy(paddr, &(*p_isr)->saidx.src,
MIN(paddr->sa_len, sizeof((*p_isr)->saidx.src)));
paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len);
uint8_t dst_len = paddr->sa_len;
if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + dst_len) {
ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
"invalid dest address length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
/* validity check */
if (paddr->sa_len
> sizeof((*p_isr)->saidx.dst)) {
ipseclog((LOG_DEBUG, "key_msg2sp: invalid request "
"address length.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
bcopy(paddr, &(*p_isr)->saidx.dst,
MIN(paddr->sa_len, sizeof((*p_isr)->saidx.dst)));
}
(*p_isr)->sp = newsp;
/* initialization for the next. */
p_isr = &(*p_isr)->next;
tlen -= xisr->sadb_x_ipsecrequest_len;
/* validity check */
if (tlen < 0) {
ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
xisr = (struct sadb_x_ipsecrequest *)(void *)
((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len);
}
}
break;
default:
ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n"));
key_freesp(newsp, KEY_SADB_UNLOCKED);
*error = EINVAL;
return NULL;
}
*error = 0;
return newsp;
}
static u_int16_t
key_newreqid(void)
{
lck_mtx_lock(sadb_mutex);
static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
int done = 0;
/* The reqid must be limited to 16 bits because the PF_KEY message format only uses
* 16 bits for this field. Once it becomes larger than 16 bits - ipsec fails to
* work anymore. Changing the PF_KEY message format would introduce compatibility
* issues. This code now tests to see if the tentative reqid is in use */
while (!done) {
struct secpolicy *sp;
struct ipsecrequest *isr;
int dir;
auto_reqid = (auto_reqid == 0xFFFF
? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
/* check for uniqueness */
done = 1;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
LIST_FOREACH(sp, &sptree[dir], chain) {
for (isr = sp->req; isr != NULL; isr = isr->next) {
if (isr->saidx.reqid == auto_reqid) {
done = 0;
break;
}
}
if (done == 0) {
break;
}
}
if (done == 0) {
break;
}
}
}
lck_mtx_unlock(sadb_mutex);
return auto_reqid;
}
/*
* copy secpolicy struct to sadb_x_policy structure indicated.
*/
struct mbuf *
key_sp2msg(
struct secpolicy *sp)
{
struct sadb_x_policy *xpl;
u_int tlen;
caddr_t p;
struct mbuf *m;
/* sanity check. */
if (sp == NULL) {
panic("key_sp2msg: NULL pointer was passed.");
}
tlen = key_getspreqmsglen(sp);
if (PFKEY_UNIT64(tlen) > UINT16_MAX) {
ipseclog((LOG_ERR, "key_getspreqmsglen returned length %u\n",
tlen));
return NULL;
}
m = key_alloc_mbuf(tlen);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
m->m_len = tlen;
m->m_next = NULL;
xpl = mtod(m, struct sadb_x_policy *);
bzero(xpl, tlen);
xpl->sadb_x_policy_len = (u_int16_t)PFKEY_UNIT64(tlen);
xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
xpl->sadb_x_policy_type = (u_int16_t)sp->policy;
xpl->sadb_x_policy_dir = sp->spidx.dir;
xpl->sadb_x_policy_id = sp->id;
p = (caddr_t)xpl + sizeof(*xpl);
/* if is the policy for ipsec ? */
if (sp->policy == IPSEC_POLICY_IPSEC) {
struct sadb_x_ipsecrequest *xisr;
struct ipsecrequest *isr;
for (isr = sp->req; isr != NULL; isr = isr->next) {
xisr = (struct sadb_x_ipsecrequest *)(void *)p;
xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
xisr->sadb_x_ipsecrequest_level = (u_int8_t)isr->level;
xisr->sadb_x_ipsecrequest_reqid = (u_int16_t)isr->saidx.reqid;
p += sizeof(*xisr);
bcopy(&isr->saidx.src, p, isr->saidx.src.ss_len);
p += isr->saidx.src.ss_len;
bcopy(&isr->saidx.dst, p, isr->saidx.dst.ss_len);
p += isr->saidx.src.ss_len;
xisr->sadb_x_ipsecrequest_len =
PFKEY_ALIGN8(sizeof(*xisr)
+ isr->saidx.src.ss_len
+ isr->saidx.dst.ss_len);
}
}
return m;
}
/* m will not be freed nor modified */
static struct mbuf *
key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
int ndeep, int nitem, int *items)
{
int idx;
int i;
struct mbuf *result = NULL, *n;
int len;
if (m == NULL || mhp == NULL) {
panic("null pointer passed to key_gather");
}
for (i = 0; i < nitem; i++) {
idx = items[i];
if (idx < 0 || idx > SADB_EXT_MAX) {
goto fail;
}
/* don't attempt to pull empty extension */
if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) {
continue;
}
if (idx != SADB_EXT_RESERVED &&
(mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) {
continue;
}
if (idx == SADB_EXT_RESERVED) {
len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
MGETHDR(n, M_WAITOK, MT_DATA); // sadb_msg len < MHLEN - enforced by _CASSERT
if (!n) {
goto fail;
}
n->m_len = len;
n->m_next = NULL;
m_copydata(m, 0, sizeof(struct sadb_msg),
mtod(n, caddr_t));
} else if (i < ndeep) {
len = mhp->extlen[idx];
n = key_alloc_mbuf(len);
if (!n || n->m_next) { /*XXX*/
if (n) {
m_freem(n);
}
goto fail;
}
m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
mtod(n, caddr_t));
} else {
n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
M_WAITOK);
}
if (n == NULL) {
goto fail;
}
if (result) {
m_cat(result, n);
} else {
result = n;
}
}
if ((result->m_flags & M_PKTHDR) != 0) {
result->m_pkthdr.len = 0;
for (n = result; n; n = n->m_next) {
result->m_pkthdr.len += n->m_len;
}
}
return result;
fail:
m_freem(result);
return NULL;
}
/*
* SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
* add a entry to SP database, when received
* <base, address(SD), (lifetime(H),) policy>
* from the user(?).
* Adding to SP database,
* and send
* <base, address(SD), (lifetime(H),) policy>
* to the socket which was send.
*
* SPDADD set a unique policy entry.
* SPDSETIDX like SPDADD without a part of policy requests.
* SPDUPDATE replace a unique policy entry.
*
* m will always be freed.
*/
static int
key_spdadd(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL;
struct sadb_x_policy *xpl0, *xpl;
struct sadb_lifetime *lft = NULL;
struct secpolicyindex spidx;
struct secpolicy *newsp;
ifnet_t internal_if = NULL;
char *outgoing_if = NULL;
char *ipsec_if = NULL;
struct sadb_x_ipsecif *ipsecifopts = NULL;
int error;
int use_src_range = 0;
int use_dst_range = 0;
int init_disabled = 0;
int address_family, address_len;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spdadd: NULL pointer is passed.");
}
if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) {
use_src_range = 1;
}
if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) {
use_dst_range = 1;
}
if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) ||
(!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) ||
mhp->ext[SADB_X_EXT_POLICY] == NULL) {
ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address)
|| mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) ||
(!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) ||
(use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address)
|| mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) ||
(!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
< sizeof(struct sadb_lifetime)) {
ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
lft = (struct sadb_lifetime *)
(void *)mhp->ext[SADB_EXT_LIFETIME_HARD];
}
if (mhp->ext[SADB_X_EXT_IPSECIF] != NULL) {
if (mhp->extlen[SADB_X_EXT_IPSECIF] < sizeof(struct sadb_x_ipsecif)) {
ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
}
if (use_src_range) {
src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START];
src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END];
} else {
src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
}
if (use_dst_range) {
dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START];
dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END];
} else {
dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
}
xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY];
ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF];
/* check addresses */
address_family = ((struct sockaddr *)(src0 + 1))->sa_family;
address_len = ((struct sockaddr *)(src0 + 1))->sa_len;
if (use_src_range) {
if (((struct sockaddr *)(src1 + 1))->sa_family != address_family ||
((struct sockaddr *)(src1 + 1))->sa_len != address_len) {
return key_senderror(so, m, EINVAL);
}
}
if (((struct sockaddr *)(dst0 + 1))->sa_family != address_family ||
((struct sockaddr *)(dst0 + 1))->sa_len != address_len) {
return key_senderror(so, m, EINVAL);
}
if (use_dst_range) {
if (((struct sockaddr *)(dst1 + 1))->sa_family != address_family ||
((struct sockaddr *)(dst1 + 1))->sa_len != address_len) {
return key_senderror(so, m, EINVAL);
}
}
/* checking the direction. */
switch (xpl0->sadb_x_policy_dir) {
case IPSEC_DIR_INBOUND:
case IPSEC_DIR_OUTBOUND:
break;
default:
ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n"));
return key_senderror(so, m, EINVAL);
}
/* check policy */
/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
|| xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n"));
return key_senderror(so, m, EINVAL);
}
/* policy requests are mandatory when action is ipsec. */
if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
&& xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
&& mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n"));
return key_senderror(so, m, EINVAL);
}
/* Process interfaces */
if (ipsecifopts != NULL) {
ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0';
ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0';
ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0';
if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) {
ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_internal_if, &internal_if);
}
if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) {
outgoing_if = ipsecifopts->sadb_x_ipsecif_outgoing_if;
}
if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) {
ipsec_if = ipsecifopts->sadb_x_ipsecif_ipsec_if;
}
init_disabled = ipsecifopts->sadb_x_ipsecif_init_disabled;
}
/* make secindex */
/* XXX boundary check against sa_len */
KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
src0 + 1,
dst0 + 1,
src0->sadb_address_prefixlen,
dst0->sadb_address_prefixlen,
src0->sadb_address_proto,
internal_if,
use_src_range ? src0 + 1 : NULL,
use_src_range ? src1 + 1 : NULL,
use_dst_range ? dst0 + 1 : NULL,
use_dst_range ? dst1 + 1 : NULL,
&spidx);
/*
* checking there is SP already or not.
* SPDUPDATE doesn't depend on whether there is a SP or not.
* If the type is either SPDADD or SPDSETIDX AND a SP is found,
* then error.
*/
lck_mtx_lock(sadb_mutex);
newsp = key_getsp(&spidx);
if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
if (newsp) {
newsp->state = IPSEC_SPSTATE_DEAD;
key_freesp(newsp, KEY_SADB_LOCKED);
}
} else {
if (newsp != NULL) {
key_freesp(newsp, KEY_SADB_LOCKED);
ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n"));
lck_mtx_unlock(sadb_mutex);
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
return key_senderror(so, m, EEXIST);
}
}
lck_mtx_unlock(sadb_mutex);
/* allocation new SP entry */
if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
return key_senderror(so, m, error);
}
if ((newsp->id = key_getnewspid()) == 0) {
keydb_delsecpolicy(newsp);
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
return key_senderror(so, m, ENOBUFS);
}
/* XXX boundary check against sa_len */
KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
src0 + 1,
dst0 + 1,
src0->sadb_address_prefixlen,
dst0->sadb_address_prefixlen,
src0->sadb_address_proto,
internal_if,
use_src_range ? src0 + 1 : NULL,
use_src_range ? src1 + 1 : NULL,
use_dst_range ? dst0 + 1 : NULL,
use_dst_range ? dst1 + 1 : NULL,
&newsp->spidx);
#if 1
/*
* allow IPv6 over IPv4 or IPv4 over IPv6 tunnels using ESP -
* otherwise reject if inner and outer address families not equal
*/
if (newsp->req && newsp->req->saidx.src.ss_family) {
struct sockaddr *sa;
sa = (struct sockaddr *)(src0 + 1);
if (sa->sa_family != newsp->req->saidx.src.ss_family) {
if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) {
keydb_delsecpolicy(newsp);
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
return key_senderror(so, m, EINVAL);
}
}
}
if (newsp->req && newsp->req->saidx.dst.ss_family) {
struct sockaddr *sa;
sa = (struct sockaddr *)(dst0 + 1);
if (sa->sa_family != newsp->req->saidx.dst.ss_family) {
if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) {
keydb_delsecpolicy(newsp);
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
return key_senderror(so, m, EINVAL);
}
}
}
#endif
const u_int64_t current_time_ns = key_get_continuous_time_ns();
newsp->created = current_time_ns;
newsp->lastused = current_time_ns;
if (lft != NULL) {
// Convert to nanoseconds
u_int64_t lifetime_ns;
if (__improbable(os_mul_overflow(lft->sadb_lifetime_addtime, NSEC_PER_SEC, &lifetime_ns))) {
ipseclog((LOG_DEBUG, "key_spdadd: invalid lifetime value %llu.\n",
lft->sadb_lifetime_addtime));
return key_senderror(so, m, EINVAL);
}
newsp->lifetime = lifetime_ns;
u_int64_t validtime_ns;
if (__improbable(os_mul_overflow(lft->sadb_lifetime_usetime, NSEC_PER_SEC, &validtime_ns))) {
ipseclog((LOG_DEBUG, "key_spdadd: invalid use time value %llu.\n",
lft->sadb_lifetime_usetime));
return key_senderror(so, m, EINVAL);
}
newsp->validtime = validtime_ns;
} else {
newsp->lifetime = 0;
newsp->validtime = 0;
}
if (outgoing_if != NULL) {
ifnet_find_by_name(outgoing_if, &newsp->outgoing_if);
}
if (ipsec_if != NULL) {
ifnet_find_by_name(ipsec_if, &newsp->ipsec_if);
}
if (init_disabled > 0) {
newsp->disabled = 1;
}
newsp->refcnt = 1; /* do not reclaim until I say I do */
newsp->state = IPSEC_SPSTATE_ALIVE;
lck_mtx_lock(sadb_mutex);
/*
* policies of type generate should be at the end of the SPD
* because they function as default discard policies
* Don't start timehandler for generate policies
*/
if (newsp->policy == IPSEC_POLICY_GENERATE) {
LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
} else { /* XXX until we have policy ordering in the kernel */
struct secpolicy *tmpsp;
LIST_FOREACH(tmpsp, &sptree[newsp->spidx.dir], chain)
if (tmpsp->policy == IPSEC_POLICY_GENERATE) {
break;
}
if (tmpsp) {
LIST_INSERT_BEFORE(tmpsp, newsp, chain);
} else {
LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain);
}
key_start_timehandler();
}
ipsec_policy_count++;
/* Turn off the ipsec bypass */
if (ipsec_bypass != 0) {
ipsec_bypass = 0;
}
/* delete the entry in spacqtree */
if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
struct secspacq *spacq;
if ((spacq = key_getspacq(&spidx)) != NULL) {
/* reset counter in order to deletion by timehandler. */
spacq->created = key_get_continuous_time_ns();
spacq->count = 0;
}
}
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n, *mpolicy;
struct sadb_msg *newmsg;
int off;
/* create new sadb_msg to reply. */
if (lft) {
int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY,
SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC,
SADB_EXT_ADDRESS_DST, SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END,
SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END};
n = key_gather_mbuf(m, mhp, 2, sizeof(mbufItems) / sizeof(int), mbufItems);
} else {
int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END,
SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END};
n = key_gather_mbuf(m, mhp, 2, sizeof(mbufItems) / sizeof(int), mbufItems);
}
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
if (n->m_len < sizeof(*newmsg)) {
n = m_pullup(n, sizeof(*newmsg));
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
off = 0;
mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
sizeof(*xpl), &off);
if (mpolicy == NULL) {
/* n is already freed */
return key_senderror(so, m, ENOBUFS);
}
xpl = (struct sadb_x_policy *)(void *)(mtod(mpolicy, caddr_t) + off);
if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
m_freem(n);
return key_senderror(so, m, EINVAL);
}
xpl->sadb_x_policy_id = newsp->id;
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* get new policy id.
* OUT:
* 0: failure.
* others: success.
*/
static u_int32_t
key_getnewspid(void)
{
u_int32_t newid = 0;
int count = key_spi_trycnt; /* XXX */
struct secpolicy *sp;
/* when requesting to allocate spi ranged */
lck_mtx_lock(sadb_mutex);
while (count--) {
newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
if ((sp = __key_getspbyid(newid)) == NULL) {
break;
}
key_freesp(sp, KEY_SADB_LOCKED);
}
lck_mtx_unlock(sadb_mutex);
if (count == 0 || newid == 0) {
ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n"));
return 0;
}
return newid;
}
/*
* SADB_SPDDELETE processing
* receive
* <base, address(SD), policy(*)>
* from the user(?), and set SADB_SASTATE_DEAD,
* and send,
* <base, address(SD), policy(*)>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_spddelete(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL;
struct sadb_x_policy *xpl0;
struct secpolicyindex spidx;
struct secpolicy *sp;
ifnet_t internal_if = NULL;
struct sadb_x_ipsecif *ipsecifopts = NULL;
int use_src_range = 0;
int use_dst_range = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spddelete: NULL pointer is passed.");
}
if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) {
use_src_range = 1;
}
if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) {
use_dst_range = 1;
}
if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) ||
(!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) ||
mhp->ext[SADB_X_EXT_POLICY] == NULL) {
ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address)
|| mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) ||
(!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) ||
(use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address)
|| mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) ||
(!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (use_src_range) {
src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START];
src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END];
} else {
src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
}
if (use_dst_range) {
dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START];
dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END];
} else {
dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
}
xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY];
ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF];
/* checking the direction. */
switch (xpl0->sadb_x_policy_dir) {
case IPSEC_DIR_INBOUND:
case IPSEC_DIR_OUTBOUND:
break;
default:
ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n"));
return key_senderror(so, m, EINVAL);
}
/* Process interfaces */
if (ipsecifopts != NULL) {
ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0';
ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0';
ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0';
if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) {
ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_internal_if, &internal_if);
}
}
/* make secindex */
/* XXX boundary check against sa_len */
KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
src0 + 1,
dst0 + 1,
src0->sadb_address_prefixlen,
dst0->sadb_address_prefixlen,
src0->sadb_address_proto,
internal_if,
use_src_range ? src0 + 1 : NULL,
use_src_range ? src1 + 1 : NULL,
use_dst_range ? dst0 + 1 : NULL,
use_dst_range ? dst1 + 1 : NULL,
&spidx);
/* Is there SP in SPD ? */
lck_mtx_lock(sadb_mutex);
if ((sp = key_getsp(&spidx)) == NULL) {
ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n"));
lck_mtx_unlock(sadb_mutex);
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
return key_senderror(so, m, EINVAL);
}
if (internal_if) {
ifnet_release(internal_if);
internal_if = NULL;
}
/* save policy id to buffer to be returned. */
xpl0->sadb_x_policy_id = sp->id;
sp->state = IPSEC_SPSTATE_DEAD;
key_freesp(sp, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n;
struct sadb_msg *newmsg;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END,
SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END};
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_SPDDELETE2 processing
* receive
* <base, policy(*)>
* from the user(?), and set SADB_SASTATE_DEAD,
* and send,
* <base, policy(*)>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_spddelete2(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
u_int32_t id;
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spddelete2: NULL pointer is passed.");
}
if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n"));
key_senderror(so, m, EINVAL);
return 0;
}
id = ((struct sadb_x_policy *)
(void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
/* Is there SP in SPD ? */
lck_mtx_lock(sadb_mutex);
if ((sp = __key_getspbyid(id)) == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id));
return key_senderror(so, m, EINVAL);
}
sp->state = IPSEC_SPSTATE_DEAD;
key_freesp(sp, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n, *nn;
struct sadb_msg *newmsg;
int off, len;
/* create new sadb_msg to reply. */
len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
if (len > MCLBYTES) {
return key_senderror(so, m, ENOBUFS);
}
MGETHDR(n, M_WAITOK, MT_DATA);
if (n && len > MHLEN) {
MCLGET(n, M_WAITOK);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
n = NULL;
}
}
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
n->m_len = len;
n->m_next = NULL;
off = 0;
m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
#if DIAGNOSTIC
if (off != len) {
panic("length inconsistency in key_spddelete2");
}
#endif
n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK);
if (!n->m_next) {
m_freem(n);
return key_senderror(so, m, ENOBUFS);
}
n->m_pkthdr.len = 0;
for (nn = n; nn; nn = nn->m_next) {
n->m_pkthdr.len += nn->m_len;
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
static int
key_spdenable(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
u_int32_t id;
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spdenable: NULL pointer is passed.");
}
if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
ipseclog((LOG_DEBUG, "key_spdenable: invalid message is passed.\n"));
key_senderror(so, m, EINVAL);
return 0;
}
id = ((struct sadb_x_policy *)
(void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
/* Is there SP in SPD ? */
lck_mtx_lock(sadb_mutex);
if ((sp = __key_getspbyid(id)) == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_spdenable: no SP found id:%u.\n", id));
return key_senderror(so, m, EINVAL);
}
sp->disabled = 0;
key_freesp(sp, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n;
struct sadb_msg *newmsg;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY};
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return key_senderror(so, m, ENOBUFS);
}
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
static int
key_spddisable(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
u_int32_t id;
struct secpolicy *sp;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spddisable: NULL pointer is passed.");
}
if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
ipseclog((LOG_DEBUG, "key_spddisable: invalid message is passed.\n"));
key_senderror(so, m, EINVAL);
return 0;
}
id = ((struct sadb_x_policy *)
(void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
/* Is there SP in SPD ? */
lck_mtx_lock(sadb_mutex);
if ((sp = __key_getspbyid(id)) == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_spddisable: no SP found id:%u.\n", id));
return key_senderror(so, m, EINVAL);
}
sp->disabled = 1;
key_freesp(sp, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n;
struct sadb_msg *newmsg;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY};
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return key_senderror(so, m, ENOBUFS);
}
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_X_GET processing
* receive
* <base, policy(*)>
* from the user(?),
* and send,
* <base, address(SD), policy>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_spdget(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
u_int32_t id;
struct secpolicy *sp;
struct mbuf *n;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spdget: NULL pointer is passed.");
}
if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
id = ((struct sadb_x_policy *)
(void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
/* Is there SP in SPD ? */
lck_mtx_lock(sadb_mutex);
if ((sp = __key_getspbyid(id)) == NULL) {
ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id));
lck_mtx_unlock(sadb_mutex);
return key_senderror(so, m, ENOENT);
}
lck_mtx_unlock(sadb_mutex);
n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
key_freesp(sp, KEY_SADB_UNLOCKED);
if (n != NULL) {
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
} else {
return key_senderror(so, m, ENOBUFS);
}
}
/*
* SADB_X_SPDACQUIRE processing.
* Acquire policy and SA(s) for a *OUTBOUND* packet.
* send
* <base, policy(*)>
* to KMD, and expect to receive
* <base> with SADB_X_SPDACQUIRE if error occurred,
* or
* <base, policy>
* with SADB_X_SPDUPDATE from KMD by PF_KEY.
* policy(*) is without policy requests.
*
* 0 : succeed
* others: error number
*/
int
key_spdacquire(
struct secpolicy *sp)
{
struct mbuf *result = NULL, *m;
struct secspacq *newspacq;
int error;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (sp == NULL) {
panic("key_spdacquire: NULL pointer is passed.");
}
if (sp->req != NULL) {
panic("key_spdacquire: called but there is request.");
}
if (sp->policy != IPSEC_POLICY_IPSEC) {
panic("key_spdacquire: policy mismathed. IPsec is expected.");
}
/* get a entry to check whether sent message or not. */
lck_mtx_lock(sadb_mutex);
sp->refcnt++;
if ((newspacq = key_getspacq(&sp->spidx)) != NULL) {
key_freesp(sp, KEY_SADB_LOCKED);
if (key_blockacq_count < newspacq->count) {
/* reset counter and do send message. */
newspacq->count = 0;
} else {
/* increment counter and do nothing. */
newspacq->count++;
lck_mtx_unlock(sadb_mutex);
return 0;
}
} else {
/* make new entry for blocking to send SADB_ACQUIRE. */
if ((newspacq = key_newspacq(&sp->spidx)) == NULL) {
key_freesp(sp, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
return ENOBUFS;
}
key_freesp(sp, KEY_SADB_LOCKED);
/* add to acqtree */
LIST_INSERT_HEAD(&spacqtree, newspacq, chain);
key_start_timehandler();
}
lck_mtx_unlock(sadb_mutex);
/* create new sadb_msg to reply. */
m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
if (!m) {
error = ENOBUFS;
goto fail;
}
result = m;
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX);
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
fail:
if (result) {
m_freem(result);
}
return error;
}
/*
* SADB_SPDFLUSH processing
* receive
* <base>
* from the user, and free all entries in secpctree.
* and send,
* <base>
* to the user.
* NOTE: what to do is only marking SADB_SASTATE_DEAD.
*
* m will always be freed.
*/
static int
key_spdflush(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_msg *newmsg;
struct secpolicy *sp;
u_int dir;
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spdflush: NULL pointer is passed.");
}
if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) {
return key_senderror(so, m, EINVAL);
}
lck_mtx_lock(sadb_mutex);
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
LIST_FOREACH(sp, &sptree[dir], chain) {
sp->state = IPSEC_SPSTATE_DEAD;
}
}
lck_mtx_unlock(sadb_mutex);
if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n"));
return key_senderror(so, m, ENOBUFS);
}
if (m->m_next) {
m_freem(m->m_next);
}
m->m_next = NULL;
m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
newmsg = mtod(m, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(m->m_pkthdr.len);
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
}
/*
* SADB_SPDDUMP processing
* receive
* <base>
* from the user, and dump all SP leaves
* and send,
* <base> .....
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_spddump(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct secpolicy *sp, **spbuf = NULL, **sp_ptr;
u_int32_t cnt = 0, bufcount = 0;
u_int dir;
struct mbuf *n;
int error = 0;
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_spddump: NULL pointer is passed.");
}
if ((bufcount = ipsec_policy_count) == 0) {
error = ENOENT;
goto end;
}
if (os_add_overflow(bufcount, 256, &bufcount)) {
ipseclog((LOG_DEBUG, "key_spddump: bufcount overflow, ipsec policy count %u.\n", ipsec_policy_count));
bufcount = ipsec_policy_count;
}
spbuf = kalloc_type(struct secpolicy *, bufcount, Z_WAITOK);
if (spbuf == NULL) {
ipseclog((LOG_DEBUG, "key_spddump: No more memory.\n"));
error = ENOMEM;
goto end;
}
lck_mtx_lock(sadb_mutex);
/* search SPD entry, make list. */
sp_ptr = spbuf;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
LIST_FOREACH(sp, &sptree[dir], chain) {
if (cnt == bufcount) {
break; /* buffer full */
}
*sp_ptr++ = sp;
sp->refcnt++;
cnt++;
}
}
lck_mtx_unlock(sadb_mutex);
if (cnt == 0) {
error = ENOENT;
goto end;
}
sp_ptr = spbuf;
while (cnt) {
--cnt;
n = key_setdumpsp(*sp_ptr++, SADB_X_SPDDUMP, cnt,
mhp->msg->sadb_msg_pid);
if (n) {
key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
}
}
lck_mtx_lock(sadb_mutex);
while (sp_ptr > spbuf) {
key_freesp(*(--sp_ptr), KEY_SADB_LOCKED);
}
lck_mtx_unlock(sadb_mutex);
end:
kfree_type(struct secpolicy *, bufcount, spbuf);
if (error) {
return key_senderror(so, m, error);
}
m_freem(m);
return 0;
}
static struct mbuf *
key_setdumpsp(
struct secpolicy *sp,
u_int8_t msg_type,
u_int32_t seq,
u_int32_t pid)
{
struct mbuf *result = NULL, *m;
m = key_setsadbmsg(msg_type, 0, SADB_SATYPE_UNSPEC, seq, pid, (u_int16_t)sp->refcnt);
if (!m) {
goto fail;
}
result = m;
if (sp->spidx.src_range.start.ss_len > 0) {
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START,
(struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END,
(struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
} else {
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&sp->spidx.src, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
}
if (sp->spidx.dst_range.start.ss_len > 0) {
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START,
(struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END,
(struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
} else {
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
}
if (sp->spidx.internal_if || sp->outgoing_if || sp->ipsec_if || sp->disabled) {
m = key_setsadbipsecif(sp->spidx.internal_if, sp->outgoing_if, sp->ipsec_if, sp->disabled);
if (!m) {
goto fail;
}
m_cat(result, m);
}
m = key_sp2msg(sp);
if (!m) {
goto fail;
}
m_cat(result, m);
if ((result->m_flags & M_PKTHDR) == 0) {
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) {
ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n"));
goto fail;
}
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return result;
fail:
m_freem(result);
return NULL;
}
/*
* get PFKEY message length for security policy and request.
*/
static u_int
key_getspreqmsglen(
struct secpolicy *sp)
{
u_int tlen;
tlen = sizeof(struct sadb_x_policy);
/* if is the policy for ipsec ? */
if (sp->policy != IPSEC_POLICY_IPSEC) {
return tlen;
}
/* get length of ipsec requests */
{
struct ipsecrequest *isr;
int len;
for (isr = sp->req; isr != NULL; isr = isr->next) {
len = sizeof(struct sadb_x_ipsecrequest)
+ isr->saidx.src.ss_len
+ isr->saidx.dst.ss_len;
tlen += PFKEY_ALIGN8(len);
}
}
return tlen;
}
/*
* SADB_SPDEXPIRE processing
* send
* <base, address(SD), lifetime(CH), policy>
* to KMD by PF_KEY.
*
* OUT: 0 : succeed
* others : error number
*/
static int
key_spdexpire(
struct secpolicy *sp)
{
struct mbuf *result = NULL, *m;
int len;
int error = EINVAL;
struct sadb_lifetime *lt;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (sp == NULL) {
panic("key_spdexpire: NULL pointer is passed.");
}
/* set msg header */
m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
if (!m) {
error = ENOBUFS;
goto fail;
}
result = m;
/* create lifetime extension (current and hard) */
len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
error = ENOBUFS;
goto fail;
}
bzero(mtod(m, caddr_t), len);
lt = mtod(m, struct sadb_lifetime *);
lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lt->sadb_lifetime_allocations = 0;
lt->sadb_lifetime_bytes = 0;
lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(sp->created);
lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(sp->lastused);
lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2);
lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lt->sadb_lifetime_allocations = 0;
lt->sadb_lifetime_bytes = 0;
lt->sadb_lifetime_addtime = sp->lifetime / NSEC_PER_SEC;
lt->sadb_lifetime_usetime = sp->validtime / NSEC_PER_SEC;
m_cat(result, m);
/* set sadb_address(es) for source */
if (sp->spidx.src_range.start.ss_len > 0) {
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START,
(struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END,
(struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
} else {
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&sp->spidx.src, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
}
/* set sadb_address(es) for dest */
if (sp->spidx.dst_range.start.ss_len > 0) {
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START,
(struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END,
(struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
} else {
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
}
/* set secpolicy */
m = key_sp2msg(sp);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
if ((result->m_flags & M_PKTHDR) == 0) {
error = EINVAL;
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
error = ENOBUFS;
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) {
ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n"));
goto fail;
}
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
fail:
if (result) {
m_freem(result);
}
return error;
}
/* %%% SAD management */
/*
* allocating a memory for new SA head, and copy from the values of mhp.
* OUT: NULL : failure due to the lack of memory.
* others : pointer to new SA head.
*/
static struct secashead *
key_newsah(struct secasindex *saidx,
ifnet_t ipsec_if,
u_int outgoing_if,
u_int8_t dir,
u_int16_t flags)
{
struct secashead *newsah;
/* sanity check */
if (saidx == NULL) {
panic("key_newsaidx: NULL pointer is passed.");
}
VERIFY(flags == SECURITY_ASSOCIATION_PFKEY || flags == SECURITY_ASSOCIATION_CUSTOM_IPSEC);
newsah = keydb_newsecashead();
if (newsah == NULL) {
return NULL;
}
bcopy(saidx, &newsah->saidx, sizeof(newsah->saidx));
/* remove the ports */
switch (saidx->src.ss_family) {
case AF_INET:
((struct sockaddr_in *)(&newsah->saidx.src))->sin_port = IPSEC_PORT_ANY;
break;
case AF_INET6:
((struct sockaddr_in6 *)(&newsah->saidx.src))->sin6_port = IPSEC_PORT_ANY;
break;
default:
break;
}
switch (saidx->dst.ss_family) {
case AF_INET:
((struct sockaddr_in *)(&newsah->saidx.dst))->sin_port = IPSEC_PORT_ANY;
break;
case AF_INET6:
((struct sockaddr_in6 *)(&newsah->saidx.dst))->sin6_port = IPSEC_PORT_ANY;
break;
default:
break;
}
newsah->outgoing_if = outgoing_if;
if (ipsec_if) {
ifnet_reference(ipsec_if);
newsah->ipsec_if = ipsec_if;
}
newsah->dir = dir;
/* add to saidxtree */
newsah->state = SADB_SASTATE_MATURE;
newsah->flags = flags;
if (flags == SECURITY_ASSOCIATION_PFKEY) {
LIST_INSERT_HEAD(&sahtree, newsah, chain);
} else {
LIST_INSERT_HEAD(&custom_sahtree, newsah, chain);
}
key_start_timehandler();
return newsah;
}
/*
* delete SA index and all SA registered.
*/
void
key_delsah(
struct secashead *sah)
{
struct secasvar *sav, *nextsav;
u_int stateidx, state;
int zombie = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* sanity check */
if (sah == NULL) {
panic("key_delsah: NULL pointer is passed.");
}
if (sah->use_count > 0) {
return;
}
/* searching all SA registered in the secindex. */
for (stateidx = 0;
stateidx < _ARRAYLEN(saorder_state_any);
stateidx++) {
state = saorder_state_any[stateidx];
for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]);
sav != NULL;
sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
if (sav->refcnt > 0) {
/* give up to delete this sa */
zombie++;
continue;
}
/* sanity check */
KEY_CHKSASTATE(state, sav->state, "key_delsah");
key_freesav(sav, KEY_SADB_LOCKED);
/* remove back pointer */
sav->sah = NULL;
sav = NULL;
}
}
/* don't delete sah only if there are savs. */
if (zombie) {
return;
}
ROUTE_RELEASE(&sah->sa_route);
if (sah->ipsec_if) {
ifnet_release(sah->ipsec_if);
sah->ipsec_if = NULL;
}
/* remove from tree of SA index */
if (__LIST_CHAINED(sah)) {
LIST_REMOVE(sah, chain);
}
kfree_type(struct secashead, sah);
}
/*
* allocating a new SA with LARVAL state. key_add() and key_getspi() call,
* and copy the values of mhp into new buffer.
* When SAD message type is GETSPI:
* to set sequence number from acq_seq++,
* to set zero to SPI.
* not to call key_setsava().
* OUT: NULL : fail
* others : pointer to new secasvar.
*
* does not modify mbuf. does not free mbuf on error.
*/
static struct secasvar *
key_newsav(
struct mbuf *m,
const struct sadb_msghdr *mhp,
struct secashead *sah,
int *errp,
struct socket *so)
{
struct secasvar *newsav;
const struct sadb_sa *xsa;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* sanity check */
if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) {
panic("key_newsa: NULL pointer is passed.");
}
newsav = kalloc_type(struct secasvar, Z_NOWAIT_ZERO);
if (newsav == NULL) {
lck_mtx_unlock(sadb_mutex);
newsav = kalloc_type(struct secasvar, Z_WAITOK_ZERO_NOFAIL);
lck_mtx_lock(sadb_mutex);
}
switch (mhp->msg->sadb_msg_type) {
case SADB_GETSPI:
key_setspi(newsav, 0);
newsav->seq = mhp->msg->sadb_msg_seq;
break;
case SADB_ADD:
/* sanity check */
if (mhp->ext[SADB_EXT_SA] == NULL) {
key_delsav(newsav);
ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n"));
*errp = EINVAL;
return NULL;
}
xsa = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
key_setspi(newsav, xsa->sadb_sa_spi);
newsav->seq = mhp->msg->sadb_msg_seq;
break;
default:
key_delsav(newsav);
*errp = EINVAL;
return NULL;
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
if (((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_alwaysexpire) {
newsav->always_expire = 1;
}
newsav->flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags;
if (newsav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) {
newsav->so = so;
}
}
// Get current continuous time
const u_int64_t current_time_ns = key_get_continuous_time_ns();
/* copy sav values */
if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
*errp = key_setsaval(newsav, m, mhp);
if (*errp) {
key_delsav(newsav);
return NULL;
}
} else {
/* For get SPI, if has a hard lifetime, apply */
const struct sadb_lifetime *lft0;
lft0 = (struct sadb_lifetime *)(void *)mhp->ext[SADB_EXT_LIFETIME_HARD];
if (lft0 != NULL) {
/* make lifetime for CURRENT */
newsav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT);
if (newsav->lft_c == NULL) {
lck_mtx_unlock(sadb_mutex);
newsav->lft_c = kalloc_type(struct sadb_lifetime,
Z_WAITOK | Z_NOFAIL);
lck_mtx_lock(sadb_mutex);
}
newsav->lft_c->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
newsav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
newsav->lft_c->sadb_lifetime_allocations = 0;
newsav->lft_c->sadb_lifetime_bytes = 0;
newsav->lft_c->sadb_lifetime_addtime = current_time_ns;
newsav->lft_c->sadb_lifetime_usetime = 0;
if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
ipseclog((LOG_DEBUG, "key_newsa: invalid hard lifetime ext len.\n"));
key_delsav(newsav);
*errp = EINVAL;
return NULL;
}
newsav->lft_h = key_newbuf(lft0, sizeof(*lft0));
}
}
/* reset created */
newsav->created = current_time_ns;
newsav->pid = mhp->msg->sadb_msg_pid;
/* add to satree */
newsav->sah = sah;
newsav->refcnt = 1;
newsav->state = SADB_SASTATE_LARVAL;
LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
secasvar, chain);
ipsec_sav_count++;
ipsec_monitor_sleep_wake();
return newsav;
}
static int
key_migratesav(struct secasvar *sav,
struct secashead *newsah)
{
if (sav == NULL || newsah == NULL || sav->state != SADB_SASTATE_MATURE) {
return EINVAL;
}
/* remove from SA header */
if (__LIST_CHAINED(sav)) {
LIST_REMOVE(sav, chain);
}
sav->sah = newsah;
LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], sav, secasvar, chain);
return 0;
}
static void
key_reset_sav(struct secasvar *sav)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* sanity check */
if (sav == NULL) {
panic("key_delsav: NULL pointer is passed.");
}
sav->remote_ike_port = 0;
sav->natt_encapsulated_src_port = 0;
if (sav->key_auth != NULL) {
bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
kfree_data(sav->key_auth, PFKEY_UNUNIT64(sav->key_auth->sadb_key_len));
sav->key_auth = NULL;
}
if (sav->key_enc != NULL) {
bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc));
kfree_data(sav->key_enc, PFKEY_UNUNIT64(sav->key_enc->sadb_key_len));
sav->key_enc = NULL;
}
if (sav->sched_auth) {
bzero(sav->sched_auth, sav->schedlen_auth);
kfree_data(sav->sched_auth, sav->schedlen_auth);
sav->sched_auth = NULL;
sav->schedlen_auth = 0;
}
if (sav->sched_enc) {
bzero(sav->sched_enc, sav->schedlen_enc);
kfree_data(sav->sched_enc, sav->schedlen_enc);
sav->sched_enc = NULL;
sav->schedlen_enc = 0;
}
for (int i = 0; i < MAX_REPLAY_WINDOWS; i++) {
if (sav->replay[i] != NULL) {
keydb_delsecreplay(sav->replay[i]);
sav->replay[i] = NULL;
}
}
if (sav->lft_c != NULL) {
kfree_type(struct sadb_lifetime, sav->lft_c);
sav->lft_c = NULL;
}
if (sav->lft_h != NULL) {
kfree_data(sav->lft_h, sizeof(*sav->lft_h));
sav->lft_h = NULL;
}
if (sav->lft_s != NULL) {
kfree_data(sav->lft_s, sizeof(*sav->lft_h));
sav->lft_s = NULL;
}
if (sav->iv != NULL) {
kfree_data(sav->iv, sav->ivlen);
sav->iv = NULL;
}
key_release_flowid(sav);
return;
}
/*
* free() SA variable entry.
*/
void
key_delsav(
struct secasvar *sav)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* sanity check */
if (sav == NULL) {
panic("key_delsav: NULL pointer is passed.");
}
if (sav->refcnt > 0) {
return; /* can't free */
}
/* remove from SA header */
if (__LIST_CHAINED(sav)) {
LIST_REMOVE(sav, chain);
ipsec_sav_count--;
}
if (sav->spihash.le_prev || sav->spihash.le_next) {
LIST_REMOVE(sav, spihash);
}
key_reset_sav(sav);
kfree_type(struct secasvar, sav);
}
/*
* search SAD.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secashead *
key_getsah(struct secasindex *saidx, u_int16_t flags)
{
struct secashead *sah;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY ||
(flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_PFKEY) {
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) {
return sah;
}
}
}
if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY ||
(flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) {
LIST_FOREACH(sah, &custom_sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, saidx, 0)) {
return sah;
}
}
}
return NULL;
}
struct secashead *
key_newsah2(struct secasindex *saidx,
u_int8_t dir)
{
struct secashead *sah;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
sah = key_getsah(saidx, SECURITY_ASSOCIATION_ANY);
if (!sah) {
return key_newsah(saidx, NULL, 0, dir, SECURITY_ASSOCIATION_PFKEY);
}
return sah;
}
/*
* check not to be duplicated SPI.
* NOTE: this function is too slow due to searching all SAD.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secasvar *
key_checkspidup(
struct secasindex *saidx,
u_int32_t spi)
{
struct secasvar *sav;
u_int stateidx, state;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* check address family */
if (saidx->src.ss_family != saidx->dst.ss_family) {
ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n"));
return NULL;
}
/* check all SAD */
LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) {
if (sav->spi != spi) {
continue;
}
for (stateidx = 0;
stateidx < _ARRAYLEN(saorder_state_alive);
stateidx++) {
state = saorder_state_alive[stateidx];
if (sav->state == state &&
key_ismyaddr((struct sockaddr *)&sav->sah->saidx.dst)) {
return sav;
}
}
}
return NULL;
}
static void
key_setspi(
struct secasvar *sav,
u_int32_t spi)
{
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
sav->spi = spi;
if (sav->spihash.le_prev || sav->spihash.le_next) {
LIST_REMOVE(sav, spihash);
}
LIST_INSERT_HEAD(&spihash[SPIHASH(spi)], sav, spihash);
}
/*
* search SAD litmited alive SA, protocol, SPI.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secasvar *
key_getsavbyspi(
struct secashead *sah,
u_int32_t spi)
{
struct secasvar *sav, *match;
u_int stateidx, state, matchidx;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
match = NULL;
matchidx = _ARRAYLEN(saorder_state_alive);
LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) {
if (sav->spi != spi) {
continue;
}
if (sav->sah != sah) {
continue;
}
for (stateidx = 0; stateidx < matchidx; stateidx++) {
state = saorder_state_alive[stateidx];
if (sav->state == state) {
match = sav;
matchidx = stateidx;
break;
}
}
}
return match;
}
/*
* copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
* You must update these if need.
* OUT: 0: success.
* !0: failure.
*
* does not modify mbuf. does not free mbuf on error.
*/
static int
key_setsaval(
struct secasvar *sav,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
#if IPSEC_ESP
const struct esp_algorithm *algo;
#endif
int error = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* sanity check */
if (m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_setsaval: NULL pointer is passed.");
}
/* initialization */
key_reset_sav(sav);
sav->natt_last_activity = natt_now;
/* SA */
if (mhp->ext[SADB_EXT_SA] != NULL) {
const struct sadb_sa *sa0;
sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid message size.\n"));
error = EINVAL;
goto fail;
}
sav->alg_auth = sa0->sadb_sa_auth;
sav->alg_enc = sa0->sadb_sa_encrypt;
sav->flags = sa0->sadb_sa_flags;
/*
* Verify that a nat-traversal port was specified if
* the nat-traversal flag is set.
*/
if ((sav->flags & SADB_X_EXT_NATT) != 0) {
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa_2) ||
((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port == 0) {
ipseclog((LOG_DEBUG, "key_setsaval: natt port not set.\n"));
error = EINVAL;
goto fail;
}
sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port;
sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port;
sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval;
sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval;
}
/*
* Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that
* SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not
* set (we're not behind nat) - otherwise clear it.
*/
if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) {
if ((sav->flags & SADB_X_EXT_NATT) == 0 ||
(sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) {
sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS;
}
}
/* replay window */
if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
if ((sav->flags2 & SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) ==
SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) {
const uint32_t range = PER_TC_REPLAY_WINDOW_RANGE;
for (uint32_t i = 0; i < MAX_REPLAY_WINDOWS; i++) {
sav->replay[i] = keydb_newsecreplay(sa0->sadb_sa_replay);
/* Allowed range for sequence per traffic class */
const uint32_t seq = i << PER_TC_REPLAY_WINDOW_SN_SHIFT;
sav->replay[i]->seq = seq;
sav->replay[i]->lastseq = seq + range - 1;
}
} else {
sav->replay[0] = keydb_newsecreplay(sa0->sadb_sa_replay);
sav->replay[0]->lastseq = ~0;
}
}
}
/* Authentication keys */
if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
const struct sadb_key *key0;
int len;
key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
len = mhp->extlen[SADB_EXT_KEY_AUTH];
const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) +
PFKEY_ALIGN8(IPSEC_KEY_AUTH_MAX_BYTES);
assert(max_length < KALLOC_SAFE_ALLOC_SIZE);
error = 0;
if ((len < sizeof(*key0)) || (len > max_length)) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid auth key ext len. len = %d\n", len));
error = EINVAL;
goto fail;
}
switch (mhp->msg->sadb_msg_satype) {
case SADB_SATYPE_AH:
case SADB_SATYPE_ESP:
if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
sav->alg_auth != SADB_X_AALG_NULL) {
error = EINVAL;
}
break;
default:
error = EINVAL;
break;
}
if (error) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n"));
goto fail;
}
sav->key_auth = (struct sadb_key *)key_newbuf(key0, len);
}
/* Encryption key */
if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
const struct sadb_key *key0;
int len;
key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) +
PFKEY_ALIGN8(IPSEC_KEY_ENCRYPT_MAX_BYTES);
assert(max_length < KALLOC_SAFE_ALLOC_SIZE);
error = 0;
if ((len < sizeof(*key0)) || (len > max_length)) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid encryption key ext len. len = %d\n", len));
error = EINVAL;
goto fail;
}
switch (mhp->msg->sadb_msg_satype) {
case SADB_SATYPE_ESP:
if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
sav->alg_enc != SADB_EALG_NULL) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid ESP algorithm.\n"));
error = EINVAL;
break;
}
sav->key_enc = (struct sadb_key *)key_newbuf(key0, len);
break;
case SADB_SATYPE_AH:
default:
error = EINVAL;
break;
}
if (error) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid key_enc value.\n"));
goto fail;
}
}
/* set iv */
sav->ivlen = 0;
switch (mhp->msg->sadb_msg_satype) {
case SADB_SATYPE_ESP:
#if IPSEC_ESP
algo = esp_algorithm_lookup(sav->alg_enc);
if (algo && algo->ivlen) {
sav->ivlen = (*algo->ivlen)(algo, sav);
}
if (sav->ivlen == 0) {
break;
}
sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_NOWAIT);
if (sav->iv == 0) {
lck_mtx_unlock(sadb_mutex);
sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_WAITOK);
lck_mtx_lock(sadb_mutex);
if (sav->iv == 0) {
ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n"));
error = ENOBUFS;
goto fail;
}
}
/* initialize IV with random bytes */
key_randomfill(sav->iv, sav->ivlen);
#endif
break;
case SADB_SATYPE_AH:
break;
default:
ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n"));
error = EINVAL;
goto fail;
}
/* reset created */
const u_int64_t current_time_ns = key_get_continuous_time_ns();
sav->created = current_time_ns;
/* make lifetime for CURRENT */
sav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT);
if (sav->lft_c == NULL) {
lck_mtx_unlock(sadb_mutex);
sav->lft_c = kalloc_type(struct sadb_lifetime,
Z_WAITOK | Z_NOFAIL);
lck_mtx_lock(sadb_mutex);
}
sav->lft_c->sadb_lifetime_len =
PFKEY_UNIT64(sizeof(struct sadb_lifetime));
sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
sav->lft_c->sadb_lifetime_allocations = 0;
sav->lft_c->sadb_lifetime_bytes = 0;
sav->lft_c->sadb_lifetime_addtime = current_time_ns;
sav->lft_c->sadb_lifetime_usetime = 0;
/* lifetimes for HARD and SOFT */
{
const struct sadb_lifetime *lft0;
lft0 = (struct sadb_lifetime *)
(void *)mhp->ext[SADB_EXT_LIFETIME_HARD];
if (lft0 != NULL) {
if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime ext len.\n"));
error = EINVAL;
goto fail;
}
sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0));
// Check that conversion to nanoseconds won't cause an overflow
u_int64_t nanotime;
if (__improbable(os_mul_overflow(sav->lft_h->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime value %llu.\n",
sav->lft_h->sadb_lifetime_addtime));
error = EINVAL;
goto fail;
}
}
lft0 = (struct sadb_lifetime *)
(void *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
if (lft0 != NULL) {
if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime ext len.\n"));
error = EINVAL;
goto fail;
}
sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0));
// Check that conversion to nanoseconds won't cause an overflow
u_int64_t nanotime;
if (__improbable(os_mul_overflow(sav->lft_s->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) {
ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime value %llu.\n",
sav->lft_s->sadb_lifetime_addtime));
error = EINVAL;
goto fail;
}
}
}
return 0;
fail:
key_reset_sav(sav);
return error;
}
/*
* validation with a secasvar entry, and set SADB_SATYPE_MATURE.
* OUT: 0: valid
* other: errno
*/
static int
key_mature(
struct secasvar *sav)
{
int mature;
int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */
int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */
mature = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* check SPI value */
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
case IPPROTO_AH:
/* No reason to test if this is >= 0, because ntohl(sav->spi) is unsigned. */
if (ntohl(sav->spi) <= 255) {
ipseclog((LOG_DEBUG,
"key_mature: illegal range of SPI %u.\n",
(u_int32_t)ntohl(sav->spi)));
return EINVAL;
}
break;
}
/* check satype */
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
/* check flags */
if ((sav->flags & SADB_X_EXT_OLD)
&& (sav->flags & SADB_X_EXT_DERIV)) {
ipseclog((LOG_DEBUG, "key_mature: "
"invalid flag (derived) given to old-esp.\n"));
return EINVAL;
}
if (sav->alg_auth == SADB_AALG_NONE) {
checkmask = 1;
} else {
checkmask = 3;
}
mustmask = 1;
break;
case IPPROTO_AH:
/* check flags */
if (sav->flags & SADB_X_EXT_DERIV) {
ipseclog((LOG_DEBUG, "key_mature: "
"invalid flag (derived) given to AH SA.\n"));
return EINVAL;
}
if (sav->alg_enc != SADB_EALG_NONE) {
ipseclog((LOG_DEBUG, "key_mature: "
"protocol and algorithm mismated.\n"));
return EINVAL;
}
checkmask = 2;
mustmask = 2;
break;
default:
ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n"));
return EPROTONOSUPPORT;
}
/* check authentication algorithm */
if ((checkmask & 2) != 0) {
const struct ah_algorithm *algo;
int keylen;
algo = ah_algorithm_lookup(sav->alg_auth);
if (!algo) {
ipseclog((LOG_DEBUG, "key_mature: "
"unknown authentication algorithm.\n"));
return EINVAL;
}
/* algorithm-dependent check */
if (sav->key_auth) {
keylen = sav->key_auth->sadb_key_bits;
} else {
keylen = 0;
}
if (keylen < algo->keymin || algo->keymax < keylen) {
ipseclog((LOG_DEBUG,
"key_mature: invalid AH key length %d "
"(%d-%d allowed)\n",
keylen, algo->keymin, algo->keymax));
return EINVAL;
}
if (algo->mature) {
if ((*algo->mature)(sav)) {
/* message generated in per-algorithm function*/
return EINVAL;
} else {
mature = SADB_SATYPE_AH;
}
}
if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) {
ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n"));
return EINVAL;
}
}
/* check encryption algorithm */
if ((checkmask & 1) != 0) {
#if IPSEC_ESP
const struct esp_algorithm *algo;
int keylen;
algo = esp_algorithm_lookup(sav->alg_enc);
if (!algo) {
ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n"));
return EINVAL;
}
/* algorithm-dependent check */
if (sav->key_enc) {
keylen = sav->key_enc->sadb_key_bits;
} else {
keylen = 0;
}
if (keylen < algo->keymin || algo->keymax < keylen) {
ipseclog((LOG_DEBUG,
"key_mature: invalid ESP key length %d "
"(%d-%d allowed)\n",
keylen, algo->keymin, algo->keymax));
return EINVAL;
}
if (algo->mature) {
if ((*algo->mature)(sav)) {
/* message generated in per-algorithm function*/
return EINVAL;
} else {
mature = SADB_SATYPE_ESP;
}
}
if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) {
ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n"));
return EINVAL;
}
#else /*IPSEC_ESP*/
ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n"));
return EINVAL;
#endif
}
key_sa_chgstate(sav, SADB_SASTATE_MATURE);
return 0;
}
/*
* subroutine for SADB_GET and SADB_DUMP.
*/
static struct mbuf *
key_setdumpsa(
struct secasvar *sav,
u_int8_t type,
u_int8_t satype,
u_int32_t seq,
u_int32_t pid)
{
struct mbuf *result = NULL, *tres = NULL, *m;
int l = 0;
int i;
void *p;
int dumporder[] = {
SADB_EXT_SA, SADB_X_EXT_SA2,
SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
};
m = key_setsadbmsg(type, 0, satype, seq, pid, (u_int16_t)sav->refcnt);
if (m == NULL) {
goto fail;
}
result = m;
for (i = sizeof(dumporder) / sizeof(dumporder[0]) - 1; i >= 0; i--) {
m = NULL;
p = NULL;
switch (dumporder[i]) {
case SADB_EXT_SA:
m = key_setsadbsa(sav);
if (!m) {
goto fail;
}
break;
case SADB_X_EXT_SA2:
m = key_setsadbxsa2(sav->sah->saidx.mode,
sav->replay[0] ? sav->replay[0]->count : 0,
sav->sah->saidx.reqid,
sav->flags2);
if (!m) {
goto fail;
}
break;
case SADB_EXT_ADDRESS_SRC:
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&sav->sah->saidx.src,
FULLMASK, IPSEC_ULPROTO_ANY);
if (!m) {
goto fail;
}
break;
case SADB_EXT_ADDRESS_DST:
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&sav->sah->saidx.dst,
FULLMASK, IPSEC_ULPROTO_ANY);
if (!m) {
goto fail;
}
break;
case SADB_EXT_KEY_AUTH:
if (!sav->key_auth) {
continue;
}
l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
p = sav->key_auth;
break;
case SADB_EXT_KEY_ENCRYPT:
if (!sav->key_enc) {
continue;
}
l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
p = sav->key_enc;
break;
case SADB_EXT_LIFETIME_CURRENT:
if (!sav->lft_c) {
continue;
}
m = key_setsalifecurr(sav->lft_c);
if (!m) {
goto fail;
}
break;
case SADB_EXT_LIFETIME_HARD:
if (!sav->lft_h) {
continue;
}
l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
p = sav->lft_h;
break;
case SADB_EXT_LIFETIME_SOFT:
if (!sav->lft_s) {
continue;
}
l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
p = sav->lft_s;
break;
case SADB_EXT_ADDRESS_PROXY:
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
/* XXX: should we brought from SPD ? */
case SADB_EXT_SENSITIVITY:
default:
continue;
}
if ((!m && !p) || (m && p)) {
goto fail;
}
if (p && tres) {
M_PREPEND(tres, l, M_WAITOK, 1);
if (!tres) {
goto fail;
}
bcopy(p, mtod(tres, caddr_t), l);
continue;
}
if (p) {
m = key_alloc_mbuf(l);
if (!m) {
goto fail;
}
m_copyback(m, 0, l, p);
}
if (tres) {
m_cat(m, tres);
}
tres = m;
}
m_cat(result, tres);
if (sav->sah && (sav->sah->outgoing_if || sav->sah->ipsec_if)) {
m = key_setsadbipsecif(NULL, ifindex2ifnet[sav->sah->outgoing_if], sav->sah->ipsec_if, 0);
if (!m) {
goto fail;
}
m_cat(result, m);
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX);
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return result;
fail:
m_freem(result);
m_freem(tres);
return NULL;
}
/*
* set data into sadb_msg.
*/
static struct mbuf *
key_setsadbmsg(
u_int8_t type,
u_int16_t tlen,
u_int8_t satype,
u_int32_t seq,
pid_t pid,
u_int16_t reserved)
{
struct mbuf *m;
struct sadb_msg *p;
int len;
len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
if (len > MCLBYTES) {
return NULL;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m && len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
m = NULL;
}
}
if (!m) {
return NULL;
}
m->m_pkthdr.len = m->m_len = len;
m->m_next = NULL;
p = mtod(m, struct sadb_msg *);
bzero(p, len);
p->sadb_msg_version = PF_KEY_V2;
p->sadb_msg_type = type;
p->sadb_msg_errno = 0;
p->sadb_msg_satype = satype;
p->sadb_msg_len = PFKEY_UNIT64(tlen);
p->sadb_msg_reserved = reserved;
p->sadb_msg_seq = seq;
p->sadb_msg_pid = (u_int32_t)pid;
return m;
}
/*
* copy secasvar data into sadb_address.
*/
static struct mbuf *
key_setsadbsa(
struct secasvar *sav)
{
struct mbuf *m;
struct sadb_sa *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, struct sadb_sa *);
bzero(p, len);
p->sadb_sa_len = PFKEY_UNIT64(len);
p->sadb_sa_exttype = SADB_EXT_SA;
p->sadb_sa_spi = sav->spi;
p->sadb_sa_replay = (sav->replay[0] != NULL ? sav->replay[0]->wsize : 0);
p->sadb_sa_state = sav->state;
p->sadb_sa_auth = sav->alg_auth;
p->sadb_sa_encrypt = sav->alg_enc;
p->sadb_sa_flags = sav->flags;
return m;
}
/*
* set data into sadb_address.
*/
static struct mbuf *
key_setsadbaddr(
u_int16_t exttype,
struct sockaddr *saddr,
size_t prefixlen,
u_int8_t ul_proto)
{
struct mbuf *m;
struct sadb_address *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
PFKEY_ALIGN8(saddr->sa_len);
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, struct sadb_address *);
bzero(p, len);
p->sadb_address_len = PFKEY_UNIT64(len);
p->sadb_address_exttype = exttype;
p->sadb_address_proto = ul_proto;
if (prefixlen == FULLMASK) {
switch (saddr->sa_family) {
case AF_INET:
prefixlen = sizeof(struct in_addr) << 3;
break;
case AF_INET6:
prefixlen = sizeof(struct in6_addr) << 3;
break;
default:
; /*XXX*/
}
}
if (prefixlen >= UINT8_MAX) {
ipseclog((LOG_ERR, "key_setsadbaddr: bad prefix length %zu", prefixlen));
m_freem(m);
return NULL;
}
p->sadb_address_prefixlen = (u_int8_t)prefixlen;
p->sadb_address_reserved = 0;
bcopy(saddr,
mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
saddr->sa_len);
return m;
}
static struct mbuf *
key_setsadbipsecif(ifnet_t internal_if,
ifnet_t outgoing_if,
ifnet_t ipsec_if,
u_int8_t init_disabled)
{
struct mbuf *m;
struct sadb_x_ipsecif *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_ipsecif));
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, struct sadb_x_ipsecif *);
bzero(p, len);
p->sadb_x_ipsecif_len = PFKEY_UNIT64(len);
p->sadb_x_ipsecif_exttype = SADB_X_EXT_IPSECIF;
if (internal_if && internal_if->if_xname) {
strlcpy(p->sadb_x_ipsecif_internal_if, internal_if->if_xname, IFXNAMSIZ);
}
if (outgoing_if && outgoing_if->if_xname) {
strlcpy(p->sadb_x_ipsecif_outgoing_if, outgoing_if->if_xname, IFXNAMSIZ);
}
if (ipsec_if && ipsec_if->if_xname) {
strlcpy(p->sadb_x_ipsecif_ipsec_if, ipsec_if->if_xname, IFXNAMSIZ);
}
p->sadb_x_ipsecif_init_disabled = init_disabled;
return m;
}
/*
* set data into sadb_session_id
*/
static struct mbuf *
key_setsadbsession_id(u_int64_t session_ids[])
{
struct mbuf *m;
struct sadb_session_id *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(*p));
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, __typeof__(p));
bzero(p, len);
p->sadb_session_id_len = PFKEY_UNIT64(len);
p->sadb_session_id_exttype = SADB_EXT_SESSION_ID;
p->sadb_session_id_v[0] = session_ids[0];
p->sadb_session_id_v[1] = session_ids[1];
return m;
}
/*
* copy stats data into sadb_sastat type.
*/
static struct mbuf *
key_setsadbsastat(u_int32_t dir,
struct sastat *stats,
u_int32_t max_stats)
{
struct mbuf *m;
struct sadb_sastat *p;
size_t list_len, len;
if (!stats) {
return NULL;
}
list_len = sizeof(*stats) * max_stats;
len = PFKEY_ALIGN8(sizeof(*p)) + PFKEY_ALIGN8(list_len);
if (PFKEY_UNIT64(len) >= UINT16_MAX) {
ipseclog((LOG_ERR, "key_setsadbsastat: length is too big: %zu\n", len));
return NULL;
}
m = key_alloc_mbuf((int)len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, __typeof__(p));
bzero(p, len);
p->sadb_sastat_len = (u_int16_t)PFKEY_UNIT64(len);
p->sadb_sastat_exttype = SADB_EXT_SASTAT;
p->sadb_sastat_dir = dir;
p->sadb_sastat_list_len = max_stats;
if (list_len) {
bcopy(stats,
mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(*p)),
list_len);
}
return m;
}
/*
* set data into sadb_x_sa2.
*/
static struct mbuf *
key_setsadbxsa2(
u_int8_t mode,
u_int32_t seq,
u_int32_t reqid,
u_int16_t flags)
{
struct mbuf *m;
struct sadb_x_sa2 *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, struct sadb_x_sa2 *);
bzero(p, len);
p->sadb_x_sa2_len = PFKEY_UNIT64(len);
p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
p->sadb_x_sa2_mode = mode;
p->sadb_x_sa2_reserved1 = 0;
p->sadb_x_sa2_reserved2 = 0;
p->sadb_x_sa2_sequence = seq;
p->sadb_x_sa2_reqid = reqid;
p->sadb_x_sa2_flags = flags;
return m;
}
/*
* set data into sadb_x_policy
*/
static struct mbuf *
key_setsadbxpolicy(
u_int16_t type,
u_int8_t dir,
u_int32_t id)
{
struct mbuf *m;
struct sadb_x_policy *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, struct sadb_x_policy *);
bzero(p, len);
p->sadb_x_policy_len = PFKEY_UNIT64(len);
p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
p->sadb_x_policy_type = type;
p->sadb_x_policy_dir = dir;
p->sadb_x_policy_id = id;
return m;
}
/*
* Copy current lifetime data, converting timestamps to wall clock time
*/
static struct mbuf *
key_setsalifecurr(
struct sadb_lifetime *lft_c)
{
struct mbuf *m;
struct sadb_lifetime *p;
u_int16_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
return NULL;
}
p = mtod(m, struct sadb_lifetime *);
bcopy(lft_c, p, sizeof(struct sadb_lifetime));
// Convert timestamps
p->sadb_lifetime_addtime = key_convert_continuous_time_ns(lft_c->sadb_lifetime_addtime);
p->sadb_lifetime_usetime = key_convert_continuous_time_ns(lft_c->sadb_lifetime_usetime);
return m;
}
/* %%% utilities */
/*
* copy a buffer into the new buffer allocated.
*/
static void *
key_newbuf(
const void *src,
u_int len)
{
caddr_t new;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
new = kalloc_data(len, Z_NOWAIT);
if (new == NULL) {
lck_mtx_unlock(sadb_mutex);
new = kalloc_data(len, Z_WAITOK | Z_NOFAIL);
lck_mtx_lock(sadb_mutex);
}
bcopy(src, new, len);
return new;
}
/* compare my own address
* OUT: 1: true, i.e. my address.
* 0: false
*/
int
key_ismyaddr(
struct sockaddr *sa)
{
#if INET
struct sockaddr_in *sin;
struct in_ifaddr *ia;
#endif
/* sanity check */
if (sa == NULL) {
panic("key_ismyaddr: NULL pointer is passed.");
}
switch (sa->sa_family) {
#if INET
case AF_INET:
lck_rw_lock_shared(&in_ifaddr_rwlock);
sin = (struct sockaddr_in *)(void *)sa;
for (ia = in_ifaddrhead.tqh_first; ia;
ia = ia->ia_link.tqe_next) {
IFA_LOCK_SPIN(&ia->ia_ifa);
if (sin->sin_family == ia->ia_addr.sin_family &&
sin->sin_len == ia->ia_addr.sin_len &&
sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) {
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in_ifaddr_rwlock);
return 1;
}
IFA_UNLOCK(&ia->ia_ifa);
}
lck_rw_done(&in_ifaddr_rwlock);
break;
#endif
case AF_INET6:
return key_ismyaddr6((struct sockaddr_in6 *)(void *)sa);
}
return 0;
}
/*
* compare my own address for IPv6.
* 1: ours
* 0: other
* NOTE: derived ip6_input() in KAME. This is necessary to modify more.
*/
#include <netinet6/in6_var.h>
static int
key_ismyaddr6(
struct sockaddr_in6 *sin6)
{
struct in6_ifaddr *ia;
struct in6_multi *in6m;
lck_rw_lock_shared(&in6_ifaddr_rwlock);
TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) {
IFA_LOCK(&ia->ia_ifa);
if (key_sockaddrcmp((struct sockaddr *)&sin6,
(struct sockaddr *)&ia->ia_addr, 0) == 0) {
IFA_UNLOCK(&ia->ia_ifa);
lck_rw_done(&in6_ifaddr_rwlock);
return 1;
}
IFA_UNLOCK(&ia->ia_ifa);
/*
* XXX Multicast
* XXX why do we care about multlicast here while we don't care
* about IPv4 multicast??
* XXX scope
*/
in6m = NULL;
in6_multihead_lock_shared();
IN6_LOOKUP_MULTI(&sin6->sin6_addr, ia->ia_ifp, in6m);
in6_multihead_lock_done();
if (in6m != NULL) {
lck_rw_done(&in6_ifaddr_rwlock);
IN6M_REMREF(in6m);
return 1;
}
}
lck_rw_done(&in6_ifaddr_rwlock);
/* loopback, just for safety */
if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) {
return 1;
}
return 0;
}
/*
* compare two secasindex structure.
* flag can specify to compare 2 saidxes.
* compare two secasindex structure without both mode and reqid.
* don't compare port.
* IN:
* saidx0: source, it can be in SAD.
* saidx1: object.
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_cmpsaidx(
struct secasindex *saidx0,
struct secasindex *saidx1,
int flag)
{
/* sanity */
if (saidx0 == NULL && saidx1 == NULL) {
return 1;
}
if (saidx0 == NULL || saidx1 == NULL) {
return 0;
}
if (saidx0->ipsec_ifindex != 0 && saidx0->ipsec_ifindex != saidx1->ipsec_ifindex) {
return 0;
}
if (saidx0->proto != saidx1->proto) {
return 0;
}
if (flag == CMP_EXACTLY) {
if (saidx0->mode != saidx1->mode) {
return 0;
}
if (saidx0->reqid != saidx1->reqid) {
return 0;
}
if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.ss_len) != 0 ||
bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.ss_len) != 0) {
return 0;
}
} else {
/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
if (flag & CMP_REQID) {
/*
* If reqid of SPD is non-zero, unique SA is required.
* The result must be of same reqid in this case.
*/
if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) {
return 0;
}
}
if (flag & CMP_MODE) {
if (saidx0->mode != IPSEC_MODE_ANY
&& saidx0->mode != saidx1->mode) {
return 0;
}
}
if (key_sockaddrcmp((struct sockaddr *)&saidx0->src,
(struct sockaddr *)&saidx1->src, flag & CMP_PORT ? 1 : 0) != 0) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst,
(struct sockaddr *)&saidx1->dst, flag & CMP_PORT ? 1 : 0) != 0) {
return 0;
}
}
return 1;
}
/*
* compare two secindex structure exactly.
* IN:
* spidx0: source, it is often in SPD.
* spidx1: object, it is often from PFKEY message.
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_cmpspidx_exactly(
struct secpolicyindex *spidx0,
struct secpolicyindex *spidx1)
{
/* sanity */
if (spidx0 == NULL && spidx1 == NULL) {
return 1;
}
if (spidx0 == NULL || spidx1 == NULL) {
return 0;
}
if (spidx0->prefs != spidx1->prefs
|| spidx0->prefd != spidx1->prefd
|| spidx0->ul_proto != spidx1->ul_proto
|| spidx0->internal_if != spidx1->internal_if) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&spidx0->src,
(struct sockaddr *)&spidx1->src, 1) != 0) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst,
(struct sockaddr *)&spidx1->dst, 1) != 0) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.start,
(struct sockaddr *)&spidx1->src_range.start, 1) != 0) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.end,
(struct sockaddr *)&spidx1->src_range.end, 1) != 0) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.start,
(struct sockaddr *)&spidx1->dst_range.start, 1) != 0) {
return 0;
}
if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.end,
(struct sockaddr *)&spidx1->dst_range.end, 1) != 0) {
return 0;
}
return 1;
}
/*
* compare two secindex structure with mask.
* IN:
* spidx0: source, it is often in SPD.
* spidx1: object, it is often from IP header.
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_cmpspidx_withmask(
struct secpolicyindex *spidx0,
struct secpolicyindex *spidx1)
{
int spidx0_src_is_range = 0;
int spidx0_dst_is_range = 0;
/* sanity */
if (spidx0 == NULL && spidx1 == NULL) {
return 1;
}
if (spidx0 == NULL || spidx1 == NULL) {
return 0;
}
if (spidx0->src_range.start.ss_len > 0) {
spidx0_src_is_range = 1;
}
if (spidx0->dst_range.start.ss_len > 0) {
spidx0_dst_is_range = 1;
}
if ((spidx0_src_is_range ? spidx0->src_range.start.ss_family : spidx0->src.ss_family) != spidx1->src.ss_family ||
(spidx0_dst_is_range ? spidx0->dst_range.start.ss_family : spidx0->dst.ss_family) != spidx1->dst.ss_family ||
(spidx0_src_is_range ? spidx0->src_range.start.ss_len : spidx0->src.ss_len) != spidx1->src.ss_len ||
(spidx0_dst_is_range ? spidx0->dst_range.start.ss_len : spidx0->dst.ss_len) != spidx1->dst.ss_len) {
return 0;
}
/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
&& spidx0->ul_proto != spidx1->ul_proto) {
return 0;
}
/* If spidx1 specifies interface, ignore src addr */
if (spidx1->internal_if != NULL) {
if (spidx0->internal_if == NULL
|| spidx0->internal_if != spidx1->internal_if) {
return 0;
}
/* Still check ports */
switch (spidx0->src.ss_family) {
case AF_INET:
if (spidx0_src_is_range &&
(satosin(&spidx1->src)->sin_port < satosin(&spidx0->src_range.start)->sin_port
|| satosin(&spidx1->src)->sin_port > satosin(&spidx0->src_range.end)->sin_port)) {
return 0;
} else if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY
&& satosin(&spidx0->src)->sin_port !=
satosin(&spidx1->src)->sin_port) {
return 0;
}
break;
case AF_INET6:
if (spidx0_src_is_range &&
(satosin6(&spidx1->src)->sin6_port < satosin6(&spidx0->src_range.start)->sin6_port
|| satosin6(&spidx1->src)->sin6_port > satosin6(&spidx0->src_range.end)->sin6_port)) {
return 0;
} else if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY
&& satosin6(&spidx0->src)->sin6_port !=
satosin6(&spidx1->src)->sin6_port) {
return 0;
}
break;
default:
break;
}
} else if (spidx0_src_is_range) {
if (!key_is_addr_in_range(&spidx1->src, &spidx0->src_range)) {
return 0;
}
} else {
switch (spidx0->src.ss_family) {
case AF_INET:
if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY
&& satosin(&spidx0->src)->sin_port !=
satosin(&spidx1->src)->sin_port) {
return 0;
}
if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr,
(caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs)) {
return 0;
}
break;
case AF_INET6:
if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY
&& satosin6(&spidx0->src)->sin6_port !=
satosin6(&spidx1->src)->sin6_port) {
return 0;
}
/*
* scope_id check. if sin6_scope_id is 0, we regard it
* as a wildcard scope, which matches any scope zone ID.
*/
if (satosin6(&spidx0->src)->sin6_scope_id &&
satosin6(&spidx1->src)->sin6_scope_id &&
satosin6(&spidx0->src)->sin6_scope_id !=
satosin6(&spidx1->src)->sin6_scope_id) {
return 0;
}
if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr,
(caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs)) {
return 0;
}
break;
default:
/* XXX */
if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.ss_len) != 0) {
return 0;
}
break;
}
}
if (spidx0_dst_is_range) {
if (!key_is_addr_in_range(&spidx1->dst, &spidx0->dst_range)) {
return 0;
}
} else {
switch (spidx0->dst.ss_family) {
case AF_INET:
if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY
&& satosin(&spidx0->dst)->sin_port !=
satosin(&spidx1->dst)->sin_port) {
return 0;
}
if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr,
(caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd)) {
return 0;
}
break;
case AF_INET6:
if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY
&& satosin6(&spidx0->dst)->sin6_port !=
satosin6(&spidx1->dst)->sin6_port) {
return 0;
}
/*
* scope_id check. if sin6_scope_id is 0, we regard it
* as a wildcard scope, which matches any scope zone ID.
*/
if (satosin6(&spidx0->src)->sin6_scope_id &&
satosin6(&spidx1->src)->sin6_scope_id &&
satosin6(&spidx0->dst)->sin6_scope_id !=
satosin6(&spidx1->dst)->sin6_scope_id) {
return 0;
}
if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr,
(caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd)) {
return 0;
}
break;
default:
/* XXX */
if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.ss_len) != 0) {
return 0;
}
break;
}
}
/* XXX Do we check other field ? e.g. flowinfo */
return 1;
}
static int
key_is_addr_in_range(struct sockaddr_storage *addr, struct secpolicyaddrrange *addr_range)
{
int cmp = 0;
if (addr == NULL || addr_range == NULL) {
return 0;
}
/* Must be greater than or equal to start */
cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->start, 1);
if (cmp != 0 && cmp != 1) {
return 0;
}
/* Must be less than or equal to end */
cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->end, 1);
if (cmp != 0 && cmp != -1) {
return 0;
}
return 1;
}
/*
* Return values:
* -1: sa1 < sa2
* 0: sa1 == sa2
* 1: sa1 > sa2
* 2: Not comparable or error
*/
static int
key_sockaddrcmp(
struct sockaddr *sa1,
struct sockaddr *sa2,
int port)
{
int result = 0;
int port_result = 0;
if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
return 2;
}
if (sa1->sa_len == 0) {
return 0;
}
switch (sa1->sa_family) {
case AF_INET:
if (sa1->sa_len != sizeof(struct sockaddr_in)) {
return 2;
}
result = memcmp(&satosin(sa1)->sin_addr.s_addr, &satosin(sa2)->sin_addr.s_addr, sizeof(satosin(sa1)->sin_addr.s_addr));
if (port) {
if (satosin(sa1)->sin_port < satosin(sa2)->sin_port) {
port_result = -1;
} else if (satosin(sa1)->sin_port > satosin(sa2)->sin_port) {
port_result = 1;
}
if (result == 0) {
result = port_result;
} else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) {
return 2;
}
}
break;
case AF_INET6:
if (sa1->sa_len != sizeof(struct sockaddr_in6)) {
return 2; /*EINVAL*/
}
if (satosin6(sa1)->sin6_scope_id !=
satosin6(sa2)->sin6_scope_id) {
return 2;
}
result = memcmp(&satosin6(sa1)->sin6_addr.s6_addr[0], &satosin6(sa2)->sin6_addr.s6_addr[0], sizeof(struct in6_addr));
if (port) {
if (satosin6(sa1)->sin6_port < satosin6(sa2)->sin6_port) {
port_result = -1;
} else if (satosin6(sa1)->sin6_port > satosin6(sa2)->sin6_port) {
port_result = 1;
}
if (result == 0) {
result = port_result;
} else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) {
return 2;
}
}
break;
default:
result = memcmp(sa1, sa2, sa1->sa_len);
break;
}
if (result < 0) {
result = -1;
} else if (result > 0) {
result = 1;
}
return result;
}
/*
* compare two buffers with mask.
* IN:
* addr1: source
* addr2: object
* bits: Number of bits to compare
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_bbcmp(
caddr_t p1,
caddr_t p2,
u_int bits)
{
u_int8_t mask;
/* XXX: This could be considerably faster if we compare a word
* at a time, but it is complicated on LSB Endian machines */
/* Handle null pointers */
if (p1 == NULL || p2 == NULL) {
return p1 == p2;
}
while (bits >= 8) {
if (*p1++ != *p2++) {
return 0;
}
bits -= 8;
}
if (bits > 0) {
mask = (u_int8_t)(~((1 << (8 - bits)) - 1));
if ((*p1 & mask) != (*p2 & mask)) {
return 0;
}
}
return 1; /* Match! */
}
/*
* time handler.
* scanning SPD and SAD to check status for each entries,
* and do to remove or to expire.
* XXX: year 2038 problem may remain.
*/
int key_timehandler_debug = 0;
u_int32_t spd_count = 0, sah_count = 0, dead_sah_count = 0, empty_sah_count = 0, larval_sav_count = 0, mature_sav_count = 0, dying_sav_count = 0, dead_sav_count = 0;
u_int64_t total_sav_count = 0;
void
key_timehandler(void)
{
u_int dir;
struct secpolicy **spbuf = NULL, **spptr = NULL;
struct secasvar **savexbuf = NULL, **savexptr = NULL;
struct secasvar **savkabuf = NULL, **savkaptr = NULL;
u_int32_t spbufcount = 0, savbufcount = 0, spcount = 0, savexcount = 0, savkacount = 0, cnt;
int stop_handler = 1; /* stop the timehandler */
const u_int64_t current_time_ns = key_get_continuous_time_ns();
/* pre-allocate buffers before taking the lock */
/* if allocation failures occur - portions of the processing will be skipped */
if ((spbufcount = ipsec_policy_count) != 0) {
if (os_add_overflow(spbufcount, 256, &spbufcount)) {
ipseclog((LOG_DEBUG, "key_timehandler: spbufcount overflow, ipsec policy count %u.\n", ipsec_policy_count));
spbufcount = ipsec_policy_count;
}
spbuf = kalloc_type(struct secpolicy *, spbufcount, Z_WAITOK);
if (spbuf) {
spptr = spbuf;
}
}
if ((savbufcount = ipsec_sav_count) != 0) {
if (os_add_overflow(savbufcount, 512, &savbufcount)) {
ipseclog((LOG_DEBUG, "key_timehandler: savbufcount overflow, ipsec sa count %u.\n", ipsec_sav_count));
savbufcount = ipsec_sav_count;
}
savexbuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK);
if (savexbuf) {
savexptr = savexbuf;
}
savkabuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK);
if (savkabuf) {
savkaptr = savkabuf;
}
}
lck_mtx_lock(sadb_mutex);
/* SPD */
if (spbuf) {
struct secpolicy *sp, *nextsp;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
for (sp = LIST_FIRST(&sptree[dir]);
sp != NULL;
sp = nextsp) {
/* don't prevent timehandler from stopping for generate policy */
if (sp->policy != IPSEC_POLICY_GENERATE) {
stop_handler = 0;
}
spd_count++;
nextsp = LIST_NEXT(sp, chain);
if (sp->state == IPSEC_SPSTATE_DEAD) {
key_freesp(sp, KEY_SADB_LOCKED);
continue;
}
if (sp->lifetime == 0 && sp->validtime == 0) {
continue;
}
if (spbuf && spcount < spbufcount) {
/* the deletion will occur next time */
if ((sp->lifetime
&& current_time_ns - sp->created > sp->lifetime)
|| (sp->validtime
&& current_time_ns - sp->lastused > sp->validtime)) {
//key_spdexpire(sp);
sp->state = IPSEC_SPSTATE_DEAD;
sp->refcnt++;
*spptr++ = sp;
spcount++;
}
}
}
}
}
/* SAD */
{
struct secashead *sah, *nextsah;
struct secasvar *sav, *nextsav;
for (sah = LIST_FIRST(&sahtree);
sah != NULL;
sah = nextsah) {
sah_count++;
nextsah = LIST_NEXT(sah, chain);
/* if sah has been dead, then delete it and process next sah. */
if (sah->state == SADB_SASTATE_DEAD) {
key_delsah(sah);
dead_sah_count++;
continue;
}
if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL &&
LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL &&
LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL &&
LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) {
key_delsah(sah);
empty_sah_count++;
continue;
}
if (savbufcount == 0) {
continue;
}
stop_handler = 0;
/* if LARVAL entry doesn't become MATURE, delete it. */
const u_int64_t larval_lifetime = (u_int64_t)key_larval_lifetime * NSEC_PER_SEC;
for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]);
sav != NULL;
sav = nextsav) {
larval_sav_count++;
total_sav_count++;
nextsav = LIST_NEXT(sav, chain);
if (sav->lft_h != NULL) {
/* If a hard lifetime is defined for the LARVAL SA, use it */
if (sav->lft_h->sadb_lifetime_addtime != 0) {
const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC;
if (current_time_ns - sav->created > lifetime_addtime) {
if (sav->always_expire) {
key_send_delete(sav);
sav = NULL;
} else {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
sav = NULL;
}
}
}
} else {
if (current_time_ns - sav->created > larval_lifetime) {
key_freesav(sav, KEY_SADB_LOCKED);
}
}
}
/*
* If this is a NAT traversal SA with no activity,
* we need to send a keep alive.
*
* Performed outside of the loop before so we will
* only ever send one keepalive. The first SA on
* the list is the one that will be used for sending
* traffic, so this is the one we use for determining
* when to send the keepalive.
*/
if (savkabuf && savkacount < savbufcount) {
sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); //%%% should we check dying list if this is empty???
if (sav && (natt_keepalive_interval || sav->natt_interval) &&
(sav->flags & (SADB_X_EXT_NATT_KEEPALIVE | SADB_X_EXT_ESP_KEEPALIVE)) != 0) {
sav->refcnt++;
*savkaptr++ = sav;
savkacount++;
}
}
/*
* check MATURE entry to start to send expire message
* whether or not.
*/
for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]);
sav != NULL;
sav = nextsav) {
mature_sav_count++;
total_sav_count++;
nextsav = LIST_NEXT(sav, chain);
/* we don't need to check. */
if (sav->lft_s == NULL) {
continue;
}
/* sanity check */
if (sav->lft_c == NULL) {
ipseclog((LOG_DEBUG, "key_timehandler: "
"There is no CURRENT time, why?\n"));
continue;
}
/* check SOFT lifetime */
if (sav->lft_s->sadb_lifetime_addtime != 0) {
const u_int64_t lifetime_addtime = sav->lft_s->sadb_lifetime_addtime * NSEC_PER_SEC;
if (current_time_ns - sav->created > lifetime_addtime) {
/*
* If always_expire is set, expire. Otherwise,
* if the SA has not been used, delete immediately.
*/
if (sav->lft_c->sadb_lifetime_usetime == 0
&& sav->always_expire == 0) {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
sav = NULL;
} else if (savexbuf && savexcount < savbufcount) {
key_sa_chgstate(sav, SADB_SASTATE_DYING);
sav->refcnt++;
*savexptr++ = sav;
savexcount++;
}
}
}
/* check SOFT lifetime by bytes */
/*
* XXX I don't know the way to delete this SA
* when new SA is installed. Caution when it's
* installed too big lifetime by time.
*/
else if (savexbuf && savexcount < savbufcount
&& sav->lft_s->sadb_lifetime_bytes != 0
&& sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
/*
* XXX If we keep to send expire
* message in the status of
* DYING. Do remove below code.
*/
//key_expire(sav);
key_sa_chgstate(sav, SADB_SASTATE_DYING);
sav->refcnt++;
*savexptr++ = sav;
savexcount++;
}
}
/* check DYING entry to change status to DEAD. */
for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]);
sav != NULL;
sav = nextsav) {
dying_sav_count++;
total_sav_count++;
nextsav = LIST_NEXT(sav, chain);
/* we don't need to check. */
if (sav->lft_h == NULL) {
continue;
}
/* sanity check */
if (sav->lft_c == NULL) {
ipseclog((LOG_DEBUG, "key_timehandler: "
"There is no CURRENT time, why?\n"));
continue;
}
/* check HARD lifetime */
if (sav->lft_h->sadb_lifetime_addtime != 0) {
const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC;
if (current_time_ns - sav->created > lifetime_addtime) {
if (sav->always_expire) {
key_send_delete(sav);
sav = NULL;
} else {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
sav = NULL;
}
}
}
/* check HARD lifetime by bytes */
else if (sav->lft_h->sadb_lifetime_bytes != 0
&& sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
sav = NULL;
}
}
/* delete entry in DEAD */
for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]);
sav != NULL;
sav = nextsav) {
dead_sav_count++;
total_sav_count++;
nextsav = LIST_NEXT(sav, chain);
/* sanity check */
if (sav->state != SADB_SASTATE_DEAD) {
ipseclog((LOG_DEBUG, "key_timehandler: "
"invalid sav->state "
"(queue: %d SA: %d): "
"kill it anyway\n",
SADB_SASTATE_DEAD, sav->state));
}
/*
* do not call key_freesav() here.
* sav should already be freed, and sav->refcnt
* shows other references to sav
* (such as from SPD).
*/
}
}
}
if (++key_timehandler_debug >= 300) {
if (key_debug_level) {
printf("%s: total stats for %u calls\n", __FUNCTION__, key_timehandler_debug);
printf("%s: walked %u SPDs\n", __FUNCTION__, spd_count);
printf("%s: walked %llu SAs: LARVAL SAs %u, MATURE SAs %u, DYING SAs %u, DEAD SAs %u\n", __FUNCTION__,
total_sav_count, larval_sav_count, mature_sav_count, dying_sav_count, dead_sav_count);
printf("%s: walked %u SAHs: DEAD SAHs %u, EMPTY SAHs %u\n", __FUNCTION__,
sah_count, dead_sah_count, empty_sah_count);
if (sah_search_calls) {
printf("%s: SAH search cost %d iters per call\n", __FUNCTION__,
(sah_search_count / sah_search_calls));
}
}
spd_count = 0;
sah_count = 0;
dead_sah_count = 0;
empty_sah_count = 0;
larval_sav_count = 0;
mature_sav_count = 0;
dying_sav_count = 0;
dead_sav_count = 0;
total_sav_count = 0;
sah_search_count = 0;
sah_search_calls = 0;
key_timehandler_debug = 0;
}
const u_int64_t blockacq_lifetime = (u_int64_t)key_blockacq_lifetime * NSEC_PER_SEC;
#ifndef IPSEC_NONBLOCK_ACQUIRE
/* ACQ tree */
{
struct secacq *acq, *nextacq;
for (acq = LIST_FIRST(&acqtree);
acq != NULL;
acq = nextacq) {
stop_handler = 0;
nextacq = LIST_NEXT(acq, chain);
if (current_time_ns - acq->created > blockacq_lifetime
&& __LIST_CHAINED(acq)) {
LIST_REMOVE(acq, chain);
kfree_type(struct secacq, acq);
}
}
}
#endif
/* SP ACQ tree */
{
struct secspacq *acq, *nextacq;
for (acq = LIST_FIRST(&spacqtree);
acq != NULL;
acq = nextacq) {
stop_handler = 0;
nextacq = LIST_NEXT(acq, chain);
if (current_time_ns - acq->created > blockacq_lifetime
&& __LIST_CHAINED(acq)) {
LIST_REMOVE(acq, chain);
struct secacq *secacq_p = (struct secacq *)acq;
kfree_type(struct secacq, secacq_p);
}
}
}
/* initialize random seed */
if (key_tick_init_random++ > key_int_random) {
key_tick_init_random = 0;
key_srandom();
}
uint64_t acc_sleep_time = 0;
absolutetime_to_nanoseconds(mach_absolutetime_asleep, &acc_sleep_time);
natt_now = ++up_time + (acc_sleep_time / NSEC_PER_SEC);
lck_mtx_unlock(sadb_mutex);
/* send messages outside of sadb_mutex */
if (spbuf && spcount > 0) {
cnt = spcount;
while (cnt--) {
key_spdexpire(*(--spptr));
}
}
if (savkabuf && savkacount > 0) {
struct secasvar **savkaptr_sav = savkaptr;
u_int32_t cnt_send = savkacount;
while (cnt_send--) {
if (ipsec_send_natt_keepalive(*(--savkaptr))) {
// <rdar://6768487> iterate (all over again) and update timestamps
struct secasvar **savkaptr_update = savkaptr_sav;
u_int32_t cnt_update = savkacount;
while (cnt_update--) {
key_update_natt_keepalive_timestamp(*savkaptr,
*(--savkaptr_update));
}
}
}
}
if (savexbuf && savexcount > 0) {
cnt = savexcount;
while (cnt--) {
key_expire(*(--savexptr));
}
}
/* decrement ref counts and free buffers */
lck_mtx_lock(sadb_mutex);
if (spbuf) {
while (spcount--) {
key_freesp(*spptr++, KEY_SADB_LOCKED);
}
kfree_type(struct secpolicy *, spbufcount, spbuf);
}
if (savkabuf) {
while (savkacount--) {
key_freesav(*savkaptr++, KEY_SADB_LOCKED);
}
kfree_type(struct secasvar *, savbufcount, savkabuf);
}
if (savexbuf) {
while (savexcount--) {
key_freesav(*savexptr++, KEY_SADB_LOCKED);
}
kfree_type(struct secasvar *, savbufcount, savexbuf);
}
if (stop_handler) {
key_timehandler_running = 0;
/* Turn on the ipsec bypass */
ipsec_bypass = 1;
} else {
/* do exchange to tick time !! */
(void)timeout((void *)key_timehandler, (void *)0, hz);
}
lck_mtx_unlock(sadb_mutex);
return;
}
/*
* to initialize a seed for random()
*/
static void
key_srandom(void)
{
#ifdef __APPLE__
/* Our PRNG is based on Yarrow and doesn't need to be seeded */
random();
#else
struct timeval tv;
microtime(&tv);
srandom(tv.tv_usec);
#endif
return;
}
u_int32_t
key_random(void)
{
u_int32_t value;
key_randomfill(&value, sizeof(value));
return value;
}
void
key_randomfill(
void *p,
size_t l)
{
#ifdef __APPLE__
cc_rand_generate(p, l);
#else
size_t n;
u_int32_t v;
static int warn = 1;
n = 0;
n = (size_t)read_random(p, (u_int)l);
/* last resort */
while (n < l) {
v = random();
bcopy(&v, (u_int8_t *)p + n,
l - n < sizeof(v) ? l - n : sizeof(v));
n += sizeof(v);
if (warn) {
printf("WARNING: pseudo-random number generator "
"used for IPsec processing\n");
warn = 0;
}
}
#endif
}
/*
* map SADB_SATYPE_* to IPPROTO_*.
* if satype == SADB_SATYPE then satype is mapped to ~0.
* OUT:
* 0: invalid satype.
*/
static u_int8_t
key_satype2proto(
u_int8_t satype)
{
switch (satype) {
case SADB_SATYPE_UNSPEC:
return IPSEC_PROTO_ANY;
case SADB_SATYPE_AH:
return IPPROTO_AH;
case SADB_SATYPE_ESP:
return IPPROTO_ESP;
default:
return 0;
}
/* NOTREACHED */
}
/*
* map IPPROTO_* to SADB_SATYPE_*
* OUT:
* 0: invalid protocol type.
*/
static u_int8_t
key_proto2satype(
u_int16_t proto)
{
switch (proto) {
case IPPROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_ESP:
return SADB_SATYPE_ESP;
default:
return 0;
}
/* NOTREACHED */
}
static ifnet_t
key_get_ipsec_if_from_message(const struct sadb_msghdr *mhp, int message_type)
{
struct sadb_x_ipsecif *ipsecifopts = NULL;
ifnet_t ipsec_if = NULL;
ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type];
if (ipsecifopts != NULL) {
if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) {
ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0';
ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_ipsec_if, &ipsec_if);
}
}
return ipsec_if;
}
static u_int
key_get_outgoing_ifindex_from_message(const struct sadb_msghdr *mhp, int message_type)
{
struct sadb_x_ipsecif *ipsecifopts = NULL;
ifnet_t outgoing_if = NULL;
ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type];
if (ipsecifopts != NULL) {
if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) {
ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0';
ifnet_find_by_name(ipsecifopts->sadb_x_ipsecif_outgoing_if, &outgoing_if);
}
}
u_int outgoing_if_index = 0;
if (outgoing_if != NULL) {
outgoing_if_index = outgoing_if->if_index;
ifnet_release(outgoing_if);
}
return outgoing_if_index;
}
/* %%% PF_KEY */
/*
* SADB_GETSPI processing is to receive
* <base, (SA2), src address, dst address, (SPI range)>
* from the IKMPd, to assign a unique spi value, to hang on the INBOUND
* tree with the status of LARVAL, and send
* <base, SA(*), address(SD)>
* to the IKMPd.
*
* IN: mhp: pointer to the pointer to each header.
* OUT: NULL if fail.
* other if success, return pointer to the message to send.
*/
static int
key_getspi(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_address *src0, *dst0;
struct secasindex saidx;
struct secashead *newsah;
struct secasvar *newsav;
ifnet_t ipsec_if = NULL;
u_int8_t proto;
u_int32_t spi;
u_int8_t mode;
u_int32_t reqid;
int error;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_getspi: NULL pointer is passed.");
}
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
mode = ((struct sadb_x_sa2 *)
(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
reqid = ((struct sadb_x_sa2 *)
(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
} else {
mode = IPSEC_MODE_ANY;
reqid = 0;
}
src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
/* make sure if port number is zero. */
switch (((struct sockaddr *)(src0 + 1))->sa_family) {
case AF_INET:
if (((struct sockaddr *)(src0 + 1))->sa_len !=
sizeof(struct sockaddr_in)) {
return key_senderror(so, m, EINVAL);
}
((struct sockaddr_in *)(void *)(src0 + 1))->sin_port = 0;
break;
case AF_INET6:
if (((struct sockaddr *)(src0 + 1))->sa_len !=
sizeof(struct sockaddr_in6)) {
return key_senderror(so, m, EINVAL);
}
((struct sockaddr_in6 *)(void *)(src0 + 1))->sin6_port = 0;
break;
default:
; /*???*/
}
switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
case AF_INET:
if (((struct sockaddr *)(dst0 + 1))->sa_len !=
sizeof(struct sockaddr_in)) {
return key_senderror(so, m, EINVAL);
}
((struct sockaddr_in *)(void *)(dst0 + 1))->sin_port = 0;
break;
case AF_INET6:
if (((struct sockaddr *)(dst0 + 1))->sa_len !=
sizeof(struct sockaddr_in6)) {
return key_senderror(so, m, EINVAL);
}
((struct sockaddr_in6 *)(void *)(dst0 + 1))->sin6_port = 0;
break;
default:
; /*???*/
}
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
/* XXX boundary check against sa_len */
KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx);
lck_mtx_lock(sadb_mutex);
/* SPI allocation */
spi = key_do_getnewspi((struct sadb_spirange *)
(void *)mhp->ext[SADB_EXT_SPIRANGE], &saidx);
if (spi == 0) {
lck_mtx_unlock(sadb_mutex);
if (ipsec_if != NULL) {
ifnet_release(ipsec_if);
}
return key_senderror(so, m, EINVAL);
}
/* get a SA index */
if ((newsah = key_getsah(&saidx, SECURITY_ASSOCIATION_ANY)) == NULL) {
/* create a new SA index: key_addspi is always used for inbound spi */
if ((newsah = key_newsah(&saidx, ipsec_if, key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_INBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) {
lck_mtx_unlock(sadb_mutex);
if (ipsec_if != NULL) {
ifnet_release(ipsec_if);
}
ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n"));
return key_senderror(so, m, ENOBUFS);
}
}
if (ipsec_if != NULL) {
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
// Increment use count, since key_newsav() could release sadb_mutex lock
newsah->use_count++;
if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) {
newsah->use_count--;
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_ERR, "key_getspi: custom ipsec exists\n"));
return key_senderror(so, m, EEXIST);
}
/* get a new SA */
/* XXX rewrite */
newsav = key_newsav(m, mhp, newsah, &error, so);
if (newsav == NULL) {
/* XXX don't free new SA index allocated in above. */
newsah->use_count--;
lck_mtx_unlock(sadb_mutex);
return key_senderror(so, m, error);
}
if (newsah->state == SADB_SASTATE_DEAD) {
newsah->use_count--;
key_sa_chgstate(newsav, SADB_SASTATE_DEAD);
key_freesav(newsav, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_ERR, "key_getspi: security association head is dead\n"));
return key_senderror(so, m, EINVAL);
}
/* set spi */
key_setspi(newsav, htonl(spi));
#ifndef IPSEC_NONBLOCK_ACQUIRE
/* delete the entry in acqtree */
if (mhp->msg->sadb_msg_seq != 0) {
struct secacq *acq;
if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
/* reset counter in order to deletion by timehandler. */
acq->created = key_get_continuous_time_ns();
acq->count = 0;
}
}
#endif
newsah->use_count--;
u_int32_t newsav_seq = newsav->seq;
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n, *nn;
struct sadb_sa *m_sa;
struct sadb_msg *newmsg;
int off, len;
/* create new sadb_msg to reply. */
len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
PFKEY_ALIGN8(sizeof(struct sadb_sa));
if (len > MCLBYTES) {
return key_senderror(so, m, ENOBUFS);
}
MGETHDR(n, M_WAITOK, MT_DATA);
if (n && len > MHLEN) {
MCLGET(n, M_WAITOK);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
n = NULL;
}
}
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
n->m_len = len;
n->m_next = NULL;
off = 0;
m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
m_sa = (struct sadb_sa *)(void *)(mtod(n, caddr_t) + off);
memset(m_sa, 0, PFKEY_ALIGN8(sizeof(struct sadb_sa)));
m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
m_sa->sadb_sa_exttype = SADB_EXT_SA;
m_sa->sadb_sa_spi = htonl(spi);
off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
#if DIAGNOSTIC
if (off != len) {
panic("length inconsistency in key_getspi");
}
#endif
{
int mbufItems[] = {SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST};
n->m_next = key_gather_mbuf(m, mhp, 0, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n->m_next) {
m_freem(n);
return key_senderror(so, m, ENOBUFS);
}
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
}
}
n->m_pkthdr.len = 0;
for (nn = n; nn; nn = nn->m_next) {
n->m_pkthdr.len += nn->m_len;
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_seq = newsav_seq;
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
}
}
/*
* allocating new SPI
* called by key_getspi().
* OUT:
* 0: failure.
* others: success.
*/
static u_int32_t
key_do_getnewspi(
struct sadb_spirange *spirange,
struct secasindex *saidx)
{
u_int32_t newspi;
u_int32_t keymin, keymax;
int count = key_spi_trycnt;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
/* set spi range to allocate */
if (spirange != NULL) {
keymin = spirange->sadb_spirange_min;
keymax = spirange->sadb_spirange_max;
} else {
keymin = key_spi_minval;
keymax = key_spi_maxval;
}
if (keymin == keymax) {
if (key_checkspidup(saidx, keymin) != NULL) {
ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", keymin));
return 0;
}
count--; /* taking one cost. */
newspi = keymin;
} else {
u_int32_t range = keymax - keymin + 1; /* overflow value of zero means full range */
/* init SPI */
newspi = 0;
/* when requesting to allocate spi ranged */
while (count--) {
u_int32_t rand_val = key_random();
/* generate pseudo-random SPI value ranged. */
newspi = (range == 0 ? rand_val : keymin + (rand_val % range));
if (key_checkspidup(saidx, newspi) == NULL) {
break;
}
}
if (count == 0 || newspi == 0) {
ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n"));
return 0;
}
}
/* statistics */
keystat.getspi_count =
(keystat.getspi_count + key_spi_trycnt - count) / 2;
return newspi;
}
/*
* SADB_UPDATE processing
* receive
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* key(AE), (identity(SD),) (sensitivity)>
* from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
* and send
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* (identity(SD),) (sensitivity)>
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_update(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0 = NULL;
struct sadb_address *src0 = NULL, *dst0 = NULL;
ifnet_t ipsec_if = NULL;
struct secasindex saidx;
struct secashead *sah = NULL;
struct secasvar *sav = NULL;
u_int8_t proto;
u_int8_t mode;
u_int32_t reqid;
u_int16_t flags2;
int error;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_update: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n"));
bzero_keys(mhp);
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
bzero_keys(mhp);
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n"));
bzero_keys(mhp);
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
mode = ((struct sadb_x_sa2 *)
(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
reqid = ((struct sadb_x_sa2 *)
(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags;
} else {
mode = IPSEC_MODE_ANY;
reqid = 0;
flags2 = 0;
}
/* XXX boundary checking for other extensions */
sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
u_int ipsec_if_index = 0;
if (ipsec_if != NULL) {
ipsec_if_index = ipsec_if->if_index;
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
/* XXX boundary check against sa_len */
KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if_index, &saidx);
lck_mtx_lock(sadb_mutex);
/* get a SA header */
if ((sah = key_getsah(&saidx, SECURITY_ASSOCIATION_PFKEY)) == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_update: no SA index found.\n"));
bzero_keys(mhp);
return key_senderror(so, m, ENOENT);
}
// Increment use count, since key_setsaval() could release sadb_mutex lock
sah->use_count++;
if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) {
ipseclog((LOG_DEBUG,
"key_update: no such a SA found (spi:%u)\n",
(u_int32_t)ntohl(sa0->sadb_sa_spi)));
error = EINVAL;
goto fail;
}
// Increment reference count, since key_setsaval() could release sadb_mutex lock
sav->refcnt++;
/* validity check */
if (sav->sah->saidx.proto != proto) {
ipseclog((LOG_DEBUG,
"key_update: protocol mismatched (DB=%u param=%u)\n",
sav->sah->saidx.proto, proto));
error = EINVAL;
goto fail;
}
if (sav->pid != mhp->msg->sadb_msg_pid) {
ipseclog((LOG_DEBUG,
"key_update: pid mismatched (DB:%u param:%u)\n",
sav->pid, mhp->msg->sadb_msg_pid));
error = EINVAL;
goto fail;
}
/* copy sav values */
sav->flags2 = flags2;
if (flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) {
sav->so = so;
}
error = key_setsaval(sav, m, mhp);
if (error) {
goto fail;
}
if (sah->state == SADB_SASTATE_DEAD) {
ipseclog((LOG_ERR,
"key_update: security association head is dead\n"));
error = EINVAL;
goto fail;
}
/*
* Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that
* this SA is for transport mode - otherwise clear it.
*/
if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 &&
(sav->sah->saidx.mode != IPSEC_MODE_TRANSPORT ||
sav->sah->saidx.src.ss_family != AF_INET)) {
sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS;
}
/* check SA values to be mature. */
if ((error = key_mature(sav)) != 0) {
goto fail;
}
key_freesav(sav, KEY_SADB_LOCKED);
sah->use_count--;
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n;
/* set msg buf from mhp */
n = key_getmsgbuf_x1(m, mhp);
if (n == NULL) {
ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
return key_senderror(so, m, ENOBUFS);
}
bzero_keys(mhp);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
fail:
if (sav != NULL) {
key_freesav(sav, KEY_SADB_LOCKED);
}
if (sah != NULL) {
sah->use_count--;
}
lck_mtx_unlock(sadb_mutex);
bzero_keys(mhp);
return key_senderror(so, m, error);
}
static int
key_migrate(struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0 = NULL;
struct sadb_address *src0 = NULL;
struct sadb_address *dst0 = NULL;
struct sadb_address *src1 = NULL;
struct sadb_address *dst1 = NULL;
ifnet_t ipsec_if0 = NULL;
ifnet_t ipsec_if1 = NULL;
struct secasindex saidx0;
struct secasindex saidx1;
struct secashead *sah = NULL;
struct secashead *newsah = NULL;
struct secasvar *sav = NULL;
u_int8_t proto;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_migrate: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_migrate: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST] == NULL) {
ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_DST] < sizeof(struct sadb_address)) {
ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
lck_mtx_lock(sadb_mutex);
sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
src1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC]);
dst1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST]);
ipsec_if0 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
ipsec_if1 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF);
u_int ipsec_if0_index = 0;
if (ipsec_if0 != NULL) {
ipsec_if0_index = ipsec_if0->if_index;
ifnet_release(ipsec_if0);
ipsec_if0 = NULL;
}
/* Find existing SAH and SAV */
KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if0_index, &saidx0);
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state != SADB_SASTATE_MATURE) {
continue;
}
if (key_cmpsaidx(&sah->saidx, &saidx0, CMP_HEAD) == 0) {
continue;
}
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
if (sav && sav->state == SADB_SASTATE_MATURE) {
break;
}
}
if (sah == NULL) {
lck_mtx_unlock(sadb_mutex);
if (ipsec_if1 != NULL) {
ifnet_release(ipsec_if1);
}
ipseclog((LOG_DEBUG, "key_migrate: no mature SAH found.\n"));
return key_senderror(so, m, ENOENT);
}
if (sav == NULL) {
lck_mtx_unlock(sadb_mutex);
if (ipsec_if1 != NULL) {
ifnet_release(ipsec_if1);
}
ipseclog((LOG_DEBUG, "key_migrate: no SA found.\n"));
return key_senderror(so, m, ENOENT);
}
/* Find or create new SAH */
KEY_SETSECASIDX(proto, sah->saidx.mode, sah->saidx.reqid, src1 + 1, dst1 + 1, ipsec_if1 ? ipsec_if1->if_index : 0, &saidx1);
if ((newsah = key_getsah(&saidx1, SECURITY_ASSOCIATION_ANY)) == NULL) {
if ((newsah = key_newsah(&saidx1, ipsec_if1, key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF), sah->dir, SECURITY_ASSOCIATION_PFKEY)) == NULL) {
lck_mtx_unlock(sadb_mutex);
if (ipsec_if1 != NULL) {
ifnet_release(ipsec_if1);
}
ipseclog((LOG_DEBUG, "key_migrate: No more memory.\n"));
return key_senderror(so, m, ENOBUFS);
}
}
if (ipsec_if1 != NULL) {
ifnet_release(ipsec_if1);
ipsec_if1 = NULL;
}
if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_ERR, "key_migrate: custom ipsec exists\n"));
return key_senderror(so, m, EEXIST);
}
/* Migrate SAV in to new SAH */
if (key_migratesav(sav, newsah) != 0) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_migrate: Failed to migrate SA to new SAH.\n"));
return key_senderror(so, m, EINVAL);
}
/* Reset NAT values */
sav->flags = sa0->sadb_sa_flags;
sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port;
sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port;
sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval;
sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval;
sav->natt_last_activity = natt_now;
/*
* Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that
* SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not
* set (we're not behind nat) - otherwise clear it.
*/
if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) {
if ((sav->flags & SADB_X_EXT_NATT) == 0 ||
(sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) {
sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS;
}
}
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n;
struct sadb_msg *newmsg;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_IPSECIF,
SADB_EXT_MIGRATE_ADDRESS_SRC, SADB_EXT_MIGRATE_ADDRESS_DST, SADB_X_EXT_MIGRATE_IPSECIF};
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return key_senderror(so, m, ENOBUFS);
}
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_ADD processing
* add a entry to SA database, when received
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* key(AE), (identity(SD),) (sensitivity)>
* from the ikmpd,
* and send
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* (identity(SD),) (sensitivity)>
* to the ikmpd.
*
* IGNORE identity and sensitivity messages.
*
* m will always be freed.
*/
static int
key_add(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0 = NULL;
struct sadb_address *src0 = NULL, *dst0 = NULL;
ifnet_t ipsec_if = NULL;
struct secasindex saidx;
struct secashead *newsah = NULL;
struct secasvar *newsav = NULL;
u_int8_t proto;
u_int8_t mode;
u_int32_t reqid;
int error;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_add: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n"));
bzero_keys(mhp);
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
bzero_keys(mhp);
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
/* XXX need more */
ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n"));
bzero_keys(mhp);
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
mode = ((struct sadb_x_sa2 *)
(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
reqid = ((struct sadb_x_sa2 *)
(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
} else {
mode = IPSEC_MODE_ANY;
reqid = 0;
}
sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
/* XXX boundary check against sa_len */
KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx);
lck_mtx_lock(sadb_mutex);
/* get a SA header */
if ((newsah = key_getsah(&saidx, SECURITY_ASSOCIATION_ANY)) == NULL) {
/* create a new SA header: key_addspi is always used for outbound spi */
if ((newsah = key_newsah(&saidx, ipsec_if, key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_OUTBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) {
ipseclog((LOG_DEBUG, "key_add: No more memory.\n"));
error = ENOBUFS;
goto fail;
}
}
if (ipsec_if != NULL) {
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
// Increment use count, since key_newsav() could release sadb_mutex lock
newsah->use_count++;
if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) {
ipseclog((LOG_ERR, "key_add: custom ipsec exists\n"));
error = EEXIST;
goto fail;
}
/* create new SA entry. */
/* We can create new SA only if SPI is different. */
if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) {
ipseclog((LOG_DEBUG, "key_add: SA already exists.\n"));
error = EEXIST;
goto fail;
}
newsav = key_newsav(m, mhp, newsah, &error, so);
if (newsav == NULL) {
goto fail;
}
if (newsah->state == SADB_SASTATE_DEAD) {
ipseclog((LOG_ERR, "key_add: security association head is dead\n"));
error = EINVAL;
goto fail;
}
/*
* Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that
* this SA is for transport mode - otherwise clear it.
*/
if ((newsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 &&
(newsah->saidx.mode != IPSEC_MODE_TRANSPORT ||
newsah->saidx.dst.ss_family != AF_INET)) {
newsav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS;
}
/* check SA values to be mature. */
if ((error = key_mature(newsav)) != 0) {
goto fail;
}
key_get_flowid(newsav);
newsah->use_count--;
lck_mtx_unlock(sadb_mutex);
/*
* don't call key_freesav() here, as we would like to keep the SA
* in the database on success.
*/
{
struct mbuf *n;
/* set msg buf from mhp */
n = key_getmsgbuf_x1(m, mhp);
if (n == NULL) {
ipseclog((LOG_DEBUG, "key_update: No more memory.\n"));
bzero_keys(mhp);
return key_senderror(so, m, ENOBUFS);
}
// mh.ext points to the mbuf content.
// Zero out Encryption and Integrity keys if present.
bzero_keys(mhp);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
fail:
if (newsav != NULL) {
key_sa_chgstate(newsav, SADB_SASTATE_DEAD);
key_freesav(newsav, KEY_SADB_LOCKED);
}
if (newsah != NULL) {
newsah->use_count--;
}
lck_mtx_unlock(sadb_mutex);
if (ipsec_if != NULL) {
ifnet_release(ipsec_if);
}
bzero_keys(mhp);
return key_senderror(so, m, error);
}
/*
* m will not be freed on return.
* it is caller's responsibility to free the result.
*/
static struct mbuf *
key_getmsgbuf_x1(
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct mbuf *n;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA,
SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC,
SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD,
SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC,
SADB_EXT_IDENTITY_DST};
/* sanity check */
if (m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_getmsgbuf_x1: NULL pointer is passed.");
}
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return NULL;
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return NULL;
}
}
mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
mtod(n, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
return n;
}
static int key_delete_all(struct socket *, struct mbuf *,
const struct sadb_msghdr *, u_int16_t);
/*
* SADB_DELETE processing
* receive
* <base, SA(*), address(SD)>
* from the ikmpd, and set SADB_SASTATE_DEAD,
* and send,
* <base, SA(*), address(SD)>
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_delete(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0;
struct sadb_address *src0, *dst0;
ifnet_t ipsec_if = NULL;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *sav = NULL;
u_int16_t proto;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_delete: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
lck_mtx_lock(sadb_mutex);
if (mhp->ext[SADB_EXT_SA] == NULL) {
/*
* Caller wants us to delete all non-LARVAL SAs
* that match the src/dst. This is used during
* IKE INITIAL-CONTACT.
*/
ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n"));
/* key_delete_all will unlock sadb_mutex */
return key_delete_all(so, m, mhp, proto);
} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
u_int ipsec_if_index = 0;
if (ipsec_if != NULL) {
ipsec_if_index = ipsec_if->if_index;
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
/* XXX boundary check against sa_len */
KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx);
/* get a SA header */
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) {
continue;
}
/* get a SA with SPI. */
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
if (sav) {
break;
}
}
if (sah == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_delete: no SA found.\n"));
return key_senderror(so, m, ENOENT);
}
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
lck_mtx_unlock(sadb_mutex);
sav = NULL;
{
struct mbuf *n;
struct sadb_msg *newmsg;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST};
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return key_senderror(so, m, ENOBUFS);
}
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* delete all SAs for src/dst. Called from key_delete().
*/
static int
key_delete_all(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp,
u_int16_t proto)
{
struct sadb_address *src0, *dst0;
ifnet_t ipsec_if = NULL;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *sav, *nextsav;
u_int stateidx, state;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
u_int ipsec_if_index = 0;
if (ipsec_if != NULL) {
ipsec_if_index = ipsec_if->if_index;
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
/* XXX boundary check against sa_len */
KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx);
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) {
continue;
}
/* Delete all non-LARVAL SAs. */
for (stateidx = 0;
stateidx < _ARRAYLEN(saorder_state_alive);
stateidx++) {
state = saorder_state_alive[stateidx];
if (state == SADB_SASTATE_LARVAL) {
continue;
}
for (sav = LIST_FIRST(&sah->savtree[state]);
sav != NULL; sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
/* sanity check */
if (sav->state != state) {
ipseclog((LOG_DEBUG, "key_delete_all: "
"invalid sav->state "
"(queue: %d SA: %d)\n",
state, sav->state));
continue;
}
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
}
}
}
lck_mtx_unlock(sadb_mutex);
{
struct mbuf *n;
struct sadb_msg *newmsg;
int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC,
SADB_EXT_ADDRESS_DST};
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, sizeof(mbufItems) / sizeof(int), mbufItems);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
if (n->m_len < sizeof(struct sadb_msg)) {
n = m_pullup(n, sizeof(struct sadb_msg));
if (n == NULL) {
return key_senderror(so, m, ENOBUFS);
}
}
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_GET processing
* receive
* <base, SA(*), address(SD)>
* from the ikmpd, and get a SP and a SA to respond,
* and send,
* <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
* (identity(SD),) (sensitivity)>
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_get(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0;
struct sadb_address *src0, *dst0;
ifnet_t ipsec_if = NULL;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *sav = NULL;
u_int16_t proto;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_get: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA];
src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
u_int ipsec_if_index = 0;
if (ipsec_if != NULL) {
ipsec_if_index = ipsec_if->if_index;
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
/* XXX boundary check against sa_len */
KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx);
lck_mtx_lock(sadb_mutex);
/* get a SA header */
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) {
continue;
}
/* get a SA with SPI. */
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
if (sav) {
break;
}
}
if (sah == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_get: no SA found.\n"));
return key_senderror(so, m, ENOENT);
}
{
struct mbuf *n;
u_int8_t satype;
/* map proto to satype */
if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n"));
return key_senderror(so, m, EINVAL);
}
lck_mtx_unlock(sadb_mutex);
/* create new sadb_msg to reply. */
n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
mhp->msg->sadb_msg_pid);
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
}
}
/*
* get SA stats by spi.
* OUT: -1 : not found
* 0 : found, arg pointer to a SA stats is updated.
*/
static int
key_getsastatbyspi_one(u_int32_t spi,
struct sastat *stat)
{
struct secashead *sah;
struct secasvar *sav = NULL;
if ((void *)stat == NULL) {
return -1;
}
lck_mtx_lock(sadb_mutex);
/* get a SA header */
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
/* get a SA with SPI. */
sav = key_getsavbyspi(sah, spi);
if (sav) {
stat->spi = sav->spi;
stat->created = (u_int32_t)key_convert_continuous_time_ns(sav->created);
if (sav->lft_c) {
bcopy(sav->lft_c, &stat->lft_c, sizeof(stat->lft_c));
// Convert timestamps
stat->lft_c.sadb_lifetime_addtime =
key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_addtime);
stat->lft_c.sadb_lifetime_usetime =
key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_usetime);
} else {
bzero(&stat->lft_c, sizeof(stat->lft_c));
}
lck_mtx_unlock(sadb_mutex);
return 0;
}
}
lck_mtx_unlock(sadb_mutex);
return -1;
}
/*
* get SA stats collection by indices.
* OUT: -1 : not found
* 0 : found, arg pointers to a SA stats and 'maximum stats' are updated.
*/
static int
key_getsastatbyspi(struct sastat *stat_arg,
u_int32_t max_stat_arg,
struct sastat *stat_res,
u_int64_t stat_res_size,
u_int32_t *max_stat_res)
{
u_int32_t cur, found = 0;
if (stat_arg == NULL ||
stat_res == NULL ||
max_stat_res == NULL) {
return -1;
}
u_int64_t max_stats = stat_res_size / (sizeof(struct sastat));
max_stats = ((max_stat_arg <= max_stats) ? max_stat_arg : max_stats);
for (cur = 0; cur < max_stats; cur++) {
if (key_getsastatbyspi_one(stat_arg[cur].spi,
&stat_res[found]) == 0) {
found++;
}
}
*max_stat_res = found;
if (found) {
return 0;
}
return -1;
}
/* XXX make it sysctl-configurable? */
static void
key_getcomb_setlifetime(
struct sadb_comb *comb)
{
comb->sadb_comb_soft_allocations = 1;
comb->sadb_comb_hard_allocations = 1;
comb->sadb_comb_soft_bytes = 0;
comb->sadb_comb_hard_bytes = 0;
comb->sadb_comb_hard_addtime = 86400; /* 1 day */
comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
comb->sadb_comb_soft_usetime = 28800; /* 8 hours */
comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
}
#if IPSEC_ESP
/*
* XXX reorder combinations by preference
* XXX no idea if the user wants ESP authentication or not
*/
static struct mbuf *
key_getcomb_esp(void)
{
struct sadb_comb *comb;
const struct esp_algorithm *algo;
struct mbuf *result = NULL, *m, *n;
u_int16_t encmin;
int off, o;
int totlen;
u_int8_t i;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
m = NULL;
for (i = 1; i <= SADB_EALG_MAX; i++) {
algo = esp_algorithm_lookup(i);
if (!algo) {
continue;
}
if (algo->keymax < ipsec_esp_keymin) {
continue;
}
if (algo->keymin < ipsec_esp_keymin) {
encmin = (u_int16_t)ipsec_esp_keymin;
} else {
encmin = algo->keymin;
}
if (ipsec_esp_auth) {
m = key_getcomb_ah();
} else {
#if DIAGNOSTIC
if (l > MLEN) {
panic("assumption failed in key_getcomb_esp");
}
#endif
MGET(m, M_WAITOK, MT_DATA);
if (m) {
M_ALIGN(m, l);
m->m_len = l;
m->m_next = NULL;
bzero(mtod(m, caddr_t), m->m_len);
}
}
if (!m) {
goto fail;
}
totlen = 0;
for (n = m; n; n = n->m_next) {
totlen += n->m_len;
}
#if DIAGNOSTIC
if (totlen % l) {
panic("assumption failed in key_getcomb_esp");
}
#endif
for (off = 0; off < totlen; off += l) {
n = m_pulldown(m, off, l, &o);
if (!n) {
/* m is already freed */
goto fail;
}
comb = (struct sadb_comb *)
(void *)(mtod(n, caddr_t) + o);
bzero(comb, sizeof(*comb));
key_getcomb_setlifetime(comb);
comb->sadb_comb_encrypt = i;
comb->sadb_comb_encrypt_minbits = encmin;
comb->sadb_comb_encrypt_maxbits = algo->keymax;
}
if (!result) {
result = m;
} else {
m_cat(result, m);
}
}
return result;
fail:
if (result) {
m_freem(result);
}
return NULL;
}
#endif
/*
* XXX reorder combinations by preference
*/
static struct mbuf *
key_getcomb_ah(void)
{
struct sadb_comb *comb;
const struct ah_algorithm *algo;
struct mbuf *m;
u_int16_t keymin;
u_int8_t i;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
m = NULL;
for (i = 1; i <= SADB_AALG_MAX; i++) {
#if 1
/* we prefer HMAC algorithms, not old algorithms */
if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) {
continue;
}
#endif
algo = ah_algorithm_lookup(i);
if (!algo) {
continue;
}
if (algo->keymax < ipsec_ah_keymin) {
continue;
}
if (algo->keymin < ipsec_ah_keymin) {
keymin = (u_int16_t)ipsec_ah_keymin;
} else {
keymin = algo->keymin;
}
if (!m) {
#if DIAGNOSTIC
if (l > MLEN) {
panic("assumption failed in key_getcomb_ah");
}
#endif
MGET(m, M_WAITOK, MT_DATA);
if (m) {
M_ALIGN(m, l);
m->m_len = l;
m->m_next = NULL;
}
} else {
M_PREPEND(m, l, M_WAITOK, 1);
}
if (!m) {
return NULL;
}
comb = mtod(m, struct sadb_comb *);
bzero(comb, sizeof(*comb));
key_getcomb_setlifetime(comb);
comb->sadb_comb_auth = i;
comb->sadb_comb_auth_minbits = keymin;
comb->sadb_comb_auth_maxbits = algo->keymax;
}
return m;
}
/*
* XXX no way to pass mode (transport/tunnel) to userland
* XXX replay checking?
* XXX sysctl interface to ipsec_{ah,esp}_keymin
*/
static struct mbuf *
key_getprop(
const struct secasindex *saidx)
{
struct sadb_prop *prop;
struct mbuf *m, *n;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
int totlen;
switch (saidx->proto) {
#if IPSEC_ESP
case IPPROTO_ESP:
m = key_getcomb_esp();
break;
#endif
case IPPROTO_AH:
m = key_getcomb_ah();
break;
default:
return NULL;
}
if (!m) {
return NULL;
}
M_PREPEND(m, l, M_WAITOK, 1);
if (!m) {
return NULL;
}
totlen = 0;
for (n = m; n; n = n->m_next) {
totlen += n->m_len;
}
prop = mtod(m, struct sadb_prop *);
bzero(prop, sizeof(*prop));
VERIFY(totlen <= UINT16_MAX);
prop->sadb_prop_len = (u_int16_t)PFKEY_UNIT64(totlen);
prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
prop->sadb_prop_replay = 32; /* XXX */
return m;
}
/*
* SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
* send
* <base, SA, address(SD), (address(P)), x_policy,
* (identity(SD),) (sensitivity,) proposal>
* to KMD, and expect to receive
* <base> with SADB_ACQUIRE if error occurred,
* or
* <base, src address, dst address, (SPI range)> with SADB_GETSPI
* from KMD by PF_KEY.
*
* XXX x_policy is outside of RFC2367 (KAME extension).
* XXX sensitivity is not supported.
*
* OUT:
* 0 : succeed
* others: error number
*/
static int
key_acquire(
struct secasindex *saidx,
struct secpolicy *sp)
{
struct mbuf *result = NULL, *m;
#ifndef IPSEC_NONBLOCK_ACQUIRE
struct secacq *newacq;
#endif
u_int8_t satype;
int error = -1;
u_int32_t seq;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (saidx == NULL) {
panic("key_acquire: NULL pointer is passed.");
}
if ((satype = key_proto2satype(saidx->proto)) == 0) {
panic("key_acquire: invalid proto is passed.");
}
#ifndef IPSEC_NONBLOCK_ACQUIRE
/*
* We never do anything about acquirng SA. There is anather
* solution that kernel blocks to send SADB_ACQUIRE message until
* getting something message from IKEd. In later case, to be
* managed with ACQUIRING list.
*/
/* get a entry to check whether sending message or not. */
lck_mtx_lock(sadb_mutex);
if ((newacq = key_getacq(saidx)) != NULL) {
if (key_blockacq_count < newacq->count) {
/* reset counter and do send message. */
newacq->count = 0;
} else {
/* increment counter and do nothing. */
newacq->count++;
lck_mtx_unlock(sadb_mutex);
return 0;
}
} else {
/* make new entry for blocking to send SADB_ACQUIRE. */
if ((newacq = key_newacq(saidx)) == NULL) {
lck_mtx_unlock(sadb_mutex);
return ENOBUFS;
}
/* add to acqtree */
LIST_INSERT_HEAD(&acqtree, newacq, chain);
key_start_timehandler();
}
seq = newacq->seq;
lck_mtx_unlock(sadb_mutex);
#else
seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
#endif
m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
if (!m) {
error = ENOBUFS;
goto fail;
}
result = m;
/* set sadb_address for saidx's. */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&saidx->src, FULLMASK, IPSEC_ULPROTO_ANY);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&saidx->dst, FULLMASK, IPSEC_ULPROTO_ANY);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
/* XXX proxy address (optional) */
/* set sadb_x_policy */
if (sp) {
m = key_setsadbxpolicy((u_int16_t)sp->policy, sp->spidx.dir, sp->id);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
}
/* XXX sensitivity (optional) */
/* create proposal/combination extension */
m = key_getprop(saidx);
/*
* outside of spec; make proposal/combination extension optional.
*/
if (m) {
m_cat(result, m);
}
if ((result->m_flags & M_PKTHDR) == 0) {
error = EINVAL;
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
error = ENOBUFS;
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX);
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
fail:
if (result) {
m_freem(result);
}
return error;
}
#ifndef IPSEC_NONBLOCK_ACQUIRE
static struct secacq *
key_newacq(
struct secasindex *saidx)
{
struct secacq *newacq;
/* get new entry */
newacq = kalloc_type(struct secacq, Z_NOWAIT_ZERO);
if (newacq == NULL) {
lck_mtx_unlock(sadb_mutex);
newacq = kalloc_type(struct secacq, Z_WAITOK_ZERO_NOFAIL);
lck_mtx_lock(sadb_mutex);
}
/* copy secindex */
bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
newacq->created = key_get_continuous_time_ns();
return newacq;
}
static struct secacq *
key_getacq(
struct secasindex *saidx)
{
struct secacq *acq;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
LIST_FOREACH(acq, &acqtree, chain) {
if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) {
return acq;
}
}
return NULL;
}
static struct secacq *
key_getacqbyseq(
u_int32_t seq)
{
struct secacq *acq;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
LIST_FOREACH(acq, &acqtree, chain) {
if (acq->seq == seq) {
return acq;
}
}
return NULL;
}
#endif
static struct secspacq *
key_newspacq(
struct secpolicyindex *spidx)
{
struct secspacq *acq;
/* get new entry */
acq = kalloc_type(struct secspacq, Z_NOWAIT_ZERO);
if (acq == NULL) {
lck_mtx_unlock(sadb_mutex);
acq = kalloc_type(struct secspacq, Z_WAITOK_ZERO_NOFAIL);
lck_mtx_lock(sadb_mutex);
}
/* copy secindex */
bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
acq->created = key_get_continuous_time_ns();
return acq;
}
static struct secspacq *
key_getspacq(
struct secpolicyindex *spidx)
{
struct secspacq *acq;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
LIST_FOREACH(acq, &spacqtree, chain) {
if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
return acq;
}
}
return NULL;
}
/*
* SADB_ACQUIRE processing,
* in first situation, is receiving
* <base>
* from the ikmpd, and clear sequence of its secasvar entry.
*
* In second situation, is receiving
* <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
* from a user land process, and return
* <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
* to the socket.
*
* m will always be freed.
*/
static int
key_acquire2(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
const struct sadb_address *src0, *dst0;
ifnet_t ipsec_if = NULL;
struct secasindex saidx;
struct secashead *sah;
u_int16_t proto;
int error;
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_acquire2: NULL pointer is passed.");
}
/*
* Error message from KMd.
* We assume that if error was occurred in IKEd, the length of PFKEY
* message is equal to the size of sadb_msg structure.
* We do not raise error even if error occurred in this function.
*/
lck_mtx_lock(sadb_mutex);
if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
#ifndef IPSEC_NONBLOCK_ACQUIRE
struct secacq *acq;
/* check sequence number */
if (mhp->msg->sadb_msg_seq == 0) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n"));
m_freem(m);
return 0;
}
if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
/*
* the specified larval SA is already gone, or we got
* a bogus sequence number. we can silently ignore it.
*/
lck_mtx_unlock(sadb_mutex);
m_freem(m);
return 0;
}
/* reset acq counter in order to deletion by timehander. */
acq->created = key_get_continuous_time_ns();
acq->count = 0;
#endif
lck_mtx_unlock(sadb_mutex);
m_freem(m);
return 0;
}
/*
* This message is from user land.
*/
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
/* error */
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
/* error */
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n"));
return key_senderror(so, m, EINVAL);
}
src0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
dst0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF);
u_int ipsec_if_index = 0;
if (ipsec_if != NULL) {
ipsec_if_index = ipsec_if->if_index;
ifnet_release(ipsec_if);
ipsec_if = NULL;
}
/* XXX boundary check against sa_len */
/* cast warnings */
KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx);
/* get a SA index */
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->state == SADB_SASTATE_DEAD) {
continue;
}
if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE | CMP_REQID)) {
break;
}
}
if (sah != NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n"));
return key_senderror(so, m, EEXIST);
}
lck_mtx_unlock(sadb_mutex);
error = key_acquire(&saidx, NULL);
if (error != 0) {
ipseclog((LOG_DEBUG, "key_acquire2: error %d returned "
"from key_acquire.\n", mhp->msg->sadb_msg_errno));
return key_senderror(so, m, error);
}
return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
}
/*
* SADB_REGISTER processing.
* If SATYPE_UNSPEC has been passed as satype, only return sadb_supported.
* receive
* <base>
* from the ikmpd, and register a socket to send PF_KEY messages,
* and send
* <base, supported>
* to KMD by PF_KEY.
* If socket is detached, must free from regnode.
*
* m will always be freed.
*/
static int
key_register(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct secreg *reg, *newreg = 0;
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_register: NULL pointer is passed.");
}
/* check for invalid register message */
if (mhp->msg->sadb_msg_satype >= sizeof(regtree) / sizeof(regtree[0])) {
return key_senderror(so, m, EINVAL);
}
/* When SATYPE_UNSPEC is specified, only return sadb_supported. */
if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) {
goto setmsg;
}
/* create regnode */
newreg = kalloc_type(struct secreg, Z_WAITOK_ZERO_NOFAIL);
lck_mtx_lock(sadb_mutex);
/* check whether existing or not */
LIST_FOREACH(reg, &regtree[mhp->msg->sadb_msg_satype], chain) {
if (reg->so == so) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_register: socket exists already.\n"));
kfree_type(struct secreg, newreg);
return key_senderror(so, m, EEXIST);
}
}
socket_lock(so, 1);
newreg->so = so;
((struct keycb *)sotorawcb(so))->kp_registered++;
socket_unlock(so, 1);
/* add regnode to regtree. */
LIST_INSERT_HEAD(&regtree[mhp->msg->sadb_msg_satype], newreg, chain);
lck_mtx_unlock(sadb_mutex);
setmsg:
{
struct mbuf *n;
struct sadb_msg *newmsg;
struct sadb_supported *sup;
u_int16_t len, alen, elen;
int off;
u_int8_t i;
struct sadb_alg *alg;
/* create new sadb_msg to reply. */
alen = 0;
for (i = 1; i <= SADB_AALG_MAX; i++) {
if (ah_algorithm_lookup(i)) {
alen += sizeof(struct sadb_alg);
}
}
if (alen) {
alen += sizeof(struct sadb_supported);
}
elen = 0;
#if IPSEC_ESP
for (i = 1; i <= SADB_EALG_MAX; i++) {
if (esp_algorithm_lookup(i)) {
elen += sizeof(struct sadb_alg);
}
}
if (elen) {
elen += sizeof(struct sadb_supported);
}
#endif
len = sizeof(struct sadb_msg) + alen + elen;
if (len > MCLBYTES) {
return key_senderror(so, m, ENOBUFS);
}
MGETHDR(n, M_WAITOK, MT_DATA);
if (n && len > MHLEN) {
MCLGET(n, M_WAITOK);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
n = NULL;
}
}
if (!n) {
return key_senderror(so, m, ENOBUFS);
}
n->m_pkthdr.len = n->m_len = len;
n->m_next = NULL;
off = 0;
m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
newmsg = mtod(n, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(len) <= UINT16_MAX);
newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(len);
off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
/* for authentication algorithm */
if (alen) {
sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off);
sup->sadb_supported_len = (u_int16_t)PFKEY_UNIT64(alen);
sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
off += PFKEY_ALIGN8(sizeof(*sup));
for (i = 1; i <= SADB_AALG_MAX; i++) {
const struct ah_algorithm *aalgo;
aalgo = ah_algorithm_lookup(i);
if (!aalgo) {
continue;
}
alg = (struct sadb_alg *)
(void *)(mtod(n, caddr_t) + off);
alg->sadb_alg_id = i;
alg->sadb_alg_ivlen = 0;
alg->sadb_alg_minbits = aalgo->keymin;
alg->sadb_alg_maxbits = aalgo->keymax;
off += PFKEY_ALIGN8(sizeof(*alg));
}
}
#if IPSEC_ESP
/* for encryption algorithm */
if (elen) {
sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off);
sup->sadb_supported_len = PFKEY_UNIT64(elen);
sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
off += PFKEY_ALIGN8(sizeof(*sup));
for (i = 1; i <= SADB_EALG_MAX; i++) {
const struct esp_algorithm *ealgo;
ealgo = esp_algorithm_lookup(i);
if (!ealgo) {
continue;
}
alg = (struct sadb_alg *)
(void *)(mtod(n, caddr_t) + off);
alg->sadb_alg_id = i;
if (ealgo && ealgo->ivlen) {
/*
* give NULL to get the value preferred by
* algorithm XXX SADB_X_EXT_DERIV ?
*/
VERIFY((*ealgo->ivlen)(ealgo, NULL) <= UINT8_MAX);
alg->sadb_alg_ivlen =
(u_int8_t)((*ealgo->ivlen)(ealgo, NULL));
} else {
alg->sadb_alg_ivlen = 0;
}
alg->sadb_alg_minbits = ealgo->keymin;
alg->sadb_alg_maxbits = ealgo->keymax;
off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
}
}
#endif
#if DIAGNOSTIC
if (off != len) {
panic("length assumption failed in key_register");
}
#endif
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
}
}
static void
key_delete_all_for_socket(struct socket *so)
{
struct secashead *sah, *nextsah;
struct secasvar *sav, *nextsav;
u_int stateidx;
u_int state;
for (sah = LIST_FIRST(&sahtree);
sah != NULL;
sah = nextsah) {
nextsah = LIST_NEXT(sah, chain);
for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) {
state = saorder_state_any[stateidx];
for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
if (sav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH &&
sav->so == so) {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
}
}
}
}
}
/*
* free secreg entry registered.
* XXX: I want to do free a socket marked done SADB_RESIGER to socket.
*/
void
key_freereg(
struct socket *so)
{
struct secreg *reg;
int i;
/* sanity check */
if (so == NULL) {
panic("key_freereg: NULL pointer is passed.");
}
/*
* check whether existing or not.
* check all type of SA, because there is a potential that
* one socket is registered to multiple type of SA.
*/
lck_mtx_lock(sadb_mutex);
key_delete_all_for_socket(so);
for (i = 0; i <= SADB_SATYPE_MAX; i++) {
LIST_FOREACH(reg, &regtree[i], chain) {
if (reg->so == so
&& __LIST_CHAINED(reg)) {
LIST_REMOVE(reg, chain);
kfree_type(struct secreg, reg);
break;
}
}
}
lck_mtx_unlock(sadb_mutex);
return;
}
/*
* SADB_EXPIRE processing
* send
* <base, SA, SA2, lifetime(C and one of HS), address(SD)>
* to KMD by PF_KEY.
* NOTE: We send only soft lifetime extension.
*
* OUT: 0 : succeed
* others : error number
*/
static int
key_expire(
struct secasvar *sav)
{
u_int8_t satype;
struct mbuf *result = NULL, *m;
int len;
int error = -1;
struct sadb_lifetime *lt;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (sav == NULL) {
panic("key_expire: NULL pointer is passed.");
}
if (sav->sah == NULL) {
panic("key_expire: Why was SA index in SA NULL.");
}
if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) {
panic("key_expire: invalid proto is passed.");
}
/* set msg header */
m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, (u_int16_t)sav->refcnt);
if (!m) {
error = ENOBUFS;
goto fail;
}
result = m;
/* create SA extension */
m = key_setsadbsa(sav);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
/* create SA extension */
m = key_setsadbxsa2(sav->sah->saidx.mode,
sav->replay[0] ? sav->replay[0]->count : 0,
sav->sah->saidx.reqid,
sav->flags2);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
/* create lifetime extension (current and soft) */
len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m) {
m_freem(m);
}
error = ENOBUFS;
goto fail;
}
bzero(mtod(m, caddr_t), len);
lt = mtod(m, struct sadb_lifetime *);
lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_addtime);
lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(sav->lft_c->sadb_lifetime_usetime);
lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2);
bcopy(sav->lft_s, lt, sizeof(*lt));
m_cat(result, m);
/* set sadb_address for source */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&sav->sah->saidx.src,
FULLMASK, IPSEC_ULPROTO_ANY);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
/* set sadb_address for destination */
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&sav->sah->saidx.dst,
FULLMASK, IPSEC_ULPROTO_ANY);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
if ((result->m_flags & M_PKTHDR) == 0) {
error = EINVAL;
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
error = ENOBUFS;
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX);
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
fail:
if (result) {
m_freem(result);
}
return error;
}
/*
* SADB_FLUSH processing
* receive
* <base>
* from the ikmpd, and free all entries in secastree.
* and send,
* <base>
* to the ikmpd.
* NOTE: to do is only marking SADB_SASTATE_DEAD.
*
* m will always be freed.
*/
static int
key_flush(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_msg *newmsg;
struct secashead *sah, *nextsah;
struct secasvar *sav, *nextsav;
u_int16_t proto;
u_int state;
u_int stateidx;
/* sanity check */
if (so == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_flush: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
lck_mtx_lock(sadb_mutex);
/* no SATYPE specified, i.e. flushing all SA. */
for (sah = LIST_FIRST(&sahtree);
sah != NULL;
sah = nextsah) {
nextsah = LIST_NEXT(sah, chain);
if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
&& proto != sah->saidx.proto) {
continue;
}
for (stateidx = 0;
stateidx < _ARRAYLEN(saorder_state_alive);
stateidx++) {
state = saorder_state_any[stateidx];
for (sav = LIST_FIRST(&sah->savtree[state]);
sav != NULL;
sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
}
}
sah->state = SADB_SASTATE_DEAD;
}
lck_mtx_unlock(sadb_mutex);
if (m->m_len < sizeof(struct sadb_msg) ||
sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
ipseclog((LOG_DEBUG, "key_flush: No more memory.\n"));
return key_senderror(so, m, ENOBUFS);
}
if (m->m_next) {
m_freem(m->m_next);
}
m->m_next = NULL;
m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
newmsg = mtod(m, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
VERIFY(PFKEY_UNIT64(m->m_pkthdr.len) <= UINT16_MAX);
newmsg->sadb_msg_len = (uint16_t)PFKEY_UNIT64(m->m_pkthdr.len);
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
}
/*
* SADB_DUMP processing
* dump all entries including status of DEAD in SAD.
* receive
* <base>
* from the ikmpd, and dump all secasvar leaves
* and send,
* <base> .....
* to the ikmpd.
*
* m will always be freed.
*/
struct sav_dump_elem {
struct secasvar *sav;
u_int8_t satype;
};
static int
key_dump(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct secashead *sah;
struct secasvar *sav;
struct sav_dump_elem *savbuf = NULL, *elem_ptr;
u_int32_t bufcount = 0, cnt = 0, cnt2 = 0;
u_int16_t proto;
u_int stateidx;
u_int8_t satype;
u_int state;
struct mbuf *n;
int error = 0;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_dump: NULL pointer is passed.");
}
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n"));
return key_senderror(so, m, EINVAL);
}
if ((bufcount = ipsec_sav_count) == 0) {
error = ENOENT;
goto end;
}
if (os_add_overflow(bufcount, 512, &bufcount)) {
ipseclog((LOG_DEBUG, "key_dump: bufcount overflow, ipsec sa count %u.\n", ipsec_sav_count));
bufcount = ipsec_sav_count;
}
savbuf = kalloc_type(struct sav_dump_elem, bufcount, Z_WAITOK);
if (savbuf == NULL) {
ipseclog((LOG_DEBUG, "key_dump: No more memory.\n"));
error = ENOMEM;
goto end;
}
/* count sav entries to be sent to the userland. */
lck_mtx_lock(sadb_mutex);
elem_ptr = savbuf;
LIST_FOREACH(sah, &sahtree, chain) {
if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
&& proto != sah->saidx.proto) {
continue;
}
/* map proto to satype */
if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n"));
error = EINVAL;
goto end;
}
for (stateidx = 0;
stateidx < _ARRAYLEN(saorder_state_any);
stateidx++) {
state = saorder_state_any[stateidx];
LIST_FOREACH(sav, &sah->savtree[state], chain) {
if (cnt == bufcount) {
break; /* out of buffer space */
}
elem_ptr->sav = sav;
elem_ptr->satype = satype;
sav->refcnt++;
elem_ptr++;
cnt++;
}
}
}
lck_mtx_unlock(sadb_mutex);
if (cnt == 0) {
error = ENOENT;
goto end;
}
/* send this to the userland, one at a time. */
elem_ptr = savbuf;
cnt2 = cnt;
while (cnt2) {
n = key_setdumpsa(elem_ptr->sav, SADB_DUMP, elem_ptr->satype,
--cnt2, mhp->msg->sadb_msg_pid);
if (!n) {
error = ENOBUFS;
goto end;
}
key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
elem_ptr++;
}
end:
if (savbuf) {
if (cnt) {
elem_ptr = savbuf;
lck_mtx_lock(sadb_mutex);
while (cnt--) {
key_freesav((elem_ptr++)->sav, KEY_SADB_LOCKED);
}
lck_mtx_unlock(sadb_mutex);
}
kfree_type(struct sav_dump_elem, bufcount, savbuf);
}
if (error) {
return key_senderror(so, m, error);
}
m_freem(m);
return 0;
}
/*
* SADB_X_PROMISC processing
*
* m will always be freed.
*/
static int
key_promisc(
struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
int olen;
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("key_promisc: NULL pointer is passed.");
}
olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
if (olen < sizeof(struct sadb_msg)) {
#if 1
return key_senderror(so, m, EINVAL);
#else
m_freem(m);
return 0;
#endif
} else if (olen == sizeof(struct sadb_msg)) {
/* enable/disable promisc mode */
struct keycb *kp;
socket_lock(so, 1);
if ((kp = (struct keycb *)sotorawcb(so)) == NULL) {
return key_senderror(so, m, EINVAL);
}
mhp->msg->sadb_msg_errno = 0;
switch (mhp->msg->sadb_msg_satype) {
case 0:
case 1:
kp->kp_promisc = mhp->msg->sadb_msg_satype;
break;
default:
socket_unlock(so, 1);
return key_senderror(so, m, EINVAL);
}
socket_unlock(so, 1);
/* send the original message back to everyone */
mhp->msg->sadb_msg_errno = 0;
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
} else {
/* send packet as is */
m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
/* TODO: if sadb_msg_seq is specified, send to specific pid */
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
}
}
static int(*const key_typesw[])(struct socket *, struct mbuf *,
const struct sadb_msghdr *) = {
NULL, /* SADB_RESERVED */
key_getspi, /* SADB_GETSPI */
key_update, /* SADB_UPDATE */
key_add, /* SADB_ADD */
key_delete, /* SADB_DELETE */
key_get, /* SADB_GET */
key_acquire2, /* SADB_ACQUIRE */
key_register, /* SADB_REGISTER */
NULL, /* SADB_EXPIRE */
key_flush, /* SADB_FLUSH */
key_dump, /* SADB_DUMP */
key_promisc, /* SADB_X_PROMISC */
NULL, /* SADB_X_PCHANGE */
key_spdadd, /* SADB_X_SPDUPDATE */
key_spdadd, /* SADB_X_SPDADD */
key_spddelete, /* SADB_X_SPDDELETE */
key_spdget, /* SADB_X_SPDGET */
NULL, /* SADB_X_SPDACQUIRE */
key_spddump, /* SADB_X_SPDDUMP */
key_spdflush, /* SADB_X_SPDFLUSH */
key_spdadd, /* SADB_X_SPDSETIDX */
NULL, /* SADB_X_SPDEXPIRE */
key_spddelete2, /* SADB_X_SPDDELETE2 */
key_getsastat, /* SADB_GETSASTAT */
key_spdenable, /* SADB_X_SPDENABLE */
key_spddisable, /* SADB_X_SPDDISABLE */
key_migrate, /* SADB_MIGRATE */
};
static void
bzero_mbuf(struct mbuf *m)
{
struct mbuf *mptr = m;
struct sadb_msg *msg = NULL;
int offset = 0;
if (!mptr) {
return;
}
if (mptr->m_len >= sizeof(struct sadb_msg)) {
msg = mtod(mptr, struct sadb_msg *);
if (msg->sadb_msg_type != SADB_ADD &&
msg->sadb_msg_type != SADB_UPDATE) {
return;
}
offset = sizeof(struct sadb_msg);
}
bzero(m_mtod_current(mptr) + offset, mptr->m_len - offset);
mptr = mptr->m_next;
while (mptr != NULL) {
bzero(m_mtod_current(mptr), mptr->m_len);
mptr = mptr->m_next;
}
}
static void
bzero_keys(const struct sadb_msghdr *mh)
{
int extlen = 0;
int offset = 0;
if (!mh) {
return;
}
offset = sizeof(struct sadb_key);
if (mh->ext[SADB_EXT_KEY_ENCRYPT]) {
struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_ENCRYPT];
extlen = key->sadb_key_bits >> 3;
if (mh->extlen[SADB_EXT_KEY_ENCRYPT] >= offset + extlen) {
bzero((uint8_t *)mh->ext[SADB_EXT_KEY_ENCRYPT] + offset, extlen);
} else {
bzero(mh->ext[SADB_EXT_KEY_ENCRYPT], mh->extlen[SADB_EXT_KEY_ENCRYPT]);
}
}
if (mh->ext[SADB_EXT_KEY_AUTH]) {
struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_AUTH];
extlen = key->sadb_key_bits >> 3;
if (mh->extlen[SADB_EXT_KEY_AUTH] >= offset + extlen) {
bzero((uint8_t *)mh->ext[SADB_EXT_KEY_AUTH] + offset, extlen);
} else {
bzero(mh->ext[SADB_EXT_KEY_AUTH], mh->extlen[SADB_EXT_KEY_AUTH]);
}
}
}
static int
key_validate_address_pair(struct sadb_address *src0,
struct sadb_address *dst0)
{
u_int plen = 0;
/* check upper layer protocol */
if (src0->sadb_address_proto != dst0->sadb_address_proto) {
ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n"));
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EINVAL;
}
/* check family */
if (PFKEY_ADDR_SADDR(src0)->sa_family !=
PFKEY_ADDR_SADDR(dst0)->sa_family) {
ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n"));
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EINVAL;
}
if (PFKEY_ADDR_SADDR(src0)->sa_len !=
PFKEY_ADDR_SADDR(dst0)->sa_len) {
ipseclog((LOG_DEBUG,
"key_parse: address struct size mismatched.\n"));
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EINVAL;
}
switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
case AF_INET:
if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) {
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EINVAL;
}
break;
case AF_INET6:
if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) {
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EINVAL;
}
break;
default:
ipseclog((LOG_DEBUG,
"key_parse: unsupported address family.\n"));
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EAFNOSUPPORT;
}
switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
case AF_INET:
plen = sizeof(struct in_addr) << 3;
break;
case AF_INET6:
plen = sizeof(struct in6_addr) << 3;
break;
default:
plen = 0; /*fool gcc*/
break;
}
/* check max prefix length */
if (src0->sadb_address_prefixlen > plen ||
dst0->sadb_address_prefixlen > plen) {
ipseclog((LOG_DEBUG,
"key_parse: illegal prefixlen.\n"));
PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr);
return EINVAL;
}
/*
* prefixlen == 0 is valid because there can be a case when
* all addresses are matched.
*/
return 0;
}
/*
* parse sadb_msg buffer to process PFKEYv2,
* and create a data to response if needed.
* I think to be dealed with mbuf directly.
* IN:
* msgp : pointer to pointer to a received buffer pulluped.
* This is rewrited to response.
* so : pointer to socket.
* OUT:
* length for buffer to send to user process.
*/
int
key_parse(
struct mbuf *m,
struct socket *so)
{
struct sadb_msg *msg;
struct sadb_msghdr mh;
u_int orglen;
int error;
int target;
Boolean keyAligned = FALSE;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
/* sanity check */
if (m == NULL || so == NULL) {
panic("key_parse: NULL pointer is passed.");
}
#if 0 /*kdebug_sadb assumes msg in linear buffer*/
KEYDEBUG(KEYDEBUG_KEY_DUMP,
ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n"));
kdebug_sadb(msg));
#endif
if (m->m_len < sizeof(struct sadb_msg)) {
m = m_pullup(m, sizeof(struct sadb_msg));
if (!m) {
return ENOBUFS;
}
}
msg = mtod(m, struct sadb_msg *);
orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
target = KEY_SENDUP_ONE;
if ((m->m_flags & M_PKTHDR) == 0 ||
m->m_pkthdr.len != orglen) {
ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n"));
PFKEY_STAT_INCREMENT(pfkeystat.out_invlen);
error = EINVAL;
goto senderror;
}
if (msg->sadb_msg_version != PF_KEY_V2) {
ipseclog((LOG_DEBUG,
"key_parse: PF_KEY version %u is mismatched.\n",
msg->sadb_msg_version));
PFKEY_STAT_INCREMENT(pfkeystat.out_invver);
error = EINVAL;
goto senderror;
}
if (msg->sadb_msg_type > SADB_MAX) {
ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
msg->sadb_msg_type));
PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype);
error = EINVAL;
goto senderror;
}
/* for old-fashioned code - should be nuked */
if (m->m_pkthdr.len > MCLBYTES) {
m_freem(m);
return ENOBUFS;
}
if (m->m_next) {
struct mbuf *n;
MGETHDR(n, M_WAITOK, MT_DATA);
if (n && m->m_pkthdr.len > MHLEN) {
MCLGET(n, M_WAITOK);
if ((n->m_flags & M_EXT) == 0) {
m_free(n);
n = NULL;
}
}
if (!n) {
bzero_mbuf(m);
m_freem(m);
return ENOBUFS;
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
n->m_next = NULL;
bzero_mbuf(m);
m_freem(m);
m = n;
}
/* align the mbuf chain so that extensions are in contiguous region. */
error = key_align(m, &mh);
if (error) {
return error;
}
if (m->m_next) { /*XXX*/
bzero_mbuf(m);
m_freem(m);
return ENOBUFS;
}
keyAligned = TRUE;
msg = mh.msg;
/* check SA type */
switch (msg->sadb_msg_satype) {
case SADB_SATYPE_UNSPEC:
switch (msg->sadb_msg_type) {
case SADB_GETSPI:
case SADB_UPDATE:
case SADB_ADD:
case SADB_DELETE:
case SADB_GET:
case SADB_ACQUIRE:
case SADB_EXPIRE:
ipseclog((LOG_DEBUG, "key_parse: must specify satype "
"when msg type=%u.\n", msg->sadb_msg_type));
PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype);
error = EINVAL;
goto senderror;
}
break;
case SADB_SATYPE_AH:
case SADB_SATYPE_ESP:
switch (msg->sadb_msg_type) {
case SADB_X_SPDADD:
case SADB_X_SPDDELETE:
case SADB_X_SPDGET:
case SADB_X_SPDDUMP:
case SADB_X_SPDFLUSH:
case SADB_X_SPDSETIDX:
case SADB_X_SPDUPDATE:
case SADB_X_SPDDELETE2:
case SADB_X_SPDENABLE:
case SADB_X_SPDDISABLE:
ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n",
msg->sadb_msg_type));
PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype);
error = EINVAL;
goto senderror;
}
break;
case SADB_SATYPE_RSVP:
case SADB_SATYPE_OSPFV2:
case SADB_SATYPE_RIPV2:
case SADB_SATYPE_MIP:
ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n",
msg->sadb_msg_satype));
PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype);
error = EOPNOTSUPP;
goto senderror;
case 1: /* XXX: What does it do? */
if (msg->sadb_msg_type == SADB_X_PROMISC) {
break;
}
OS_FALLTHROUGH;
default:
ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n",
msg->sadb_msg_satype));
PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype);
error = EINVAL;
goto senderror;
}
/* Validate address fields for matching families, lengths, etc. */
void *src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
void *dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
if (mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL &&
mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) {
error = key_validate_address_pair((struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]),
(struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END]));
if (error != 0) {
goto senderror;
}
if (src0 == NULL) {
src0 = mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START];
}
}
if (mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL &&
mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) {
error = key_validate_address_pair((struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]),
(struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END]));
if (error != 0) {
goto senderror;
}
if (dst0 == NULL) {
dst0 = mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START];
}
}
if (src0 != NULL && dst0 != NULL) {
error = key_validate_address_pair((struct sadb_address *)(src0),
(struct sadb_address *)(dst0));
if (error != 0) {
goto senderror;
}
}
void *migrate_src = mh.ext[SADB_EXT_MIGRATE_ADDRESS_SRC];
void *migrate_dst = mh.ext[SADB_EXT_MIGRATE_ADDRESS_DST];
if (migrate_src != NULL && migrate_dst != NULL) {
error = key_validate_address_pair((struct sadb_address *)(migrate_src),
(struct sadb_address *)(migrate_dst));
if (error != 0) {
goto senderror;
}
}
if (msg->sadb_msg_type >= sizeof(key_typesw) / sizeof(key_typesw[0]) ||
key_typesw[msg->sadb_msg_type] == NULL) {
PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype);
error = EINVAL;
goto senderror;
}
error = (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
return error;
senderror:
if (keyAligned) {
bzero_keys(&mh);
} else {
bzero_mbuf(m);
}
msg->sadb_msg_errno = (u_int8_t)error;
return key_sendup_mbuf(so, m, target);
}
static int
key_senderror(
struct socket *so,
struct mbuf *m,
int code)
{
struct sadb_msg *msg;
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
if (m->m_len < sizeof(struct sadb_msg)) {
panic("invalid mbuf passed to key_senderror");
}
msg = mtod(m, struct sadb_msg *);
msg->sadb_msg_errno = (u_int8_t)code;
return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
}
/*
* set the pointer to each header into message buffer.
* m will be freed on error.
* XXX larger-than-MCLBYTES extension?
*/
static int
key_align(
struct mbuf *m,
struct sadb_msghdr *mhp)
{
struct mbuf *n;
struct sadb_ext *ext;
size_t end;
int off, extlen;
int toff;
/* sanity check */
if (m == NULL || mhp == NULL) {
panic("key_align: NULL pointer is passed.");
}
if (m->m_len < sizeof(struct sadb_msg)) {
panic("invalid mbuf passed to key_align");
}
/* initialize */
bzero(mhp, sizeof(*mhp));
mhp->msg = mtod(m, struct sadb_msg *);
mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */
end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
extlen = (int)end; /*just in case extlen is not updated*/
for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
if (!n) {
/* m is already freed */
return ENOBUFS;
}
ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff);
/* set pointer */
switch (ext->sadb_ext_type) {
case SADB_EXT_SA:
case SADB_EXT_ADDRESS_SRC:
case SADB_EXT_ADDRESS_DST:
case SADB_EXT_ADDRESS_PROXY:
case SADB_EXT_LIFETIME_CURRENT:
case SADB_EXT_LIFETIME_HARD:
case SADB_EXT_LIFETIME_SOFT:
case SADB_EXT_KEY_AUTH:
case SADB_EXT_KEY_ENCRYPT:
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
case SADB_EXT_SENSITIVITY:
case SADB_EXT_PROPOSAL:
case SADB_EXT_SUPPORTED_AUTH:
case SADB_EXT_SUPPORTED_ENCRYPT:
case SADB_EXT_SPIRANGE:
case SADB_X_EXT_POLICY:
case SADB_X_EXT_SA2:
case SADB_EXT_SESSION_ID:
case SADB_EXT_SASTAT:
case SADB_X_EXT_IPSECIF:
case SADB_X_EXT_ADDR_RANGE_SRC_START:
case SADB_X_EXT_ADDR_RANGE_SRC_END:
case SADB_X_EXT_ADDR_RANGE_DST_START:
case SADB_X_EXT_ADDR_RANGE_DST_END:
case SADB_EXT_MIGRATE_ADDRESS_SRC:
case SADB_EXT_MIGRATE_ADDRESS_DST:
case SADB_X_EXT_MIGRATE_IPSECIF:
/* duplicate check */
/*
* XXX Are there duplication payloads of either
* KEY_AUTH or KEY_ENCRYPT ?
*/
if (mhp->ext[ext->sadb_ext_type] != NULL) {
ipseclog((LOG_DEBUG,
"key_align: duplicate ext_type %u "
"is passed.\n", ext->sadb_ext_type));
bzero_mbuf(m);
m_freem(m);
PFKEY_STAT_INCREMENT(pfkeystat.out_dupext);
return EINVAL;
}
break;
default:
ipseclog((LOG_DEBUG,
"key_align: invalid ext_type %u is passed.\n",
ext->sadb_ext_type));
bzero_mbuf(m);
m_freem(m);
PFKEY_STAT_INCREMENT(pfkeystat.out_invexttype);
return EINVAL;
}
extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
if (off + extlen > end) {
ipseclog((LOG_DEBUG,
"key_align: ext type %u invalid ext length %d "
"offset %d sadb message total len %zu is passed.\n",
ext->sadb_ext_type, extlen, off, end));
bzero_mbuf(m);
m_freem(m);
PFKEY_STAT_INCREMENT(pfkeystat.out_invlen);
return EINVAL;
}
if (key_validate_ext(ext, extlen)) {
bzero_mbuf(m);
m_freem(m);
PFKEY_STAT_INCREMENT(pfkeystat.out_invlen);
return EINVAL;
}
n = m_pulldown(m, off, extlen, &toff);
if (!n) {
/* m is already freed */
return ENOBUFS;
}
ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff);
mhp->ext[ext->sadb_ext_type] = ext;
mhp->extoff[ext->sadb_ext_type] = off;
mhp->extlen[ext->sadb_ext_type] = extlen;
}
if (off != end) {
bzero_mbuf(m);
m_freem(m);
PFKEY_STAT_INCREMENT(pfkeystat.out_invlen);
return EINVAL;
}
return 0;
}
static int
key_validate_ext(
const struct sadb_ext *ext,
int len)
{
struct sockaddr *sa;
enum { NONE, ADDR } checktype = NONE;
int baselen = 0;
const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) {
return EINVAL;
}
/* if it does not match minimum/maximum length, bail */
if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) {
return EINVAL;
}
if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) {
return EINVAL;
}
if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) {
return EINVAL;
}
/* more checks based on sadb_ext_type XXX need more */
switch (ext->sadb_ext_type) {
case SADB_EXT_ADDRESS_SRC:
case SADB_EXT_ADDRESS_DST:
case SADB_EXT_ADDRESS_PROXY:
case SADB_X_EXT_ADDR_RANGE_SRC_START:
case SADB_X_EXT_ADDR_RANGE_SRC_END:
case SADB_X_EXT_ADDR_RANGE_DST_START:
case SADB_X_EXT_ADDR_RANGE_DST_END:
case SADB_EXT_MIGRATE_ADDRESS_SRC:
case SADB_EXT_MIGRATE_ADDRESS_DST:
baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
checktype = ADDR;
break;
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
if (((struct sadb_ident *)(uintptr_t)(size_t)ext)->
sadb_ident_type == SADB_X_IDENTTYPE_ADDR) {
baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
checktype = ADDR;
} else {
checktype = NONE;
}
break;
default:
checktype = NONE;
break;
}
switch (checktype) {
case NONE:
break;
case ADDR:
sa = (struct sockaddr *)((caddr_t)(uintptr_t)ext + baselen);
if (len < baselen + sal) {
return EINVAL;
}
if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) {
return EINVAL;
}
break;
}
/* check key bits length */
if (ext->sadb_ext_type == SADB_EXT_KEY_AUTH ||
ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) {
struct sadb_key *key = (struct sadb_key *)(uintptr_t)ext;
if (len < (sizeof(struct sadb_key) + _KEYLEN(key))) {
return EINVAL;
}
}
return 0;
}
/*
* XXX: maybe This function is called after INBOUND IPsec processing.
*
* Special check for tunnel-mode packets.
* We must make some checks for consistency between inner and outer IP header.
*
* xxx more checks to be provided
*/
int
key_checktunnelsanity(
struct secasvar *sav,
__unused u_int family,
__unused caddr_t src,
__unused caddr_t dst)
{
/* sanity check */
if (sav->sah == NULL) {
panic("sav->sah == NULL at key_checktunnelsanity");
}
/* XXX: check inner IP header */
return 1;
}
/* record data transfer on SA, and update timestamps */
void
key_sa_recordxfer(
struct secasvar *sav,
size_t byte_count)
{
if (!sav) {
panic("key_sa_recordxfer called with sav == NULL");
}
if (!sav->lft_c) {
return;
}
lck_mtx_lock(sadb_mutex);
/*
* XXX Currently, there is a difference of bytes size
* between inbound and outbound processing.
*/
sav->lft_c->sadb_lifetime_bytes += byte_count;
/* to check bytes lifetime is done in key_timehandler(). */
/*
* We use the number of packets as the unit of
* sadb_lifetime_allocations. We increment the variable
* whenever {esp,ah}_{in,out}put is called.
*/
sav->lft_c->sadb_lifetime_allocations++;
/* XXX check for expires? */
/*
* NOTE: We record CURRENT sadb_lifetime_usetime by using mach_continuous_time,
* in nanoseconds. HARD and SOFT lifetime are measured by the time difference
* from sadb_lifetime_usetime.
*
* usetime
* v expire expire
* -----+-----+--------+---> t
* <--------------> HARD
* <-----> SOFT
*/
sav->lft_c->sadb_lifetime_usetime = key_get_continuous_time_ns();
/* XXX check for expires? */
lck_mtx_unlock(sadb_mutex);
return;
}
/* dumb version */
void
key_sa_routechange(
struct sockaddr *dst)
{
struct secashead *sah;
struct route *ro;
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sah, &sahtree, chain) {
ro = (struct route *)&sah->sa_route;
if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
&& bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
ROUTE_RELEASE(ro);
}
}
lck_mtx_unlock(sadb_mutex);
return;
}
void
key_sa_chgstate(
struct secasvar *sav,
u_int8_t state)
{
if (sav == NULL) {
panic("key_sa_chgstate called with sav == NULL");
}
if (sav->state == state) {
return;
}
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED);
if (__LIST_CHAINED(sav)) {
LIST_REMOVE(sav, chain);
}
sav->state = state;
LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
}
void
key_sa_stir_iv(
struct secasvar *sav)
{
lck_mtx_lock(sadb_mutex);
if (!sav->iv) {
panic("key_sa_stir_iv called with sav == NULL");
}
key_randomfill(sav->iv, sav->ivlen);
lck_mtx_unlock(sadb_mutex);
}
/* XXX too much? */
static struct mbuf *
key_alloc_mbuf(
int l)
{
struct mbuf *m = NULL, *n;
int len, t;
len = l;
while (len > 0) {
MGET(n, M_DONTWAIT, MT_DATA);
if (n && len > MLEN) {
MCLGET(n, M_DONTWAIT);
}
if (!n) {
m_freem(m);
return NULL;
}
n->m_next = NULL;
n->m_len = 0;
n->m_len = (int)M_TRAILINGSPACE(n);
/* use the bottom of mbuf, hoping we can prepend afterwards */
if (n->m_len > len) {
t = (n->m_len - len) & ~(sizeof(long) - 1);
n->m_data += t;
n->m_len = len;
}
len -= n->m_len;
if (m) {
m_cat(m, n);
} else {
m = n;
}
}
return m;
}
static struct mbuf *
key_setdumpsastats(u_int32_t dir,
struct sastat *stats,
u_int32_t max_stats,
u_int64_t session_ids[],
u_int32_t seq,
u_int32_t pid)
{
struct mbuf *result = NULL, *m = NULL;
m = key_setsadbmsg(SADB_GETSASTAT, 0, 0, seq, pid, 0);
if (!m) {
goto fail;
}
result = m;
m = key_setsadbsession_id(session_ids);
if (!m) {
goto fail;
}
m_cat(result, m);
m = key_setsadbsastat(dir,
stats,
max_stats);
if (!m) {
goto fail;
}
m_cat(result, m);
if ((result->m_flags & M_PKTHDR) == 0) {
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
if (PFKEY_UNIT64(result->m_pkthdr.len) > UINT16_MAX) {
ipseclog((LOG_ERR, "key_setdumpsastats: length too nbug: %u", result->m_pkthdr.len));
goto fail;
}
mtod(result, struct sadb_msg *)->sadb_msg_len =
(u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return result;
fail:
if (result) {
m_freem(result);
}
return NULL;
}
/*
* SADB_GETSASTAT processing
* dump all stats for matching entries in SAD.
*
* m will always be freed.
*/
static int
key_getsastat(struct socket *so,
struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_session_id *session_id;
size_t bufsize = 0;
u_int32_t arg_count, res_count;
struct sadb_sastat *sa_stats_arg;
struct sastat *sa_stats_sav = NULL;
struct mbuf *n;
int error = 0;
/* sanity check */
if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) {
panic("%s: NULL pointer is passed.", __FUNCTION__);
}
if (mhp->ext[SADB_EXT_SESSION_ID] == NULL) {
printf("%s: invalid message is passed. missing session-id.\n", __FUNCTION__);
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SESSION_ID] < sizeof(struct sadb_session_id)) {
printf("%s: invalid message is passed. short session-id.\n", __FUNCTION__);
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SASTAT] == NULL) {
printf("%s: invalid message is passed. missing stat args.\n", __FUNCTION__);
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SASTAT] < sizeof(*sa_stats_arg)) {
printf("%s: invalid message is passed. short stat args.\n", __FUNCTION__);
return key_senderror(so, m, EINVAL);
}
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
// exit early if there are no active SAs
if (ipsec_sav_count == 0) {
printf("%s: No active SAs.\n", __FUNCTION__);
error = ENOENT;
goto end;
}
if (os_mul_overflow(ipsec_sav_count + 1, sizeof(*sa_stats_sav), &bufsize)) {
panic("key_getsastat bufsize requested memory overflow %u", ipsec_sav_count);
}
sa_stats_sav = (__typeof__(sa_stats_sav))kalloc_data(bufsize, Z_WAITOK | Z_ZERO);
if (sa_stats_sav == NULL) {
printf("%s: No more memory.\n", __FUNCTION__);
error = ENOMEM;
goto end;
}
sa_stats_arg = (__typeof__(sa_stats_arg))
(void *)mhp->ext[SADB_EXT_SASTAT];
arg_count = sa_stats_arg->sadb_sastat_list_len;
// exit early if there are no requested SAs
if (arg_count == 0) {
printf("%s: No SAs requested.\n", __FUNCTION__);
error = ENOENT;
goto end;
}
if (PFKEY_UNUNIT64(sa_stats_arg->sadb_sastat_len) < (sizeof(*sa_stats_arg) +
(arg_count * sizeof(struct sastat)))) {
printf("%s: invalid message is passed. sa stat extlen shorter than requested stat length.\n", __FUNCTION__);
error = EINVAL;
goto end;
}
res_count = 0;
if (key_getsastatbyspi((struct sastat *)(sa_stats_arg + 1),
arg_count,
sa_stats_sav,
bufsize,
&res_count)) {
printf("%s: Error finding SAs.\n", __FUNCTION__);
error = ENOENT;
goto end;
}
if (!res_count) {
printf("%s: No SAs found.\n", __FUNCTION__);
error = ENOENT;
goto end;
}
session_id = (__typeof__(session_id))
(void *)mhp->ext[SADB_EXT_SESSION_ID];
/* send this to the userland. */
n = key_setdumpsastats(sa_stats_arg->sadb_sastat_dir,
sa_stats_sav,
res_count,
session_id->sadb_session_id_v,
mhp->msg->sadb_msg_seq,
mhp->msg->sadb_msg_pid);
if (!n) {
printf("%s: No bufs to dump stats.\n", __FUNCTION__);
error = ENOBUFS;
goto end;
}
key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
end:
if (sa_stats_sav) {
kfree_data(sa_stats_sav, bufsize);
}
if (error) {
return key_senderror(so, m, error);
}
m_freem(m);
return 0;
}
static void
key_update_natt_keepalive_timestamp(struct secasvar *sav_sent,
struct secasvar *sav_update)
{
struct secasindex saidx_swap_sent_addr;
// exit early if two SAs are identical, or if sav_update is current
if (sav_sent == sav_update ||
sav_update->natt_last_activity == natt_now) {
return;
}
// assuming that (sav_update->remote_ike_port != 0 && (esp_udp_encap_port & 0xFFFF) != 0)
bzero(&saidx_swap_sent_addr, sizeof(saidx_swap_sent_addr));
memcpy(&saidx_swap_sent_addr.src, &sav_sent->sah->saidx.dst, sizeof(saidx_swap_sent_addr.src));
memcpy(&saidx_swap_sent_addr.dst, &sav_sent->sah->saidx.src, sizeof(saidx_swap_sent_addr.dst));
saidx_swap_sent_addr.proto = sav_sent->sah->saidx.proto;
saidx_swap_sent_addr.mode = sav_sent->sah->saidx.mode;
// we ignore reqid for split-tunnel setups
if (key_cmpsaidx(&sav_sent->sah->saidx, &sav_update->sah->saidx, CMP_MODE | CMP_PORT) ||
key_cmpsaidx(&saidx_swap_sent_addr, &sav_update->sah->saidx, CMP_MODE | CMP_PORT)) {
sav_update->natt_last_activity = natt_now;
}
}
static int
key_send_delsp(struct secpolicy *sp)
{
struct mbuf *result = NULL, *m;
if (sp == NULL) {
goto fail;
}
/* set msg header */
m = key_setsadbmsg(SADB_X_SPDDELETE, 0, 0, 0, 0, 0);
if (!m) {
goto fail;
}
result = m;
/* set sadb_address(es) for source */
if (sp->spidx.src_range.start.ss_len > 0) {
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START,
(struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END,
(struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
} else {
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
(struct sockaddr *)&sp->spidx.src, sp->spidx.prefs,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
}
/* set sadb_address(es) for destination */
if (sp->spidx.dst_range.start.ss_len > 0) {
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START,
(struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END,
(struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
} else {
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
(struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd,
sp->spidx.ul_proto);
if (!m) {
goto fail;
}
m_cat(result, m);
}
/* set secpolicy */
m = key_sp2msg(sp);
if (!m) {
goto fail;
}
m_cat(result, m);
if ((result->m_flags & M_PKTHDR) == 0) {
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next) {
result->m_pkthdr.len += m->m_len;
}
if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) {
ipseclog((LOG_ERR, "key_send_delsp: length too big: %d", result->m_pkthdr.len));
goto fail;
}
mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len);
return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
fail:
if (result) {
m_free(result);
}
return -1;
}
void
key_delsp_for_ipsec_if(ifnet_t ipsec_if)
{
struct secashead *sah;
struct secasvar *sav, *nextsav;
u_int stateidx;
u_int state;
struct secpolicy *sp, *nextsp;
int dir;
if (ipsec_if == NULL) {
return;
}
LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED);
lck_mtx_lock(sadb_mutex);
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
for (sp = LIST_FIRST(&sptree[dir]);
sp != NULL;
sp = nextsp) {
nextsp = LIST_NEXT(sp, chain);
if (sp->ipsec_if == ipsec_if) {
ifnet_release(sp->ipsec_if);
sp->ipsec_if = NULL;
key_send_delsp(sp);
sp->state = IPSEC_SPSTATE_DEAD;
key_freesp(sp, KEY_SADB_LOCKED);
}
}
}
LIST_FOREACH(sah, &sahtree, chain) {
if (sah->ipsec_if == ipsec_if) {
/* This SAH is linked to the IPsec interface. It now needs to close. */
ifnet_release(sah->ipsec_if);
sah->ipsec_if = NULL;
for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) {
state = saorder_state_any[stateidx];
for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) {
nextsav = LIST_NEXT(sav, chain);
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
key_freesav(sav, KEY_SADB_LOCKED);
}
}
sah->state = SADB_SASTATE_DEAD;
}
}
lck_mtx_unlock(sadb_mutex);
}
__private_extern__ u_int32_t
key_fill_offload_frames_for_savs(ifnet_t ifp,
struct ifnet_keepalive_offload_frame *frames_array,
u_int32_t frames_array_count,
size_t frame_data_offset)
{
struct secashead *sah = NULL;
struct secasvar *sav = NULL;
struct ifnet_keepalive_offload_frame *frame = frames_array;
u_int32_t frame_index = 0;
if (frame == NULL || frames_array_count == 0) {
return frame_index;
}
lck_mtx_lock(sadb_mutex);
LIST_FOREACH(sah, &sahtree, chain) {
LIST_FOREACH(sav, &sah->savtree[SADB_SASTATE_MATURE], chain) {
if (ipsec_fill_offload_frame(ifp, sav, frame, frame_data_offset)) {
frame_index++;
if (frame_index >= frames_array_count) {
lck_mtx_unlock(sadb_mutex);
return frame_index;
}
frame = &(frames_array[frame_index]);
}
}
}
lck_mtx_unlock(sadb_mutex);
return frame_index;
}
#pragma mark Custom IPsec
__private_extern__ bool
key_custom_ipsec_token_is_valid(void *ipsec_token)
{
if (ipsec_token == NULL) {
return false;
}
struct secashead *sah = (struct secashead *)ipsec_token;
return (sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC;
}
__private_extern__ int
key_reserve_custom_ipsec(void **ipsec_token, union sockaddr_in_4_6 *src, union sockaddr_in_4_6 *dst,
u_int8_t proto)
{
if (src == NULL || dst == NULL) {
ipseclog((LOG_ERR, "register custom ipsec: invalid address\n"));
return EINVAL;
}
if (src->sa.sa_family != dst->sa.sa_family) {
ipseclog((LOG_ERR, "register custom ipsec: address family mismatched\n"));
return EINVAL;
}
if (src->sa.sa_len != dst->sa.sa_len) {
ipseclog((LOG_ERR, "register custom ipsec: address struct size mismatched\n"));
return EINVAL;
}
if (ipsec_token == NULL) {
ipseclog((LOG_ERR, "register custom ipsec: invalid ipsec token\n"));
return EINVAL;
}
switch (src->sa.sa_family) {
case AF_INET:
if (src->sa.sa_len != sizeof(struct sockaddr_in)) {
ipseclog((LOG_ERR, "register custom esp: invalid address length\n"));
return EINVAL;
}
break;
case AF_INET6:
if (src->sa.sa_len != sizeof(struct sockaddr_in6)) {
ipseclog((LOG_ERR, "register custom esp: invalid address length\n"));
return EINVAL;
}
break;
default:
ipseclog((LOG_ERR, "register custom esp: invalid address length\n"));
return EAFNOSUPPORT;
}
if (proto != IPPROTO_ESP && proto != IPPROTO_AH) {
ipseclog((LOG_ERR, "register custom esp: invalid proto %u\n", proto));
return EINVAL;
}
struct secasindex saidx = {};
KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, &src->sa, &dst->sa, 0, &saidx);
lck_mtx_lock(sadb_mutex);
struct secashead *sah = NULL;
if ((sah = key_getsah(&saidx, SECURITY_ASSOCIATION_ANY)) != NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_ERR, "register custom esp: SA exists\n"));
return EEXIST;
}
if ((sah = key_newsah(&saidx, NULL, 0, IPSEC_DIR_ANY, SECURITY_ASSOCIATION_CUSTOM_IPSEC)) == NULL) {
lck_mtx_unlock(sadb_mutex);
ipseclog((LOG_DEBUG, "register custom esp: No more memory.\n"));
return ENOBUFS;
}
*ipsec_token = (void *)sah;
lck_mtx_unlock(sadb_mutex);
return 0;
}
__private_extern__ void
key_release_custom_ipsec(void **ipsec_token)
{
struct secashead *sah = *ipsec_token;
VERIFY(sah != NULL);
lck_mtx_lock(sadb_mutex);
VERIFY((sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC);
bool sa_present = true;
if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL &&
LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL &&
LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL &&
LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) {
sa_present = false;
}
VERIFY(sa_present == false);
key_delsah(sah);
lck_mtx_unlock(sadb_mutex);
*ipsec_token = NULL;
return;
}