gems-kernel/source/THIRDPARTY/xnu/bsd/sys/mbuf.h
2024-06-03 11:29:39 -05:00

1781 lines
73 KiB
C

/*
* Copyright (c) 1999-2021 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
/*
* Mach Operating System
* Copyright (c) 1987 Carnegie-Mellon University
* All rights reserved. The CMU software License Agreement specifies
* the terms and conditions for use and redistribution.
*/
/*
* Copyright (c) 1994 NeXT Computer, Inc. All rights reserved.
*
* Copyright (c) 1982, 1986, 1988 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)mbuf.h 8.3 (Berkeley) 1/21/94
*/
/*
* NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
* support for mandatory and extensible security protections. This notice
* is included in support of clause 2.2 (b) of the Apple Public License,
* Version 2.0.
*/
#ifndef _SYS_MBUF_H_
#define _SYS_MBUF_H_
#include <sys/appleapiopts.h>
#include <sys/cdefs.h>
#include <sys/_types/_u_int32_t.h> /* u_int32_t */
#include <sys/_types/_u_int64_t.h> /* u_int64_t */
#include <sys/_types/_u_short.h> /* u_short */
#ifdef KERNEL
#include <sys/kpi_mbuf.h>
#endif
#ifdef XNU_KERNEL_PRIVATE
#include <sys/lock.h>
#include <sys/queue.h>
#include <machine/endian.h>
/*
* Mbufs are of a single size, which includes overhead.
* An mbuf may add a single "mbuf cluster" of size
* MCLBYTES/MBIGCLBYTES/M16KCLBYTES (also in machine/param.h), which has
* no additional overhead and is used instead of the internal data area;
* this is done when at least MINCLSIZE of data must be stored.
*/
#if CONFIG_MBUF_MCACHE
#define _MSIZESHIFT 8 /* 256 */
#define _MSIZE (1 << _MSIZESHIFT) /* size of an mbuf */
#else /* CONFIG_MBUF_MCACHE */
#define _MSIZE 512
#endif /* CONFIG_MBUF_MCACHE */
#define NCLPGSHIFT (PAGE_SHIFT - MCLSHIFT)
#define NCLPG (1 << NCLPGSHIFT) /* # of cl per page */
#define NBCLPGSHIFT (PAGE_SHIFT - MBIGCLSHIFT)
#define NBCLPG (1 << NBCLPGSHIFT) /* # of big cl per page */
#define NMBPCL (MCLBYTES / _MSIZE)
#define NCLPJCLSHIFT (M16KCLSHIFT - MCLSHIFT)
#define NCLPJCL (1 << NCLPJCLSHIFT) /* # of cl per jumbo cl */
#define NCLPBGSHIFT (MBIGCLSHIFT - MCLSHIFT)
#define NCLPBG (1 << NCLPBGSHIFT) /* # of cl per big cl */
/*
* Macros for type conversion
* mtod(m,t) - convert mbuf pointer to data pointer of correct type
* mtodo(m, o) -- Same as above but with offset 'o' into data.
*/
#define mtod(m, t) ((t)(void *)m_mtod_current(m))
#define mtodo(m, o) ((void *)(mtod(m, uint8_t *) + (o)))
/* header at beginning of each mbuf: */
struct m_hdr {
struct mbuf *mh_next; /* next buffer in chain */
struct mbuf *mh_nextpkt; /* next chain in queue/record */
uintptr_t mh_data; /* location of data */
int32_t mh_len; /* amount of data in this mbuf */
u_int16_t mh_type; /* type of data in this mbuf */
u_int16_t mh_flags; /* flags; see below */
#if __arm__ && (__BIGGEST_ALIGNMENT__ > 4)
/* This is needed because of how _MLEN is defined and used. Ideally, _MLEN
* should be defined using the offsetof(struct mbuf, M_dat), since there is
* no guarantee that mbuf.M_dat will start where mbuf.m_hdr ends. The compiler
* may (and does in the armv7k case) insert padding between m_hdr and M_dat in
* mbuf. We cannot easily use offsetof, however, since _MLEN is referenced
* in the definition of mbuf.
*/
} __attribute__((aligned(8)));
#else
};
#endif
/*
* Packet tag structure (see below for details).
*/
struct m_tag {
uint64_t m_tag_cookie; /* Error checking */
SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */
void *m_tag_data;
uint16_t m_tag_type; /* Module specific type */
uint16_t m_tag_len; /* Length of data */
uint32_t m_tag_id; /* Module ID */
void *m_tag_mb_cl; /* pointer to mbuf or cluster container */
#ifndef __LP64__
u_int32_t m_tag_pad;
#endif /* !__LP64__ */
};
#define M_TAG_ALIGN(len) \
(P2ROUNDUP(len, sizeof (u_int64_t)) + sizeof (struct m_tag))
#define M_TAG_INIT(tag, id, type, len, data, mb_cl) { \
VERIFY(IS_P2ALIGNED((tag), sizeof(u_int64_t))); \
(tag)->m_tag_type = (type); \
(tag)->m_tag_len = (uint16_t)(len); \
(tag)->m_tag_id = (id); \
(tag)->m_tag_data = (data); \
(tag)->m_tag_mb_cl = (mb_cl); \
m_tag_create_cookie(tag); \
}
#define M_TAG_VALID_PATTERN 0xfeedfacefeedfaceULL
#define M_TAG_FREE_PATTERN 0xdeadbeefdeadbeefULL
/*
* Packet tag header structure at the top of mbuf whe mbufs are use for m_tag
* Pointers are 32-bit in ILP32; m_tag needs 64-bit alignment, hence padded.
*/
struct m_taghdr {
#ifndef __LP64__
u_int32_t pad; /* For structure alignment */
#endif /* !__LP64__ */
u_int64_t mth_refcnt; /* Number of tags in this mbuf */
};
/*
* Driver auxiliary metadata tag (KERNEL_TAG_TYPE_DRVAUX).
*/
struct m_drvaux_tag {
u_int32_t da_family; /* IFNET_FAMILY values */
u_int32_t da_subfamily; /* IFNET_SUBFAMILY values */
u_int32_t da_reserved; /* for future */
u_int32_t da_length; /* length of following data */
};
/* Values for pftag_flags (16-bit wide) */
#define PF_TAG_GENERATED 0x1 /* pkt generated by PF */
#define PF_TAG_FRAGCACHE 0x2
#define PF_TAG_TRANSLATE_LOCALHOST 0x4
#if PF_ECN
#define PF_TAG_HDR_INET 0x8 /* hdr points to IPv4 */
#define PF_TAG_HDR_INET6 0x10 /* hdr points to IPv6 */
#endif /* PF_ECN */
#define PF_TAG_REASSEMBLED 0x20 /* pkt reassembled by PF */
#define PF_TAG_REFRAGMENTED 0x40 /* pkt refragmented by PF */
/*
* PF mbuf tag
*/
struct pf_mtag {
u_int16_t pftag_flags; /* PF_TAG flags */
u_int16_t pftag_rtableid; /* alternate routing table id */
u_int16_t pftag_tag;
u_int16_t pftag_routed;
#if PF_ECN
void *pftag_hdr; /* saved hdr pos in mbuf, for ECN */
#endif /* PF_ECN */
};
/* System reserved PF tags */
#define PF_TAG_ID_SYSTEM_SERVICE 0xff00
#define PF_TAG_ID_STACK_DROP 0xff01
/*
* PF fragment tag
*/
struct pf_fragment_tag {
uint32_t ft_id; /* fragment id */
uint16_t ft_hdrlen; /* header length of reassembled pkt */
uint16_t ft_unfragpartlen; /* length of the per-fragment headers */
uint16_t ft_extoff; /* last extension header offset or 0 */
uint16_t ft_maxlen; /* maximum fragment payload length */
};
/*
* TCP mbuf tag
*/
struct tcp_pktinfo {
union {
struct {
uint32_t segsz; /* segment size (actual MSS) */
uint32_t start_seq; /* start seq of this packet */
pid_t pid;
pid_t e_pid;
} __tx;
struct {
uint8_t seg_cnt; /* # of coalesced TCP pkts */
} __rx;
} __offload;
#define tso_segsz proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.segsz
#define tx_start_seq proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.start_seq
#define tx_tcp_pid proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.pid
#define tx_tcp_e_pid proto_mtag.__pr_u.tcp.tm_tcp.__offload.__tx.e_pid
#define seg_cnt proto_mtag.__pr_u.tcp.tm_tcp.__offload.__rx.seg_cnt
};
/*
* MPTCP mbuf tag
*/
struct mptcp_pktinfo {
uint64_t mtpi_dsn; /* MPTCP Data Sequence Number */
uint32_t mtpi_rel_seq; /* Relative Seq Number */
uint16_t mtpi_length; /* Length of mapping */
uint16_t mtpi_csum;
#define mp_dsn proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_dsn
#define mp_rseq proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_rel_seq
#define mp_rlen proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_length
#define mp_csum proto_mtag.__pr_u.tcp.tm_mptcp.mtpi_csum
};
/*
* TCP specific mbuf tag. Note that the current implementation uses
* MPTCP metadata strictly between MPTCP and the TCP subflow layers,
* hence tm_tcp and tm_mptcp are mutually exclusive. This also means
* that TCP messages functionality is currently incompatible with MPTCP.
*/
struct tcp_mtag {
union {
struct tcp_pktinfo tm_tcp; /* TCP and below */
struct mptcp_pktinfo tm_mptcp; /* MPTCP-TCP only */
};
};
struct udp_mtag {
pid_t _pid;
pid_t _e_pid;
#define tx_udp_pid proto_mtag.__pr_u.udp._pid
#define tx_udp_e_pid proto_mtag.__pr_u.udp._e_pid
};
struct rawip_mtag {
pid_t _pid;
pid_t _e_pid;
#define tx_rawip_pid proto_mtag.__pr_u.rawip._pid
#define tx_rawip_e_pid proto_mtag.__pr_u.rawip._e_pid
};
struct driver_mtag_ {
uintptr_t _drv_tx_compl_arg;
uintptr_t _drv_tx_compl_data;
kern_return_t _drv_tx_status;
uint16_t _drv_flowid;
#define drv_tx_compl_arg builtin_mtag._drv_mtag._drv_tx_compl_arg
#define drv_tx_compl_data builtin_mtag._drv_mtag._drv_tx_compl_data
#define drv_tx_status builtin_mtag._drv_mtag._drv_tx_status
#define drv_flowid builtin_mtag._drv_mtag._drv_flowid
};
/*
* Protocol specific mbuf tag (at most one protocol metadata per mbuf).
*
* Care must be taken to ensure that they are mutually exclusive, e.g.
* IPsec policy ID implies no TCP segment offload (which is fine given
* that the former is used on the virtual ipsec interface that does
* not advertise the TSO capability.)
*/
struct proto_mtag_ {
union {
struct tcp_mtag tcp; /* TCP specific */
struct udp_mtag udp; /* UDP specific */
struct rawip_mtag rawip; /* raw IPv4/IPv6 specific */
} __pr_u;
};
/*
* NECP specific mbuf tag.
*/
struct necp_mtag_ {
u_int32_t necp_policy_id;
u_int32_t necp_skip_policy_id;
u_int32_t necp_route_rule_id;
u_int16_t necp_last_interface_index;
u_int16_t necp_app_id;
};
union builtin_mtag {
struct {
struct proto_mtag_ _proto_mtag; /* built-in protocol-specific tag */
struct pf_mtag _pf_mtag; /* built-in PF tag */
struct necp_mtag_ _necp_mtag; /* built-in NECP tag */
} _net_mtag;
struct driver_mtag_ _drv_mtag;
#define necp_mtag builtin_mtag._net_mtag._necp_mtag
#define proto_mtag builtin_mtag._net_mtag._proto_mtag
#define driver_mtag builtin_mtag._drv_mtag
};
/*
* Record/packet header in first mbuf of chain; valid only if M_PKTHDR set.
*/
struct pkthdr {
struct ifnet *rcvif; /* rcv interface */
/* variables for ip and tcp reassembly */
void *pkt_hdr; /* pointer to packet header */
int32_t len; /* total packet length */
/* variables for hardware checksum */
/* Note: csum_flags is used for hardware checksum and VLAN */
u_int32_t csum_flags; /* flags regarding checksum */
union {
struct {
u_int16_t val; /* checksum value */
u_int16_t start; /* checksum start offset */
} _csum_rx;
#define csum_rx_val _csum_rx.val
#define csum_rx_start _csum_rx.start
struct {
u_int16_t start; /* checksum start offset */
u_int16_t stuff; /* checksum stuff offset */
} _csum_tx;
#define csum_tx_start _csum_tx.start
#define csum_tx_stuff _csum_tx.stuff
/*
* Generic data field used by csum routines.
* It gets used differently in different contexts.
*/
u_int32_t csum_data;
};
u_int16_t vlan_tag; /* VLAN tag, host byte order */
/*
* Packet classifier info
*
* PKTF_FLOW_ID set means valid flow ID. A non-zero flow ID value
* means the packet has been classified by one of the flow sources.
* It is also a prerequisite for flow control advisory, which is
* enabled by additionally setting PKTF_FLOW_ADV.
*
* The protocol value is a best-effort representation of the payload.
* It is opportunistically updated and used only for optimization.
* It is not a substitute for parsing the protocol header(s); use it
* only as a hint.
*
* If PKTF_IFAINFO is set, pkt_ifainfo contains one or both of the
* indices of interfaces which own the source and/or destination
* addresses of the packet. For the local/loopback case (PKTF_LOOP),
* both should be valid, and thus allows for the receiving end to
* quickly determine the actual interfaces used by the the addresses;
* they may not necessarily be the same or refer to the loopback
* interface. Otherwise, in the non-local/loopback case, the indices
* are opportunistically set, and because of that only one may be set
* (0 means the index has not been determined.) In addition, the
* interface address flags are also recorded. This allows us to avoid
* storing the corresponding {in,in6}_ifaddr in an mbuf tag. Ideally
* this would be a superset of {ia,ia6}_flags, but the namespaces are
* overlapping at present, so we'll need a new set of values in future
* to achieve this. For now, we will just rely on the address family
* related code paths examining this mbuf to interpret the flags.
*/
u_int8_t pkt_proto; /* IPPROTO value */
u_int8_t pkt_flowsrc; /* FLOWSRC values */
u_int32_t pkt_flowid; /* flow ID */
u_int32_t pkt_flags; /* PKTF flags (see below) */
u_int32_t pkt_svc; /* MBUF_SVC value */
u_int32_t pkt_compl_context; /* Packet completion context */
union {
struct {
u_int16_t src; /* ifindex of src addr i/f */
u_int16_t src_flags; /* src PKT_IFAIFF flags */
u_int16_t dst; /* ifindex of dst addr i/f */
u_int16_t dst_flags; /* dst PKT_IFAIFF flags */
} _pkt_iaif;
#define src_ifindex _pkt_iaif.src
#define src_iff _pkt_iaif.src_flags
#define dst_ifindex _pkt_iaif.dst
#define dst_iff _pkt_iaif.dst_flags
u_int64_t pkt_ifainfo; /* data field used by ifainfo */
struct {
u_int32_t if_data; /* bytes in interface queue */
u_int32_t sndbuf_data; /* bytes in socket buffer */
} _pkt_bsr; /* Buffer status report used by cellular interface */
#define bufstatus_if _pkt_bsr.if_data
#define bufstatus_sndbuf _pkt_bsr.sndbuf_data
};
u_int64_t pkt_timestamp; /* TX: enqueue time, RX: receive timestamp */
/*
* Tags (external and built-in)
*/
SLIST_HEAD(packet_tags, m_tag) tags; /* list of external tags */
union builtin_mtag builtin_mtag;
uint32_t comp_gencnt;
uint16_t pkt_ext_flags;
uint16_t pkt_crumbs;
/*
* Module private scratch space (32-bit aligned), currently 16-bytes
* large. Anything stored here is not guaranteed to survive across
* modules. The AQM layer (outbound) uses all 16-bytes for both
* packet scheduling and flow advisory information.
*/
struct {
union {
u_int8_t __mpriv8[16];
u_int16_t __mpriv16[8];
struct {
union {
u_int8_t __val8[4];
u_int16_t __val16[2];
u_int32_t __val32;
} __mpriv32_u;
} __mpriv32[4];
u_int64_t __mpriv64[2];
} __mpriv_u;
} pkt_mpriv __attribute__((aligned(4)));
#define pkt_mpriv_hash pkt_mpriv.__mpriv_u.__mpriv32[0].__mpriv32_u.__val32
#define pkt_mpriv_flags pkt_mpriv.__mpriv_u.__mpriv32[1].__mpriv32_u.__val32
#define pkt_mpriv_srcid pkt_mpriv.__mpriv_u.__mpriv32[2].__mpriv32_u.__val32
#define pkt_mpriv_fidx pkt_mpriv.__mpriv_u.__mpriv32[3].__mpriv32_u.__val32
u_int32_t redzone; /* red zone */
u_int32_t pkt_compl_callbacks; /* Packet completion callbacks */
};
/*
* Flow data source type. A data source module is responsible for generating
* a unique flow ID and associating it to each data flow as pkt_flowid.
* This is required for flow control/advisory, as it allows the output queue
* to identify the data source object and inform that it can resume its
* transmission (in the event it was flow controlled.)
*/
#define FLOWSRC_INPCB 1 /* flow ID generated by INPCB */
#define FLOWSRC_IFNET 2 /* flow ID generated by interface */
#define FLOWSRC_PF 3 /* flow ID generated by PF */
#define FLOWSRC_CHANNEL 4 /* flow ID generated by channel */
/*
* FLOWSRC_MPKL_INPUT is not a true flow data source and is used for
* multi-layer packet logging. We're usurping the pkt_flowsrc field because
* the mbuf packet header ran out of space and pkt_flowsrc is normally
* used on output so we assume we can safely overwrite the normal semantic of
* the field.
* This value is meant to be used on incoming packet from a lower level protocol
* to pass information to some upper level protocol. When FLOWSRC_MPKL_INPUT
* is set, the following fields are used:
* - pkt_proto: the IP protocol ID of the lower level protocol
* - pkt_flowid: the identifier of the packet at the lower protocol.
* For example ESP would set pkt_proto to IPPROTO_ESP and pkt_flowid to the SPI.
*/
/*
* Packet flags. Unlike m_flags, all packet flags are copied along when
* copying m_pkthdr, i.e. no equivalent of M_COPYFLAGS here. These flags
* (and other classifier info) will be cleared during DLIL input.
*
* Some notes about M_LOOP and PKTF_LOOP:
*
* - M_LOOP flag is overloaded, and its use is discouraged. Historically,
* that flag was used by the KAME implementation for allowing certain
* certain exceptions to be made in the IP6_EXTHDR_CHECK() logic; this
* was originally meant to be set as the packet is looped back to the
* system, and in some circumstances temporarily set in ip6_output().
* Over time, this flag was used by the pre-output routines to indicate
* to the DLIL frameout and output routines, that the packet may be
* looped back to the system under the right conditions. In addition,
* this is an mbuf flag rather than an mbuf packet header flag.
*
* - PKTF_LOOP is an mbuf packet header flag, which is set if and only
* if the packet was looped back to the system. This flag should be
* used instead for newer code.
*/
#define PKTF_FLOW_ID 0x1 /* pkt has valid flowid value */
#define PKTF_FLOW_ADV 0x2 /* pkt triggers local flow advisory */
#define PKTF_FLOW_LOCALSRC 0x4 /* pkt is locally originated */
#define PKTF_FLOW_RAWSOCK 0x8 /* pkt locally generated by raw sock */
#define PKTF_PRIO_PRIVILEGED 0x10 /* packet priority is privileged */
#define PKTF_PROXY_DST 0x20 /* processed but not locally destined */
#define PKTF_INET_RESOLVE 0x40 /* IPv4 resolver packet */
#define PKTF_INET6_RESOLVE 0x80 /* IPv6 resolver packet */
#define PKTF_RESOLVE_RTR 0x100 /* pkt is for resolving router */
#define PKTF_SKIP_PKTAP 0x200 /* pkt has already passed through pktap */
#define PKTF_WAKE_PKT 0x400 /* packet caused system to wake from sleep */
#define PKTF_MPTCP 0x800 /* TCP with MPTCP metadata */
#define PKTF_MPSO 0x1000 /* MPTCP socket meta data */
#define PKTF_LOOP 0x2000 /* loopbacked packet */
#define PKTF_IFAINFO 0x4000 /* pkt has valid interface addr info */
#define PKTF_SO_BACKGROUND 0x8000 /* data is from background source */
#define PKTF_FORWARDED 0x10000 /* pkt was forwarded from another i/f */
#define PKTF_PRIV_GUARDED 0x20000 /* pkt_mpriv area guard enabled */
#define PKTF_KEEPALIVE 0x40000 /* pkt is kernel-generated keepalive */
#define PKTF_SO_REALTIME 0x80000 /* data is realtime traffic */
#define PKTF_VALID_UNSENT_DATA 0x100000 /* unsent data is valid */
#define PKTF_TCP_REXMT 0x200000 /* packet is TCP retransmission */
#define PKTF_REASSEMBLED 0x400000 /* Packet was reassembled */
#define PKTF_TX_COMPL_TS_REQ 0x800000 /* tx completion timestamp requested */
#define PKTF_TS_VALID 0x1000000 /* pkt timestamp is valid */
#define PKTF_DRIVER_MTAG 0x2000000 /* driver mbuf tags fields inited */
#define PKTF_NEW_FLOW 0x4000000 /* Data from a new flow */
#define PKTF_START_SEQ 0x8000000 /* valid start sequence */
#define PKTF_LAST_PKT 0x10000000 /* last packet in the flow */
#define PKTF_MPTCP_REINJ 0x20000000 /* Packet has been reinjected for MPTCP */
#define PKTF_MPTCP_DFIN 0x40000000 /* Packet is a data-fin */
#define PKTF_HBH_CHKED 0x80000000 /* HBH option is checked */
#define PKTF_EXT_OUTPUT_SCOPE 0x1 /* outgoing packet has ipv6 address scope id */
#define PKTF_EXT_L4S 0x2 /* pkts is from a L4S connection */
#define PKTF_EXT_QUIC 0x4 /* flag to denote a QUIC packet */
#define PKT_CRUMB_TS_COMP_REQ 0x0001 /* timestamp completion requested */
#define PKT_CRUMB_TS_COMP_CB 0x0002 /* timestamp callback called */
#define PKT_CRUMB_DLIL_OUTPUT 0x0004 /* dlil_output called */
#define PKT_CRUMB_FLOW_TX 0x0008 /* dp_flow_tx_process called */
#define PKT_CRUMB_FQ_ENQUEUE 0x0010 /* fq_enqueue called */
#define PKT_CRUMB_FQ_DEQUEUE 0x0020 /* fq_dequeue called */
#define PKT_CRUMB_SK_PKT_COPY 0x0040 /* copy from mbuf to skywalk packet */
#define PKT_CRUMB_TCP_OUTPUT 0x0080
#define PKT_CRUMB_UDP_OUTPUT 0x0100
#define PKT_CRUMB_SOSEND 0x0200
#define PKT_CRUMB_DLIL_INPUT 0x0400
#define PKT_CRUMB_IP_INPUT 0x0800
#define PKT_CRUMB_TCP_INPUT 0x1000
#define PKT_CRUMB_UDP_INPUT 0x2000
/* flags related to flow control/advisory and identification */
#define PKTF_FLOW_MASK \
(PKTF_FLOW_ID | PKTF_FLOW_ADV | PKTF_FLOW_LOCALSRC | PKTF_FLOW_RAWSOCK)
/*
* Description of external storage mapped into mbuf, valid only if M_EXT set.
*/
typedef void (*m_ext_free_func_t)(caddr_t, u_int, caddr_t);
struct m_ext {
caddr_t __counted_by(ext_size) ext_buf; /* start of buffer */
m_ext_free_func_t ext_free; /* free routine if not the usual */
u_int ext_size; /* size of buffer, for ext_free */
caddr_t ext_arg; /* additional ext_free argument */
struct ext_ref {
struct mbuf *paired;
u_int16_t minref;
u_int16_t refcnt;
u_int16_t prefcnt;
u_int16_t flags;
u_int32_t priv;
uintptr_t ext_token;
} *ext_refflags;
};
/* define m_ext to a type since it gets redefined below */
typedef struct m_ext _m_ext_t;
#if CONFIG_MBUF_MCACHE
/*
* The following _MLEN and _MHLEN macros are private to xnu. Private code
* that are outside of xnu must use the mbuf_get_{mlen,mhlen} routines since
* the sizes of the structures are dependent upon specific xnu configs.
*/
#define _MLEN (_MSIZE - sizeof(struct m_hdr)) /* normal data len */
#define _MHLEN (_MLEN - sizeof(struct pkthdr)) /* data len w/pkthdr */
#define NMBPGSHIFT (PAGE_SHIFT - _MSIZESHIFT)
#define NMBPG (1 << NMBPGSHIFT) /* # of mbufs per page */
#define NMBPCLSHIFT (MCLSHIFT - _MSIZESHIFT)
/*
* The mbuf object
*/
struct mbuf {
struct m_hdr m_hdr;
union {
struct {
struct pkthdr MH_pkthdr; /* M_PKTHDR set */
union {
struct m_ext MH_ext; /* M_EXT set */
char MH_databuf[_MHLEN];
} MH_dat;
} MH;
char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */
} M_dat;
};
#define m_next m_hdr.mh_next
#define m_len m_hdr.mh_len
#define m_data m_hdr.mh_data
#define m_type m_hdr.mh_type
#define m_flags m_hdr.mh_flags
#define m_nextpkt m_hdr.mh_nextpkt
#define m_act m_nextpkt
#define m_ext M_dat.MH.MH_dat.MH_ext
#define m_pkthdr M_dat.MH.MH_pkthdr
#define m_pktdat M_dat.MH.MH_dat.MH_databuf
#else /* !CONFIG_MBUF_MCACHE */
/*
* The following _MLEN and _MHLEN macros are private to xnu. Private code
* that are outside of xnu must use the mbuf_get_{mlen,mhlen} routines since
* the sizes of the structures are dependent upon specific xnu configs.
*/
#define _MLEN (_MSIZE - sizeof(struct m_hdr_common)) /* normal data len */
#define _MHLEN (_MLEN) /* data len w/pkthdr */
struct m_hdr_common {
struct m_hdr M_hdr;
struct m_ext M_ext __attribute__((aligned(16))); /* M_EXT set */
struct pkthdr M_pkthdr __attribute__((aligned(16))); /* M_PKTHDR set */
};
/*
* The mbuf object
*/
struct mbuf {
struct m_hdr_common M_hdr_common;
union {
char MH_databuf[_MHLEN];
char M_databuf[_MLEN]; /* !M_PKTHDR, !M_EXT */
} M_dat __attribute__((aligned(16)));
};
#define m_next M_hdr_common.M_hdr.mh_next
#define m_len M_hdr_common.M_hdr.mh_len
#define m_data M_hdr_common.M_hdr.mh_data
#define m_type M_hdr_common.M_hdr.mh_type
#define m_flags M_hdr_common.M_hdr.mh_flags
#define m_nextpkt M_hdr_common.M_hdr.mh_nextpkt
#define m_ext M_hdr_common.M_ext
#define m_pkthdr M_hdr_common.M_pkthdr
#define m_pktdat M_dat.MH_databuf
#endif /* CONFIG_MBUF_MCACHE */
#define m_act m_nextpkt
#define m_dat M_dat.M_databuf
#define m_pktlen(_m) ((_m)->m_pkthdr.len)
#define m_pftag(_m) (&(_m)->m_pkthdr.builtin_mtag._net_mtag._pf_mtag)
#define m_necptag(_m) (&(_m)->m_pkthdr.builtin_mtag._net_mtag._necp_mtag)
/* mbuf flags (private) */
#define M_EXT 0x0001 /* has associated external storage */
#define M_PKTHDR 0x0002 /* start of record */
#define M_EOR 0x0004 /* end of record */
#define M_PROTO1 0x0008 /* protocol-specific */
#define M_PROTO2 0x0010 /* protocol-specific */
#define M_PROTO3 0x0020 /* protocol-specific */
#define M_LOOP 0x0040 /* packet is looped back (also see PKTF_LOOP) */
#define M_PROTO5 0x0080 /* protocol-specific */
/* mbuf pkthdr flags, also in m_flags (private) */
#define M_BCAST 0x0100 /* send/received as link-level broadcast */
#define M_MCAST 0x0200 /* send/received as link-level multicast */
#define M_FRAG 0x0400 /* packet is a fragment of a larger packet */
#define M_FIRSTFRAG 0x0800 /* packet is first fragment */
#define M_LASTFRAG 0x1000 /* packet is last fragment */
#define M_PROMISC 0x2000 /* packet is promiscuous (shouldn't go to stack) */
#define M_HASFCS 0x4000 /* packet has FCS */
#define M_TAGHDR 0x8000 /* m_tag hdr structure at top of mbuf data */
/*
* Flags to purge when crossing layers.
*/
#define M_PROTOFLAGS \
(M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO5)
/* flags copied when copying m_pkthdr */
#define M_COPYFLAGS \
(M_PKTHDR|M_EOR|M_PROTO1|M_PROTO2|M_PROTO3 | \
M_LOOP|M_PROTO5|M_BCAST|M_MCAST|M_FRAG | \
M_FIRSTFRAG|M_LASTFRAG|M_PROMISC|M_HASFCS)
/* flags indicating hw checksum support and sw checksum requirements */
#define CSUM_IP 0x0001 /* will csum IP */
#define CSUM_TCP 0x0002 /* will csum TCP */
#define CSUM_UDP 0x0004 /* will csum UDP */
#define CSUM_IP_FRAGS 0x0008 /* will csum IP fragments */
#define CSUM_FRAGMENT 0x0010 /* will do IP fragmentation */
#define CSUM_TCPIPV6 0x0020 /* will csum TCP for IPv6 */
#define CSUM_UDPIPV6 0x0040 /* will csum UDP for IPv6 */
#define CSUM_FRAGMENT_IPV6 0x0080 /* will do IPv6 fragmentation */
#define CSUM_IP_CHECKED 0x0100 /* did csum IP */
#define CSUM_IP_VALID 0x0200 /* ... the csum is valid */
#define CSUM_DATA_VALID 0x0400 /* csum_data field is valid */
#define CSUM_PSEUDO_HDR 0x0800 /* csum_data has pseudo hdr */
#define CSUM_PARTIAL 0x1000 /* simple Sum16 computation */
#define CSUM_ZERO_INVERT 0x2000 /* invert 0 to -0 (0xffff) */
#define CSUM_DELAY_DATA (CSUM_TCP | CSUM_UDP)
#define CSUM_DELAY_IP (CSUM_IP) /* IPv4 only: no IPv6 IP cksum */
#define CSUM_DELAY_IPV6_DATA (CSUM_TCPIPV6 | CSUM_UDPIPV6)
#define CSUM_DATA_IPV6_VALID CSUM_DATA_VALID /* csum_data field is valid */
#define CSUM_TX_FLAGS \
(CSUM_DELAY_IP | CSUM_DELAY_DATA | CSUM_DELAY_IPV6_DATA | \
CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_ZERO_INVERT)
#define CSUM_RX_FULL_FLAGS \
(CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_PSEUDO_HDR | \
CSUM_DATA_VALID)
#define CSUM_RX_FLAGS \
(CSUM_RX_FULL_FLAGS | CSUM_PARTIAL)
/*
* Note: see also IF_HWASSIST_CSUM defined in <net/if_var.h>
*/
/* VLAN tag present */
#define CSUM_VLAN_TAG_VALID 0x00010000 /* vlan_tag field is valid */
/* checksum start adjustment has been done */
#define CSUM_ADJUST_DONE 0x00020000
/* VLAN encapsulation present */
#define CSUM_VLAN_ENCAP_PRESENT 0x00040000 /* mbuf has vlan encapsulation */
/* TCP Segment Offloading requested on this mbuf */
#define CSUM_TSO_IPV4 0x00100000 /* This mbuf needs to be segmented by the NIC */
#define CSUM_TSO_IPV6 0x00200000 /* This mbuf needs to be segmented by the NIC */
#define TSO_IPV4_OK(_ifp, _m) \
(((_ifp)->if_hwassist & IFNET_TSO_IPV4) && \
((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) \
#define TSO_IPV4_NOTOK(_ifp, _m) \
(!((_ifp)->if_hwassist & IFNET_TSO_IPV4) && \
((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) \
#define TSO_IPV6_OK(_ifp, _m) \
(((_ifp)->if_hwassist & IFNET_TSO_IPV6) && \
((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) \
#define TSO_IPV6_NOTOK(_ifp, _m) \
(!((_ifp)->if_hwassist & IFNET_TSO_IPV6) && \
((_m)->m_pkthdr.csum_flags & CSUM_TSO_IPV6)) \
#endif /* XNU_KERNEL_PRIVATE */
/* mbuf types */
#define MT_FREE 0 /* should be on free list */
#define MT_DATA 1 /* dynamic (data) allocation */
#define MT_HEADER 2 /* packet header */
#define MT_SOCKET 3 /* socket structure */
#define MT_PCB 4 /* protocol control block */
#define MT_RTABLE 5 /* routing tables */
#define MT_HTABLE 6 /* IMP host tables */
#define MT_ATABLE 7 /* address resolution tables */
#define MT_SONAME 8 /* socket name */
#define MT_SOOPTS 10 /* socket options */
#define MT_FTABLE 11 /* fragment reassembly header */
#define MT_RIGHTS 12 /* access rights */
#define MT_IFADDR 13 /* interface address */
#define MT_CONTROL 14 /* extra-data protocol message */
#define MT_OOBDATA 15 /* expedited data */
#define MT_TAG 16 /* volatile metadata associated to pkts */
#define MT_MAX 32 /* enough? */
enum {
MTF_FREE = (1 << MT_FREE),
MTF_DATA = (1 << MT_DATA),
MTF_HEADER = (1 << MT_HEADER),
MTF_SOCKET = (1 << MT_SOCKET),
MTF_PCB = (1 << MT_PCB),
MTF_RTABLE = (1 << MT_RTABLE),
MTF_HTABLE = (1 << MT_HTABLE),
MTF_ATABLE = (1 << MT_ATABLE),
MTF_SONAME = (1 << MT_SONAME),
MTF_SOOPTS = (1 << MT_SOOPTS),
MTF_FTABLE = (1 << MT_FTABLE),
MTF_RIGHTS = (1 << MT_RIGHTS),
MTF_IFADDR = (1 << MT_IFADDR),
MTF_CONTROL = (1 << MT_CONTROL),
MTF_OOBDATA = (1 << MT_OOBDATA),
MTF_TAG = (1 << MT_TAG),
};
#ifdef XNU_KERNEL_PRIVATE
/*
* mbuf allocation/deallocation macros:
*
* MGET(struct mbuf *m, int how, int type)
* allocates an mbuf and initializes it to contain internal data.
*
* MGETHDR(struct mbuf *m, int how, int type)
* allocates an mbuf and initializes it to contain a packet header
* and internal data.
*/
#if 1
#define MCHECK(m) m_mcheck(m)
#else
#define MCHECK(m)
#endif
#define MGET(m, how, type) ((m) = m_get((how), (type)))
#define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type)))
/*
* Mbuf cluster macros.
* MCLALLOC(caddr_t p, int how) allocates an mbuf cluster.
* MCLGET adds such clusters to a normal mbuf;
* the flag M_EXT is set upon success.
* MCLFREE releases a reference to a cluster allocated by MCLALLOC,
* freeing the cluster if the reference count has reached 0.
*
* Normal mbuf clusters are normally treated as character arrays
* after allocation, but use the first word of the buffer as a free list
* pointer while on the free list.
*/
union mcluster {
union mcluster *mcl_next;
char mcl_buf[MCLBYTES];
};
#define MCLALLOC(p, how) ((p) = m_mclalloc(how))
#define MCLFREE(p) m_mclfree(p)
#define MCLGET(m, how) ((m) = m_mclget(m, how))
/*
* Mbuf big cluster
*/
union mbigcluster {
union mbigcluster *mbc_next;
char mbc_buf[MBIGCLBYTES];
};
/*
* Mbuf jumbo cluster
*/
union m16kcluster {
union m16kcluster *m16kcl_next;
char m16kcl_buf[M16KCLBYTES];
};
#define MCLHASREFERENCE(m) m_mclhasreference(m)
/*
* MFREE(struct mbuf *m, struct mbuf *n)
* Free a single mbuf and associated external storage.
* Place the successor, if any, in n.
*/
#define MFREE(m, n) ((n) = m_free(m))
/*
* Copy mbuf pkthdr from from to to.
* from must have M_PKTHDR set, and to must be empty.
* aux pointer will be moved to `to'.
*/
#define M_COPY_PKTHDR(to, from) m_copy_pkthdr(to, from)
#define M_COPY_PFTAG(to, from) m_copy_pftag(to, from)
#define M_COPY_NECPTAG(to, from) m_copy_necptag(to, from)
#define M_COPY_CLASSIFIER(to, from) m_copy_classifier(to, from)
/*
* Evaluate TRUE if it's safe to write to the mbuf m's data region (this can
* be both the local data payload, or an external buffer area, depending on
* whether M_EXT is set).
*/
#define M_WRITABLE(m) (((m)->m_flags & M_EXT) == 0 || !MCLHASREFERENCE(m))
/*
* These macros are mapped to the appropriate KPIs, so that private code
* can be simply recompiled in order to be forward-compatible with future
* changes toward the struture sizes.
*/
#ifdef XNU_KERNEL_PRIVATE
#define MLEN _MLEN
#define MHLEN _MHLEN
#define MINCLSIZE (MLEN + MHLEN)
#else
#define MLEN mbuf_get_mlen() /* normal mbuf data len */
#define MHLEN mbuf_get_mhlen() /* data len in an mbuf w/pkthdr */
#define MINCLSIZE mbuf_get_minclsize() /* cluster usage threshold */
#endif
/*
* Return the address of the start of the buffer associated with an mbuf,
* handling external storage, packet-header mbufs, and regular data mbufs.
*/
#define M_START(m) \
(((m)->m_flags & M_EXT) ? (caddr_t)(m)->m_ext.ext_buf : \
((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \
&(m)->m_dat[0])
/*
* Return the size of the buffer associated with an mbuf, handling external
* storage, packet-header mbufs, and regular data mbufs.
*/
#define M_SIZE(m) \
(((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \
((m)->m_flags & M_PKTHDR) ? MHLEN : \
MLEN)
#define M_ALIGN(m, len) m_align(m, len)
#define MH_ALIGN(m, len) m_align(m, len)
#define MEXT_ALIGN(m, len) m_align(m, len)
/*
* Compute the amount of space available before the current start of data in
* an mbuf.
*
* The M_WRITABLE() is a temporary, conservative safety measure: the burden
* of checking writability of the mbuf data area rests solely with the caller.
*/
#define M_LEADINGSPACE(m) \
(M_WRITABLE(m) ? ((m)->m_data - (uintptr_t)M_START(m)) : 0)
/*
* Compute the amount of space available after the end of data in an mbuf.
*
* The M_WRITABLE() is a temporary, conservative safety measure: the burden
* of checking writability of the mbuf data area rests solely with the caller.
*/
#define M_TRAILINGSPACE(m) \
(M_WRITABLE(m) ? \
((M_START(m) + M_SIZE(m)) - (mtod(m, caddr_t) + (m)->m_len)) : 0)
/*
* Arrange to prepend space of size plen to mbuf m.
* If a new mbuf must be allocated, how specifies whether to wait.
* If how is M_DONTWAIT and allocation fails, the original mbuf chain
* is freed and m is set to NULL.
*/
#define M_PREPEND(m, plen, how, align) \
((m) = m_prepend_2((m), (plen), (how), (align)))
/* change mbuf to new type */
#define MCHTYPE(m, t) m_mchtype(m, t)
/* compatiblity with 4.3 */
#define m_copy(m, o, l) m_copym((m), (o), (l), M_DONTWAIT)
#define MBSHIFT 20 /* 1MB */
#define MBSIZE (1 << MBSHIFT)
#define GBSHIFT 30 /* 1GB */
#define GBSIZE (1 << GBSHIFT)
/*
* M_STRUCT_GET ensures that intermediate protocol header (from "off" to
* "off+len") is located in single mbuf, on contiguous memory region.
* The pointer to the region will be returned to pointer variable "val",
* with type "typ".
*
* M_STRUCT_GET0 does the same, except that it aligns the structure at
* very top of mbuf. GET0 is likely to make memory copy than GET.
*/
#define M_STRUCT_GET(val, typ, m, off, len) \
do { \
struct mbuf *t; \
int tmp; \
\
if ((m)->m_len >= (off) + (len)) { \
(val) = (typ)(mtod((m), caddr_t) + (off)); \
} else { \
t = m_pulldown((m), (off), (len), &tmp); \
if (t != NULL) { \
if (t->m_len < tmp + (len)) \
panic("m_pulldown malfunction"); \
(val) = (typ)(mtod(t, caddr_t) + tmp); \
} else { \
(val) = (typ)NULL; \
(m) = NULL; \
} \
} \
} while (0)
#define M_STRUCT_GET0(val, typ, m, off, len) \
do { \
struct mbuf *t; \
\
if ((off) == 0 && ((m)->m_len >= (len))) { \
(val) = (typ)(void *)mtod(m, caddr_t); \
} else { \
t = m_pulldown((m), (off), (len), NULL); \
if (t != NULL) { \
if (t->m_len < (len)) \
panic("m_pulldown malfunction"); \
(val) = (typ)(void *)mtod(t, caddr_t); \
} else { \
(val) = (typ)NULL; \
(m) = NULL; \
} \
} \
} while (0)
#define MBUF_INPUT_CHECK(m, rcvif) \
do { \
if (!(m->m_flags & MBUF_PKTHDR) || \
m->m_len < 0 || \
m->m_len > ((njcl > 0) ? njclbytes : MBIGCLBYTES) || \
m->m_type == MT_FREE || \
((m->m_flags & M_EXT) != 0 && m->m_ext.ext_buf == NULL)) { \
panic_plain("Failed mbuf validity check: mbuf %p len %d " \
"type %d flags 0x%x data %p rcvif %s ifflags 0x%x", \
m, m->m_len, m->m_type, m->m_flags, \
((m->m_flags & M_EXT) \
? m->m_ext.ext_buf \
: (caddr_t __unsafe_indexable)m->m_data), \
if_name(rcvif), \
(rcvif->if_flags & 0xffff)); \
} \
} while (0)
/*
* Simple mbuf queueing system
*
* This is basically a SIMPLEQ adapted to mbuf use (i.e. using
* m_nextpkt instead of field.sqe_next).
*
* m_next is ignored, so queueing chains of mbufs is possible
*/
#define MBUFQ_HEAD(name) \
struct name { \
struct mbuf *mq_first; /* first packet */ \
struct mbuf **mq_last; /* addr of last next packet */ \
}
#define MBUFQ_INIT(q) do { \
MBUFQ_FIRST(q) = NULL; \
(q)->mq_last = &MBUFQ_FIRST(q); \
} while (0)
#define MBUFQ_PREPEND(q, m) do { \
if ((MBUFQ_NEXT(m) = MBUFQ_FIRST(q)) == NULL) \
(q)->mq_last = &MBUFQ_NEXT(m); \
MBUFQ_FIRST(q) = (m); \
} while (0)
#define MBUFQ_ENQUEUE(q, m) do { \
MBUFQ_NEXT(m) = NULL; \
*(q)->mq_last = (m); \
(q)->mq_last = &MBUFQ_NEXT(m); \
} while (0)
#define MBUFQ_ENQUEUE_MULTI(q, m, n) do { \
MBUFQ_NEXT(n) = NULL; \
*(q)->mq_last = (m); \
(q)->mq_last = &MBUFQ_NEXT(n); \
} while (0)
#define MBUFQ_DEQUEUE(q, m) do { \
if (((m) = MBUFQ_FIRST(q)) != NULL) { \
if ((MBUFQ_FIRST(q) = MBUFQ_NEXT(m)) == NULL) \
(q)->mq_last = &MBUFQ_FIRST(q); \
else \
MBUFQ_NEXT(m) = NULL; \
} \
} while (0)
#define MBUFQ_REMOVE(q, m) do { \
if (MBUFQ_FIRST(q) == (m)) { \
MBUFQ_DEQUEUE(q, m); \
} else { \
struct mbuf *_m = MBUFQ_FIRST(q); \
while (MBUFQ_NEXT(_m) != (m)) \
_m = MBUFQ_NEXT(_m); \
if ((MBUFQ_NEXT(_m) = \
MBUFQ_NEXT(MBUFQ_NEXT(_m))) == NULL) \
(q)->mq_last = &MBUFQ_NEXT(_m); \
} \
} while (0)
#define MBUFQ_DRAIN(q) do { \
struct mbuf *__m0; \
while ((__m0 = MBUFQ_FIRST(q)) != NULL) { \
MBUFQ_FIRST(q) = MBUFQ_NEXT(__m0); \
MBUFQ_NEXT(__m0) = NULL; \
m_freem(__m0); \
} \
(q)->mq_last = &MBUFQ_FIRST(q); \
} while (0)
#define MBUFQ_FOREACH(m, q) \
for ((m) = MBUFQ_FIRST(q); \
(m); \
(m) = MBUFQ_NEXT(m))
#define MBUFQ_FOREACH_SAFE(m, q, tvar) \
for ((m) = MBUFQ_FIRST(q); \
(m) && ((tvar) = MBUFQ_NEXT(m), 1); \
(m) = (tvar))
#define MBUFQ_EMPTY(q) ((q)->mq_first == NULL)
#define MBUFQ_FIRST(q) ((q)->mq_first)
#define MBUFQ_NEXT(m) ((m)->m_nextpkt)
/*
* mq_last is initialized to point to mq_first, so check if they're
* equal and return NULL when the list is empty. Otherwise, we need
* to subtract the offset of MBUQ_NEXT (i.e. m_nextpkt field) to get
* to the base mbuf address to return to caller.
*/
#define MBUFQ_LAST(head) \
(((head)->mq_last == &MBUFQ_FIRST(head)) ? NULL : \
((struct mbuf *)(void *)((char *)(head)->mq_last - \
__builtin_offsetof(struct mbuf, m_nextpkt))))
#if (DEBUG || DEVELOPMENT)
#define MBUFQ_ADD_CRUMB_MULTI(_q, _h, _t, _f) do { \
struct mbuf * _saved = (_t)->m_nextpkt; \
struct mbuf * _m; \
for (_m = (_h); _m != NULL; _m = MBUFQ_NEXT(_m)) { \
m_add_crumb((_m), (_f)); \
} \
(_t)->m_nextpkt = _saved; \
} while (0)
#define MBUFQ_ADD_CRUMB(_q, _m, _f) do { \
m_add_crumb((_m), (_f)); \
} while (0)
#else
#define MBUFQ_ADD_CRUMB_MULTI(_q, _h, _t, _f)
#define MBUFQ_ADD_CRUMB(_q, _m, _f)
#endif /* (DEBUG || DEVELOPMENT) */
#endif /* XNU_KERNEL_PRIVATE */
/*
* Mbuf statistics (legacy).
*/
struct mbstat {
u_int32_t m_mbufs; /* mbufs obtained from page pool */
u_int32_t m_clusters; /* clusters obtained from page pool */
u_int32_t m_spare; /* spare field */
u_int32_t m_clfree; /* free clusters */
u_int32_t m_drops; /* times failed to find space */
u_int32_t m_wait; /* times waited for space */
u_int32_t m_drain; /* times drained protocols for space */
u_short m_mtypes[256]; /* type specific mbuf allocations */
u_int32_t m_mcfail; /* times m_copym failed */
u_int32_t m_mpfail; /* times m_pullup failed */
u_int32_t m_msize; /* length of an mbuf */
u_int32_t m_mclbytes; /* length of an mbuf cluster */
u_int32_t m_minclsize; /* min length of data to allocate a cluster */
u_int32_t m_mlen; /* length of data in an mbuf */
u_int32_t m_mhlen; /* length of data in a header mbuf */
u_int32_t m_bigclusters; /* clusters obtained from page pool */
u_int32_t m_bigclfree; /* free clusters */
u_int32_t m_bigmclbytes; /* length of an mbuf cluster */
u_int32_t m_forcedefunct; /* times we force defunct'ed an app's sockets */
};
/* Compatibillity with 10.3 */
struct ombstat {
u_int32_t m_mbufs; /* mbufs obtained from page pool */
u_int32_t m_clusters; /* clusters obtained from page pool */
u_int32_t m_spare; /* spare field */
u_int32_t m_clfree; /* free clusters */
u_int32_t m_drops; /* times failed to find space */
u_int32_t m_wait; /* times waited for space */
u_int32_t m_drain; /* times drained protocols for space */
u_short m_mtypes[256]; /* type specific mbuf allocations */
u_int32_t m_mcfail; /* times m_copym failed */
u_int32_t m_mpfail; /* times m_pullup failed */
u_int32_t m_msize; /* length of an mbuf */
u_int32_t m_mclbytes; /* length of an mbuf cluster */
u_int32_t m_minclsize; /* min length of data to allocate a cluster */
u_int32_t m_mlen; /* length of data in an mbuf */
u_int32_t m_mhlen; /* length of data in a header mbuf */
};
/*
* mbuf class statistics.
*/
#define MAX_MBUF_CNAME 15
#if defined(XNU_KERNEL_PRIVATE)
/* For backwards compatibility with 32-bit userland process */
struct omb_class_stat {
char mbcl_cname[MAX_MBUF_CNAME + 1]; /* class name */
u_int32_t mbcl_size; /* buffer size */
u_int32_t mbcl_total; /* # of buffers created */
u_int32_t mbcl_active; /* # of active buffers */
u_int32_t mbcl_infree; /* # of available buffers */
u_int32_t mbcl_slab_cnt; /* # of available slabs */
u_int32_t mbcl_pad; /* padding */
u_int64_t mbcl_alloc_cnt; /* # of times alloc is called */
u_int64_t mbcl_free_cnt; /* # of times free is called */
u_int64_t mbcl_notified; /* # of notified wakeups */
u_int64_t mbcl_purge_cnt; /* # of purges so far */
u_int64_t mbcl_fail_cnt; /* # of allocation failures */
u_int32_t mbcl_ctotal; /* total only for this class */
u_int32_t mbcl_release_cnt; /* amount of memory returned */
/*
* Cache layer statistics
*/
u_int32_t mbcl_mc_state; /* cache state (see below) */
u_int32_t mbcl_mc_cached; /* # of cached buffers */
u_int32_t mbcl_mc_waiter_cnt; /* # waiters on the cache */
u_int32_t mbcl_mc_wretry_cnt; /* # of wait retries */
u_int32_t mbcl_mc_nwretry_cnt; /* # of no-wait retry attempts */
u_int32_t mbcl_reserved[7]; /* for future use */
} __attribute__((__packed__));
#endif /* XNU_KERNEL_PRIVATE */
typedef struct mb_class_stat {
char mbcl_cname[MAX_MBUF_CNAME + 1]; /* class name */
u_int32_t mbcl_size; /* buffer size */
u_int32_t mbcl_total; /* # of buffers created */
u_int32_t mbcl_active; /* # of active buffers */
u_int32_t mbcl_infree; /* # of available buffers */
u_int32_t mbcl_slab_cnt; /* # of available slabs */
#if defined(KERNEL) || defined(__LP64__)
u_int32_t mbcl_pad; /* padding */
#endif /* KERNEL || __LP64__ */
u_int64_t mbcl_alloc_cnt; /* # of times alloc is called */
u_int64_t mbcl_free_cnt; /* # of times free is called */
u_int64_t mbcl_notified; /* # of notified wakeups */
u_int64_t mbcl_purge_cnt; /* # of purges so far */
u_int64_t mbcl_fail_cnt; /* # of allocation failures */
u_int32_t mbcl_ctotal; /* total only for this class */
u_int32_t mbcl_release_cnt; /* amount of memory returned */
/*
* Cache layer statistics
*/
u_int32_t mbcl_mc_state; /* cache state (see below) */
u_int32_t mbcl_mc_cached; /* # of cached buffers */
u_int32_t mbcl_mc_waiter_cnt; /* # waiters on the cache */
u_int32_t mbcl_mc_wretry_cnt; /* # of wait retries */
u_int32_t mbcl_mc_nwretry_cnt; /* # of no-wait retry attempts */
u_int32_t mbcl_reserved[7]; /* for future use */
} mb_class_stat_t;
#define MCS_DISABLED 0 /* cache is permanently disabled */
#define MCS_ONLINE 1 /* cache is online */
#define MCS_PURGING 2 /* cache is being purged */
#define MCS_OFFLINE 3 /* cache is offline (resizing) */
#if defined(XNU_KERNEL_PRIVATE)
/* For backwards compatibility with 32-bit userland process */
struct omb_stat {
u_int32_t mbs_cnt; /* number of classes */
u_int32_t mbs_pad; /* padding */
struct omb_class_stat mbs_class[1]; /* class array */
} __attribute__((__packed__));
#endif /* XNU_KERNEL_PRIVATE */
typedef struct mb_stat {
u_int32_t mbs_cnt; /* number of classes */
#if defined(KERNEL) || defined(__LP64__)
u_int32_t mbs_pad; /* padding */
#endif /* KERNEL || __LP64__ */
mb_class_stat_t mbs_class[1]; /* class array */
} mb_stat_t;
#ifdef PRIVATE
#define MLEAK_STACK_DEPTH 16 /* Max PC stack depth */
typedef struct mleak_trace_stat {
u_int64_t mltr_collisions;
u_int64_t mltr_hitcount;
u_int64_t mltr_allocs;
u_int64_t mltr_depth;
u_int64_t mltr_addr[MLEAK_STACK_DEPTH];
} mleak_trace_stat_t;
typedef struct mleak_stat {
u_int32_t ml_isaddr64; /* 64-bit KVA? */
u_int32_t ml_cnt; /* number of traces */
mleak_trace_stat_t ml_trace[1]; /* trace array */
} mleak_stat_t;
struct mleak_table {
u_int32_t mleak_capture; /* sampling capture counter */
u_int32_t mleak_sample_factor; /* sample factor */
/* Times two active records want to occupy the same spot */
u_int64_t alloc_collisions;
u_int64_t trace_collisions;
/* Times new record lands on spot previously occupied by freed alloc */
u_int64_t alloc_overwrites;
u_int64_t trace_overwrites;
/* Times a new alloc or trace is put into the hash table */
u_int64_t alloc_recorded;
u_int64_t trace_recorded;
/* Total number of outstanding allocs */
u_int64_t outstanding_allocs;
/* Times mleak_log returned false because couldn't acquire the lock */
u_int64_t total_conflicts;
};
#define HAS_M_TAG_STATS 1
struct m_tag_stats {
u_int32_t mts_id;
u_int16_t mts_type;
u_int16_t mts_len;
u_int64_t mts_alloc_count;
u_int64_t mts_alloc_failed;
u_int64_t mts_free_count;
};
#define M_TAG_TYPE_NAMES \
"other,dummynet,ipfilt,encap,inet6,ipsec,cfil_udp,pf_reass,aqm,drvaux"
#endif /* PRIVATE */
#ifdef KERNEL_PRIVATE
__BEGIN_DECLS
/*
* Exported (private)
*/
extern struct mbstat mbstat; /* statistics */
__END_DECLS
#endif /* KERNEL_PRIVATE */
#ifdef XNU_KERNEL_PRIVATE
__BEGIN_DECLS
/*
* Not exported (xnu private)
*/
/* flags to m_get/MGET */
/* Need to include malloc.h to get right options for malloc */
#include <sys/malloc.h>
struct mbuf;
/* length to m_copy to copy all */
#define M_COPYALL 1000000000
#define M_DONTWAIT M_NOWAIT
#define M_WAIT M_WAITOK
/* modes for m_copym and variants */
#define M_COPYM_NOOP_HDR 0 /* don't copy/move pkthdr contents */
#define M_COPYM_COPY_HDR 1 /* copy pkthdr from old to new */
#define M_COPYM_MOVE_HDR 2 /* move pkthdr from old to new */
#define M_COPYM_MUST_COPY_HDR 3 /* MUST copy pkthdr from old to new */
#define M_COPYM_MUST_MOVE_HDR 4 /* MUST move pkthdr from old to new */
extern void m_freem(struct mbuf *) __XNU_INTERNAL(m_freem);
extern u_int64_t mcl_to_paddr(char *);
extern void m_adj(struct mbuf *, int);
extern void m_cat(struct mbuf *, struct mbuf *);
extern void m_copydata(struct mbuf *, int, int, void *);
extern struct mbuf *m_copym(struct mbuf *, int, int, int);
extern struct mbuf *m_copym_mode(struct mbuf *, int, int, int, struct mbuf **, int *, uint32_t);
extern struct mbuf *m_get(int, int);
extern struct mbuf *m_gethdr(int, int);
extern struct mbuf *m_getpacket(void);
extern struct mbuf *m_getpackets(int, int, int);
extern struct mbuf *m_mclget(struct mbuf *, int);
extern void *__unsafe_indexable m_mtod(struct mbuf *);
extern struct mbuf *m_prepend_2(struct mbuf *, int, int, int);
extern struct mbuf *m_pullup(struct mbuf *, int);
extern struct mbuf *m_split(struct mbuf *, int, int);
extern void m_mclfree(caddr_t p);
extern bool mbuf_class_under_pressure(struct mbuf *m);
/*
* Accessors for the mbuf data range.
* The "lower bound" is the start of the memory range that m->m_data is allowed
* to point into. The "start" is where m->m_data points to; equivalent to the
* late m_mtod. The end is where m->m_data + m->m_len points to. The upper bound
* is the end of the memory range that m->m_data + m->m_len is allowed to point
* into.
* In a well-formed range, lower bound <= start <= end <= upper bound. An
* ill-formed range always means a programming error.
*/
__stateful_pure static inline caddr_t __header_bidi_indexable
m_mtod_lower_bound(struct mbuf *m)
{
return M_START(m);
}
__stateful_pure static inline caddr_t __header_bidi_indexable
m_mtod_current(struct mbuf *m)
{
caddr_t data = m_mtod_lower_bound(m);
return data + (m->m_data - (uintptr_t)data);
}
__stateful_pure static inline caddr_t __header_bidi_indexable
m_mtod_end(struct mbuf *m)
{
return m_mtod_current(m) + m->m_len;
}
__stateful_pure static inline caddr_t __header_bidi_indexable
m_mtod_upper_bound(struct mbuf *m)
{
return m_mtod_lower_bound(m) + M_SIZE(m);
}
static inline bool
m_has_mtype(const struct mbuf *m, int mtype_flags)
{
return (1 << m->m_type) & mtype_flags;
}
/*
* On platforms which require strict alignment (currently for anything but
* i386 or x86_64 or arm64), this macro checks whether the data pointer of an mbuf
* is 32-bit aligned (this is the expected minimum alignment for protocol
* headers), and assert otherwise.
*/
#if defined(__i386__) || defined(__x86_64__) || defined(__arm64__)
#define MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(_m)
#else /* !__i386__ && !__x86_64__ && !__arm64__ */
#define MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(_m) do { \
if (!IS_P2ALIGNED((_m)->m_data, sizeof (u_int32_t))) { \
if (((_m)->m_flags & M_PKTHDR) && \
(_m)->m_pkthdr.rcvif != NULL) { \
panic_plain("\n%s: mbuf %p data ptr %p is not " \
"32-bit aligned [%s: alignerrs=%lld]\n", \
__func__, (_m), \
(caddr_t __unsafe_indexable)(_m)->m_data, \
if_name((_m)->m_pkthdr.rcvif), \
(_m)->m_pkthdr.rcvif->if_alignerrs); \
} else { \
panic_plain("\n%s: mbuf %p data ptr %p is not " \
"32-bit aligned\n", \
__func__, (_m), \
(caddr_t __unsafe_indexable)(_m)->m_data); \
} \
} \
} while (0)
#endif /* !__i386__ && !__x86_64__ && !__arm64__ */
/* Maximum number of MBUF_SC values (excluding MBUF_SC_UNSPEC) */
#define MBUF_SC_MAX_CLASSES 10
/*
* These conversion macros rely on the corresponding MBUF_SC and
* MBUF_TC values in order to establish the following mapping:
*
* MBUF_SC_BK_SYS ] ==> MBUF_TC_BK
* MBUF_SC_BK ]
*
* MBUF_SC_BE ] ==> MBUF_TC_BE
* MBUF_SC_RD ]
* MBUF_SC_OAM ]
*
* MBUF_SC_AV ] ==> MBUF_TC_VI
* MBUF_SC_RV ]
* MBUF_SC_VI ]
* MBUF_SC_SIG ]
*
* MBUF_SC_VO ] ==> MBUF_TC_VO
* MBUF_SC_CTL ]
*
* The values assigned to each service class allows for a fast mapping to
* the corresponding MBUF_TC traffic class values, as well as to retrieve the
* assigned index; therefore care must be taken when comparing against these
* values. Use the corresponding class and index macros to retrieve the
* corresponding portion, and never assume that a higher class corresponds
* to a higher index.
*/
#define MBUF_SCVAL(x) ((x) & 0xffff)
#define MBUF_SCIDX(x) ((((x) >> 16) & 0xff) >> 3)
#define MBUF_SC2TC(_sc) (MBUF_SCVAL(_sc) >> 7)
#define MBUF_TC2SCVAL(_tc) ((_tc) << 7)
#define IS_MBUF_SC_BACKGROUND(_sc) (((_sc) == MBUF_SC_BK_SYS) || \
((_sc) == MBUF_SC_BK))
#define IS_MBUF_SC_REALTIME(_sc) ((_sc) >= MBUF_SC_AV && (_sc) <= MBUF_SC_VO)
#define IS_MBUF_SC_BESTEFFORT(_sc) ((_sc) == MBUF_SC_BE || \
(_sc) == MBUF_SC_RD || (_sc) == MBUF_SC_OAM)
#define SCIDX_BK_SYS MBUF_SCIDX(MBUF_SC_BK_SYS)
#define SCIDX_BK MBUF_SCIDX(MBUF_SC_BK)
#define SCIDX_BE MBUF_SCIDX(MBUF_SC_BE)
#define SCIDX_RD MBUF_SCIDX(MBUF_SC_RD)
#define SCIDX_OAM MBUF_SCIDX(MBUF_SC_OAM)
#define SCIDX_AV MBUF_SCIDX(MBUF_SC_AV)
#define SCIDX_RV MBUF_SCIDX(MBUF_SC_RV)
#define SCIDX_VI MBUF_SCIDX(MBUF_SC_VI)
#define SCIDX_SIG MBUF_SCIDX(MBUF_SC_SIG)
#define SCIDX_VO MBUF_SCIDX(MBUF_SC_VO)
#define SCIDX_CTL MBUF_SCIDX(MBUF_SC_CTL)
#define SCVAL_BK_SYS MBUF_SCVAL(MBUF_SC_BK_SYS)
#define SCVAL_BK MBUF_SCVAL(MBUF_SC_BK)
#define SCVAL_BE MBUF_SCVAL(MBUF_SC_BE)
#define SCVAL_RD MBUF_SCVAL(MBUF_SC_RD)
#define SCVAL_OAM MBUF_SCVAL(MBUF_SC_OAM)
#define SCVAL_AV MBUF_SCVAL(MBUF_SC_AV)
#define SCVAL_RV MBUF_SCVAL(MBUF_SC_RV)
#define SCVAL_VI MBUF_SCVAL(MBUF_SC_VI)
#define SCVAL_SIG MBUF_SCVAL(MBUF_SC_SIG)
#define SCVAL_VO MBUF_SCVAL(MBUF_SC_VO)
#define SCVAL_CTL MBUF_SCVAL(MBUF_SC_CTL)
#define MBUF_VALID_SC(c) \
(c == MBUF_SC_BK_SYS || c == MBUF_SC_BK || c == MBUF_SC_BE || \
c == MBUF_SC_RD || c == MBUF_SC_OAM || c == MBUF_SC_AV || \
c == MBUF_SC_RV || c == MBUF_SC_VI || c == MBUF_SC_SIG || \
c == MBUF_SC_VO || c == MBUF_SC_CTL)
#define MBUF_VALID_SCIDX(c) \
(c == SCIDX_BK_SYS || c == SCIDX_BK || c == SCIDX_BE || \
c == SCIDX_RD || c == SCIDX_OAM || c == SCIDX_AV || \
c == SCIDX_RV || c == SCIDX_VI || c == SCIDX_SIG || \
c == SCIDX_VO || c == SCIDX_CTL)
#define MBUF_VALID_SCVAL(c) \
(c == SCVAL_BK_SYS || c == SCVAL_BK || c == SCVAL_BE || \
c == SCVAL_RD || c == SCVAL_OAM || c == SCVAL_AV || \
c == SCVAL_RV || c == SCVAL_VI || c == SCVAL_SIG || \
c == SCVAL_VO || SCVAL_CTL)
extern unsigned char *mbutl; /* start VA of mbuf pool */
extern unsigned char *embutl; /* end VA of mbuf pool */
extern unsigned int nmbclusters; /* number of mapped clusters */
extern int njcl; /* # of jumbo clusters */
extern int njclbytes; /* size of a jumbo cluster */
extern int max_hdr; /* largest link+protocol header */
extern int max_datalen; /* MHLEN - max_hdr */
extern int max_linkhdr; /* largest link-level header */
/* Use max_protohdr instead of _max_protohdr */
extern int max_protohdr; /* largest protocol header */
__private_extern__ unsigned int mbuf_default_ncl(uint64_t);
__private_extern__ void mbinit(void);
__private_extern__ struct mbuf *m_clattach(struct mbuf *, int, caddr_t,
void (*)(caddr_t, u_int, caddr_t), size_t, caddr_t, int, int);
__private_extern__ caddr_t m_bigalloc(int);
__private_extern__ void m_bigfree(caddr_t, u_int, caddr_t);
__private_extern__ struct mbuf *m_mbigget(struct mbuf *, int);
__private_extern__ caddr_t m_16kalloc(int);
__private_extern__ void m_16kfree(caddr_t, u_int, caddr_t);
__private_extern__ struct mbuf *m_m16kget(struct mbuf *, int);
__private_extern__ int m_reinit(struct mbuf *, int);
__private_extern__ struct mbuf *m_free(struct mbuf *) __XNU_INTERNAL(m_free);
__private_extern__ struct mbuf *m_getclr(int, int);
__private_extern__ struct mbuf *m_getptr(struct mbuf *, int, int *);
__private_extern__ unsigned int m_length(struct mbuf *);
__private_extern__ unsigned int m_length2(struct mbuf *, struct mbuf **);
__private_extern__ unsigned int m_fixhdr(struct mbuf *);
__private_extern__ struct mbuf *m_defrag(struct mbuf *, int);
__private_extern__ struct mbuf *m_defrag_offset(struct mbuf *, u_int32_t, int);
__private_extern__ struct mbuf *m_prepend(struct mbuf *, int, int);
__private_extern__ struct mbuf *m_copyup(struct mbuf *, int, int);
__private_extern__ struct mbuf *m_retry(int, int);
__private_extern__ struct mbuf *m_retryhdr(int, int);
__private_extern__ int m_freem_list(struct mbuf *);
__private_extern__ int m_append(struct mbuf *, int, caddr_t);
__private_extern__ struct mbuf *m_last(struct mbuf *);
__private_extern__ struct mbuf *m_devget(char *, int, int, struct ifnet *,
void (*)(const void *, void *, size_t));
__private_extern__ struct mbuf *m_pulldown(struct mbuf *, int, int, int *);
__private_extern__ struct mbuf *m_getcl(int, int, int);
__private_extern__ caddr_t m_mclalloc(int);
__private_extern__ int m_mclhasreference(struct mbuf *);
__private_extern__ void m_copy_pkthdr(struct mbuf *, struct mbuf *);
__private_extern__ int m_dup_pkthdr(struct mbuf *, struct mbuf *, int);
__private_extern__ void m_copy_pftag(struct mbuf *, struct mbuf *);
__private_extern__ void m_copy_necptag(struct mbuf *, struct mbuf *);
__private_extern__ void m_copy_classifier(struct mbuf *, struct mbuf *);
__private_extern__ struct mbuf *m_dtom(void *);
__private_extern__ int m_mtocl(void *);
__private_extern__ union mcluster *m_cltom(int);
__private_extern__ void m_align(struct mbuf *, int);
__private_extern__ struct mbuf *m_normalize(struct mbuf *m);
__private_extern__ void m_mchtype(struct mbuf *m, int t);
__private_extern__ void m_mcheck(struct mbuf *);
__private_extern__ void m_copyback(struct mbuf *, int, int, const void *);
__private_extern__ struct mbuf *m_copyback_cow(struct mbuf *, int, int,
const void *, int);
__private_extern__ int m_makewritable(struct mbuf **, int, int, int);
__private_extern__ struct mbuf *m_dup(struct mbuf *m, int how);
__private_extern__ struct mbuf *m_copym_with_hdrs(struct mbuf *, int, int, int,
struct mbuf **, int *, uint32_t);
__private_extern__ struct mbuf *m_getpackethdrs(int, int);
__private_extern__ struct mbuf *m_getpacket_how(int);
__private_extern__ struct mbuf *m_getpackets_internal(unsigned int *, int,
int, int, size_t);
__private_extern__ struct mbuf *m_allocpacket_internal(unsigned int *, size_t,
unsigned int *, int, int, size_t);
__private_extern__ int m_ext_set_prop(struct mbuf *, uint32_t, uint32_t);
__private_extern__ uint32_t m_ext_get_prop(struct mbuf *);
__private_extern__ int m_ext_paired_is_active(struct mbuf *);
__private_extern__ void m_ext_paired_activate(struct mbuf *);
__private_extern__ void m_add_crumb(struct mbuf *, uint16_t);
__private_extern__ void mbuf_drain(boolean_t);
/*
* Packets may have annotations attached by affixing a list of "packet
* tags" to the pkthdr structure. Packet tags are dynamically allocated
* semi-opaque data structures that have a fixed header (struct m_tag)
* that specifies the size of the memory block and an <id,type> pair that
* identifies it. The id identifies the module and the type identifies the
* type of data for that module. The id of zero is reserved for the kernel.
*
* By default packet tags are allocated via kalloc except on Intel that still
* uses the legacy implementation of using mbufs for packet tags.
* This can be overidden via the boot-args 'mb_tag_mbuf'
*
* When kalloc is used for allocation, packet tags returned by m_tag_allocate have
* the default memory alignment implemented by kalloc.
*
* When mbufs are used for allocation packets tag returned by m_tag_allocate has
* the default memory alignment implemented by malloc.
*
* To reference the private data one should use a construct like:
* struct m_tag *mtag = m_tag_allocate(...);
* struct foo *p = (struct foo *)(mtag->m_tag_data);
*
* There should be no assumption on the location of the private data relative to the
* 'struct m_tag'
*
* When kalloc is used, packet tags that are internal to xnu use KERNEL_MODULE_TAG_ID and
* they are allocated with kalloc_type using a single container data structure that has
* the 'struct m_tag' followed by a data structure for the private data
*
* Packet tags that are allocated by KEXTs are external to xnu and type of the private data
* is unknown to xnu, so they are allocated in two chunks:
* - one allocation with kalloc_type for the 'struct m_tag'
* - one allocation using kheap_alloc as for the private data
*
* Note that packet tags of type KERNEL_TAG_TYPE_DRVAUX are allocated by KEXTs with
* a variable length so they are allocated in two chunks
*
* In all cases the 'struct m_tag' is allocated using kalloc_type to avoid type
* confusion.
*/
#define KERNEL_MODULE_TAG_ID 0
enum {
KERNEL_TAG_TYPE_NONE = 0,
KERNEL_TAG_TYPE_DUMMYNET = 1,
KERNEL_TAG_TYPE_IPFILT = 2,
KERNEL_TAG_TYPE_ENCAP = 3,
KERNEL_TAG_TYPE_INET6 = 4,
KERNEL_TAG_TYPE_IPSEC = 5,
KERNEL_TAG_TYPE_CFIL_UDP = 6,
KERNEL_TAG_TYPE_PF_REASS = 7,
KERNEL_TAG_TYPE_AQM = 8,
KERNEL_TAG_TYPE_DRVAUX = 9,
KERNEL_TAG_TYPE_COUNT = 10
};
/* Packet tag routines */
__private_extern__ struct m_tag *m_tag_alloc(u_int32_t, u_int16_t, int, int);
__private_extern__ struct m_tag *m_tag_create(u_int32_t, u_int16_t, int, int,
struct mbuf *);
__private_extern__ void m_tag_free(struct m_tag *);
__private_extern__ void m_tag_prepend(struct mbuf *, struct m_tag *);
__private_extern__ void m_tag_unlink(struct mbuf *, struct m_tag *);
__private_extern__ void m_tag_delete(struct mbuf *, struct m_tag *);
__private_extern__ void m_tag_delete_chain(struct mbuf *);
__private_extern__ struct m_tag *m_tag_locate(struct mbuf *, u_int32_t,
u_int16_t);
__private_extern__ struct m_tag *m_tag_copy(struct m_tag *, int);
__private_extern__ int m_tag_copy_chain(struct mbuf *, struct mbuf *, int);
__private_extern__ void m_tag_init(struct mbuf *, int);
__private_extern__ struct m_tag *m_tag_first(struct mbuf *);
__private_extern__ struct m_tag *m_tag_next(struct mbuf *, struct m_tag *);
typedef struct m_tag * (*m_tag_kalloc_func_t)(u_int32_t id, u_int16_t type, uint16_t len, int wait);
typedef void (*m_tag_kfree_func_t)(struct m_tag *tag);
int m_register_internal_tag_type(uint16_t type, uint16_t len, m_tag_kalloc_func_t alloc_func, m_tag_kfree_func_t free_func);
void m_tag_create_cookie(struct m_tag *);
void mbuf_tag_init(void);
__private_extern__ void m_scratch_init(struct mbuf *);
__private_extern__ u_int32_t m_scratch_get(struct mbuf *, u_int8_t **);
__private_extern__ void m_classifier_init(struct mbuf *, uint32_t);
__private_extern__ int m_set_service_class(struct mbuf *, mbuf_svc_class_t);
__private_extern__ mbuf_svc_class_t m_get_service_class(struct mbuf *);
__private_extern__ mbuf_svc_class_t m_service_class_from_idx(u_int32_t);
__private_extern__ mbuf_svc_class_t m_service_class_from_val(u_int32_t);
__private_extern__ int m_set_traffic_class(struct mbuf *, mbuf_traffic_class_t);
__private_extern__ mbuf_traffic_class_t m_get_traffic_class(struct mbuf *);
__private_extern__ struct m_tag *m_tag_alloc(u_int32_t, u_int16_t, int, int);
__private_extern__ void mbuf_tag_init(void);
#define ADDCARRY(_x) do { \
while (((_x) >> 16) != 0) \
(_x) = ((_x) >> 16) + ((_x) & 0xffff); \
} while (0)
__private_extern__ u_int16_t m_adj_sum16(struct mbuf *, u_int32_t,
u_int32_t, u_int32_t, u_int32_t);
__private_extern__ u_int16_t m_sum16(struct mbuf *, u_int32_t, u_int32_t);
__private_extern__ void m_set_ext(struct mbuf *, struct ext_ref *,
m_ext_free_func_t, caddr_t);
__private_extern__ struct ext_ref *m_get_rfa(struct mbuf *);
__private_extern__ m_ext_free_func_t m_get_ext_free(struct mbuf *);
__private_extern__ caddr_t m_get_ext_arg(struct mbuf *);
__private_extern__ void m_do_tx_compl_callback(struct mbuf *, struct ifnet *);
__private_extern__ mbuf_tx_compl_func m_get_tx_compl_callback(u_int32_t);
__END_DECLS
#endif /* XNU_KERNEL_PRIVATE */
#endif /* !_SYS_MBUF_H_ */