349 lines
12 KiB
C
349 lines
12 KiB
C
|
/**
|
||
|
* PANDA 3D SOFTWARE
|
||
|
* Copyright (c) Carnegie Mellon University. All rights reserved.
|
||
|
*
|
||
|
* All use of this software is subject to the terms of the revised BSD
|
||
|
* license. You should have received a copy of this license along
|
||
|
* with this source code in a file named "LICENSE."
|
||
|
*
|
||
|
* @file lmatrix3_src.h
|
||
|
* @author drose
|
||
|
* @date 1999-01-29
|
||
|
*/
|
||
|
|
||
|
class FLOATNAME(LMatrix4);
|
||
|
|
||
|
/**
|
||
|
* This is a 3-by-3 transform matrix. It typically will represent either a
|
||
|
* rotation-and-scale (no translation) matrix in 3-d, or a full affine matrix
|
||
|
* (rotation, scale, translation) in 2-d, e.g. for a texture matrix.
|
||
|
*/
|
||
|
class EXPCL_PANDA_LINMATH FLOATNAME(LMatrix3) {
|
||
|
public:
|
||
|
typedef FLOATTYPE numeric_type;
|
||
|
typedef const FLOATTYPE *iterator;
|
||
|
typedef const FLOATTYPE *const_iterator;
|
||
|
|
||
|
PUBLISHED:
|
||
|
enum {
|
||
|
num_components = 9,
|
||
|
is_int = 0
|
||
|
};
|
||
|
|
||
|
// These helper classes are used to support two-level operator [].
|
||
|
class Row {
|
||
|
private:
|
||
|
INLINE_LINMATH Row(FLOATTYPE *row);
|
||
|
PUBLISHED:
|
||
|
INLINE_LINMATH FLOATTYPE operator [](int i) const;
|
||
|
INLINE_LINMATH FLOATTYPE &operator [](int i);
|
||
|
INLINE_LINMATH static int size();
|
||
|
INLINE_LINMATH operator const FLOATNAME(LVecBase3) &() const;
|
||
|
public:
|
||
|
FLOATTYPE *_row;
|
||
|
friend class FLOATNAME(LMatrix3);
|
||
|
};
|
||
|
class CRow {
|
||
|
private:
|
||
|
INLINE_LINMATH CRow(const FLOATTYPE *row);
|
||
|
PUBLISHED:
|
||
|
INLINE_LINMATH FLOATTYPE operator [](int i) const;
|
||
|
INLINE_LINMATH static int size();
|
||
|
INLINE_LINMATH operator const FLOATNAME(LVecBase3) &() const;
|
||
|
public:
|
||
|
const FLOATTYPE *_row;
|
||
|
friend class FLOATNAME(LMatrix3);
|
||
|
};
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3)();
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3)(const FLOATNAME(LMatrix3) &other);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator = (
|
||
|
const FLOATNAME(LMatrix3) &other);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator = (FLOATTYPE fill_value);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3)(FLOATTYPE, FLOATTYPE, FLOATTYPE,
|
||
|
FLOATTYPE, FLOATTYPE, FLOATTYPE,
|
||
|
FLOATTYPE, FLOATTYPE, FLOATTYPE);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3)(const FLOATNAME(LVecBase3) &,
|
||
|
const FLOATNAME(LVecBase3) &,
|
||
|
const FLOATNAME(LVecBase3) &);
|
||
|
ALLOC_DELETED_CHAIN(FLOATNAME(LMatrix3));
|
||
|
|
||
|
EXTENSION(INLINE_LINMATH PyObject *__reduce__(PyObject *self) const);
|
||
|
|
||
|
void fill(FLOATTYPE fill_value);
|
||
|
INLINE_LINMATH void set(
|
||
|
FLOATTYPE e00, FLOATTYPE e01, FLOATTYPE e02,
|
||
|
FLOATTYPE e10, FLOATTYPE e11, FLOATTYPE e12,
|
||
|
FLOATTYPE e20, FLOATTYPE e21, FLOATTYPE e22);
|
||
|
|
||
|
INLINE_LINMATH CRow operator [](int i) const;
|
||
|
INLINE_LINMATH Row operator [](int i);
|
||
|
INLINE_LINMATH static int size();
|
||
|
|
||
|
INLINE_LINMATH void set_row(int row, const FLOATNAME(LVecBase3) &v);
|
||
|
INLINE_LINMATH void set_col(int col, const FLOATNAME(LVecBase3) &v);
|
||
|
|
||
|
INLINE_LINMATH void set_row(int row, const FLOATNAME(LVecBase2) &v);
|
||
|
INLINE_LINMATH void set_col(int col, const FLOATNAME(LVecBase2) &v);
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3) get_row(int row) const;
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3) get_col(int col) const;
|
||
|
MAKE_SEQ(get_rows, size, get_row);
|
||
|
MAKE_SEQ(get_cols, size, get_col);
|
||
|
MAKE_SEQ_PROPERTY(rows, size, get_row);
|
||
|
MAKE_SEQ_PROPERTY(cols, size, get_col);
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase2) get_row2(int row) const;
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase2) get_col2(int col) const;
|
||
|
MAKE_SEQ(get_col2s, size, get_col2);
|
||
|
MAKE_SEQ(get_row2s, size, get_row2);
|
||
|
|
||
|
// these versions inline better
|
||
|
INLINE_LINMATH void get_row(
|
||
|
FLOATNAME(LVecBase3) &result_vec, int row) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATTYPE &operator () (int row, int col);
|
||
|
INLINE_LINMATH FLOATTYPE operator () (int row, int col) const;
|
||
|
|
||
|
INLINE_LINMATH bool is_nan() const;
|
||
|
INLINE_LINMATH bool is_identity() const;
|
||
|
|
||
|
INLINE_LINMATH FLOATTYPE get_cell(int row, int col) const;
|
||
|
INLINE_LINMATH void set_cell(int row, int col, FLOATTYPE value);
|
||
|
|
||
|
INLINE_LINMATH const FLOATTYPE *get_data() const;
|
||
|
INLINE_LINMATH int get_num_components() const;
|
||
|
|
||
|
public:
|
||
|
INLINE_LINMATH iterator begin();
|
||
|
INLINE_LINMATH iterator end();
|
||
|
|
||
|
INLINE_LINMATH const_iterator begin() const;
|
||
|
INLINE_LINMATH const_iterator end() const;
|
||
|
|
||
|
PUBLISHED:
|
||
|
INLINE_LINMATH bool operator < (const FLOATNAME(LMatrix3) &other) const;
|
||
|
INLINE_LINMATH bool operator == (const FLOATNAME(LMatrix3) &other) const;
|
||
|
INLINE_LINMATH bool operator != (const FLOATNAME(LMatrix3) &other) const;
|
||
|
|
||
|
INLINE_LINMATH int compare_to(const FLOATNAME(LMatrix3) &other) const;
|
||
|
int compare_to(const FLOATNAME(LMatrix3) &other, FLOATTYPE threshold) const;
|
||
|
INLINE_LINMATH size_t get_hash() const;
|
||
|
INLINE_LINMATH size_t get_hash(FLOATTYPE threshold) const;
|
||
|
INLINE_LINMATH size_t add_hash(size_t hash) const;
|
||
|
INLINE_LINMATH size_t add_hash(size_t hash, FLOATTYPE threshold) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3)
|
||
|
xform(const FLOATNAME(LVecBase3) &v) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase2)
|
||
|
xform_point(const FLOATNAME(LVecBase2) &v) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase2)
|
||
|
xform_vec(const FLOATNAME(LVecBase2) &v) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3)
|
||
|
xform_vec(const FLOATNAME(LVecBase3) &v) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LVecBase3)
|
||
|
xform_vec_general(const FLOATNAME(LVecBase3) &v) const;
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
xform_in_place(FLOATNAME(LVecBase3) &v) const;
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
xform_point_in_place(FLOATNAME(LVecBase2) &v) const;
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
xform_vec_in_place(FLOATNAME(LVecBase2) &v) const;
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
xform_vec_in_place(FLOATNAME(LVecBase3) &v) const;
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
xform_vec_general_in_place(FLOATNAME(LVecBase3) &v) const;
|
||
|
|
||
|
// this = other1 * other2
|
||
|
INLINE_LINMATH void multiply(
|
||
|
const FLOATNAME(LMatrix3) &other1, const FLOATNAME(LMatrix3) &other2);
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) operator * (
|
||
|
const FLOATNAME(LMatrix3) &other) const;
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) operator * (FLOATTYPE scalar) const;
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) operator / (FLOATTYPE scalar) const;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator += (
|
||
|
const FLOATNAME(LMatrix3) &other);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator -= (
|
||
|
const FLOATNAME(LMatrix3) &other);
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator *= (
|
||
|
const FLOATNAME(LMatrix3) &other);
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator *= (FLOATTYPE scalar);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) &operator /= (FLOATTYPE scalar);
|
||
|
|
||
|
INLINE_LINMATH void componentwise_mult(const FLOATNAME(LMatrix3) &other);
|
||
|
|
||
|
INLINE_LINMATH FLOATTYPE determinant() const;
|
||
|
|
||
|
INLINE_LINMATH void transpose_from(const FLOATNAME(LMatrix3) &other);
|
||
|
INLINE_LINMATH void transpose_in_place();
|
||
|
|
||
|
INLINE_LINMATH bool invert_from(const FLOATNAME(LMatrix3) &other);
|
||
|
INLINE_LINMATH bool invert_in_place();
|
||
|
|
||
|
INLINE_LINMATH bool invert_transpose_from(const FLOATNAME(LMatrix3) &other);
|
||
|
INLINE_LINMATH bool invert_transpose_from(const FLOATNAME(LMatrix4) &other);
|
||
|
|
||
|
static INLINE_LINMATH const FLOATNAME(LMatrix3) &ident_mat();
|
||
|
|
||
|
// A 3x3 matrix is likely to be used for one of two purposes. In 2-d
|
||
|
// coordinate space (e.g. texture or surface coordinates), it can contain a
|
||
|
// full affine transform, with scale, rotate, translate. In 3-d coordinate
|
||
|
// space, it can contain only scale andor rotate; e.g., the upper 3x3
|
||
|
// rectangle of a full 4x4 matrix.
|
||
|
|
||
|
// The following named constructors return 3x3 matrices suitable for affine
|
||
|
// transforms in 2-d coordinate space.
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
set_translate_mat(const FLOATNAME(LVecBase2) &trans);
|
||
|
INLINE_LINMATH void
|
||
|
set_rotate_mat(FLOATTYPE angle);
|
||
|
INLINE_LINMATH void
|
||
|
set_scale_mat(const FLOATNAME(LVecBase2) &scale);
|
||
|
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
translate_mat(const FLOATNAME(LVecBase2) &trans);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
translate_mat(FLOATTYPE tx, FLOATTYPE ty);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
rotate_mat(FLOATTYPE angle);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
scale_mat(const FLOATNAME(LVecBase2) &scale);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
scale_mat(FLOATTYPE sx, FLOATTYPE sy);
|
||
|
|
||
|
// The following named constructors return 3x3 matrices suitable for
|
||
|
// scalerotate transforms in 3-d coordinate space.
|
||
|
void
|
||
|
set_rotate_mat(FLOATTYPE angle,
|
||
|
const FLOATNAME(LVecBase3) &axis,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
void
|
||
|
set_rotate_mat_normaxis(FLOATTYPE angle,
|
||
|
const FLOATNAME(LVecBase3) &axis,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
rotate_mat(FLOATTYPE angle,
|
||
|
const FLOATNAME(LVecBase3) &axis,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
rotate_mat_normaxis(FLOATTYPE angle,
|
||
|
const FLOATNAME(LVecBase3) &axis,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
set_scale_mat(const FLOATNAME(LVecBase3) &scale);
|
||
|
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
scale_mat(const FLOATNAME(LVecBase3) &scale);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
scale_mat(FLOATTYPE sx, FLOATTYPE sy, FLOATTYPE sz);
|
||
|
|
||
|
INLINE_LINMATH void
|
||
|
set_shear_mat(const FLOATNAME(LVecBase3) &shear,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
shear_mat(const FLOATNAME(LVecBase3) &shear,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
shear_mat(FLOATTYPE shxy, FLOATTYPE shxz, FLOATTYPE shyz,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
|
||
|
void
|
||
|
set_scale_shear_mat(const FLOATNAME(LVecBase3) &scale,
|
||
|
const FLOATNAME(LVecBase3) &shear,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
scale_shear_mat(const FLOATNAME(LVecBase3) &scale,
|
||
|
const FLOATNAME(LVecBase3) &shear,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
static INLINE_LINMATH FLOATNAME(LMatrix3)
|
||
|
scale_shear_mat(FLOATTYPE sx, FLOATTYPE sy, FLOATTYPE sz,
|
||
|
FLOATTYPE shxy, FLOATTYPE shxz, FLOATTYPE shyz,
|
||
|
CoordinateSystem cs = CS_default);
|
||
|
|
||
|
static const FLOATNAME(LMatrix3) &convert_mat(CoordinateSystem from,
|
||
|
CoordinateSystem to);
|
||
|
|
||
|
// We don't have a scale_mat() that takes a single uniform scale parameter,
|
||
|
// because it would be ambiguous whether we mean a 2-d or a 3-d scale.
|
||
|
|
||
|
bool almost_equal(const FLOATNAME(LMatrix3) &other,
|
||
|
FLOATTYPE threshold) const;
|
||
|
|
||
|
INLINE_LINMATH bool almost_equal(const FLOATNAME(LMatrix3) &other) const;
|
||
|
|
||
|
void output(std::ostream &out) const;
|
||
|
void write(std::ostream &out, int indent_level = 0) const;
|
||
|
EXTENSION(INLINE_LINMATH std::string __repr__() const);
|
||
|
|
||
|
INLINE_LINMATH void generate_hash(ChecksumHashGenerator &hashgen) const;
|
||
|
void generate_hash(
|
||
|
ChecksumHashGenerator &hashgen, FLOATTYPE threshold) const;
|
||
|
|
||
|
void write_datagram_fixed(Datagram &destination) const;
|
||
|
void read_datagram_fixed(DatagramIterator &scan);
|
||
|
void write_datagram(Datagram &destination) const;
|
||
|
void read_datagram(DatagramIterator &source);
|
||
|
|
||
|
public:
|
||
|
// The underlying implementation is via the Eigen library, if available.
|
||
|
|
||
|
// We don't bother to align LMatrix3, since it won't benefit from SSE2
|
||
|
// optimizations anyway (it's an add number of floats).
|
||
|
typedef UNALIGNED_LINMATH_MATRIX(FLOATTYPE, 3, 3) EMatrix3;
|
||
|
EMatrix3 _m;
|
||
|
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3)(const EMatrix3 &m) : _m(m) { }
|
||
|
|
||
|
private:
|
||
|
static const FLOATNAME(LMatrix3) _ident_mat;
|
||
|
static const FLOATNAME(LMatrix3) _y_to_z_up_mat;
|
||
|
static const FLOATNAME(LMatrix3) _z_to_y_up_mat;
|
||
|
static const FLOATNAME(LMatrix3) _flip_y_mat;
|
||
|
static const FLOATNAME(LMatrix3) _flip_z_mat;
|
||
|
static const FLOATNAME(LMatrix3) _lz_to_ry_mat;
|
||
|
static const FLOATNAME(LMatrix3) _ly_to_rz_mat;
|
||
|
|
||
|
public:
|
||
|
static TypeHandle get_class_type() {
|
||
|
return _type_handle;
|
||
|
}
|
||
|
static void init_type();
|
||
|
|
||
|
private:
|
||
|
static TypeHandle _type_handle;
|
||
|
};
|
||
|
|
||
|
INLINE std::ostream &operator << (std::ostream &out, const FLOATNAME(LMatrix3) &mat) {
|
||
|
mat.output(out);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
BEGIN_PUBLISH
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) transpose(const FLOATNAME(LMatrix3) &a);
|
||
|
INLINE_LINMATH FLOATNAME(LMatrix3) invert(const FLOATNAME(LMatrix3) &a);
|
||
|
END_PUBLISH
|
||
|
|
||
|
// We can safely include lmatrix4_src.h down here and avoid circular
|
||
|
// dependencies.
|
||
|
#include "lmatrix4_src.h"
|
||
|
|
||
|
#include "lmatrix3_src.I"
|