historical/toontown-classic.git/panda/include/lmatrix3_src.h
2024-01-16 11:20:27 -06:00

348 lines
12 KiB
C++

/**
* PANDA 3D SOFTWARE
* Copyright (c) Carnegie Mellon University. All rights reserved.
*
* All use of this software is subject to the terms of the revised BSD
* license. You should have received a copy of this license along
* with this source code in a file named "LICENSE."
*
* @file lmatrix3_src.h
* @author drose
* @date 1999-01-29
*/
class FLOATNAME(LMatrix4);
/**
* This is a 3-by-3 transform matrix. It typically will represent either a
* rotation-and-scale (no translation) matrix in 3-d, or a full affine matrix
* (rotation, scale, translation) in 2-d, e.g. for a texture matrix.
*/
class EXPCL_PANDA_LINMATH FLOATNAME(LMatrix3) {
public:
typedef FLOATTYPE numeric_type;
typedef const FLOATTYPE *iterator;
typedef const FLOATTYPE *const_iterator;
PUBLISHED:
enum {
num_components = 9,
is_int = 0
};
// These helper classes are used to support two-level operator [].
class Row {
private:
INLINE_LINMATH Row(FLOATTYPE *row);
PUBLISHED:
INLINE_LINMATH FLOATTYPE operator [](int i) const;
INLINE_LINMATH FLOATTYPE &operator [](int i);
INLINE_LINMATH static int size();
INLINE_LINMATH operator const FLOATNAME(LVecBase3) &() const;
public:
FLOATTYPE *_row;
friend class FLOATNAME(LMatrix3);
};
class CRow {
private:
INLINE_LINMATH CRow(const FLOATTYPE *row);
PUBLISHED:
INLINE_LINMATH FLOATTYPE operator [](int i) const;
INLINE_LINMATH static int size();
INLINE_LINMATH operator const FLOATNAME(LVecBase3) &() const;
public:
const FLOATTYPE *_row;
friend class FLOATNAME(LMatrix3);
};
INLINE_LINMATH FLOATNAME(LMatrix3)();
INLINE_LINMATH FLOATNAME(LMatrix3)(const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH FLOATNAME(LMatrix3) &operator = (
const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH FLOATNAME(LMatrix3) &operator = (FLOATTYPE fill_value);
INLINE_LINMATH FLOATNAME(LMatrix3)(FLOATTYPE, FLOATTYPE, FLOATTYPE,
FLOATTYPE, FLOATTYPE, FLOATTYPE,
FLOATTYPE, FLOATTYPE, FLOATTYPE);
INLINE_LINMATH FLOATNAME(LMatrix3)(const FLOATNAME(LVecBase3) &,
const FLOATNAME(LVecBase3) &,
const FLOATNAME(LVecBase3) &);
ALLOC_DELETED_CHAIN(FLOATNAME(LMatrix3));
EXTENSION(INLINE_LINMATH PyObject *__reduce__(PyObject *self) const);
void fill(FLOATTYPE fill_value);
INLINE_LINMATH void set(
FLOATTYPE e00, FLOATTYPE e01, FLOATTYPE e02,
FLOATTYPE e10, FLOATTYPE e11, FLOATTYPE e12,
FLOATTYPE e20, FLOATTYPE e21, FLOATTYPE e22);
INLINE_LINMATH CRow operator [](int i) const;
INLINE_LINMATH Row operator [](int i);
INLINE_LINMATH static int size();
INLINE_LINMATH void set_row(int row, const FLOATNAME(LVecBase3) &v);
INLINE_LINMATH void set_col(int col, const FLOATNAME(LVecBase3) &v);
INLINE_LINMATH void set_row(int row, const FLOATNAME(LVecBase2) &v);
INLINE_LINMATH void set_col(int col, const FLOATNAME(LVecBase2) &v);
INLINE_LINMATH FLOATNAME(LVecBase3) get_row(int row) const;
INLINE_LINMATH FLOATNAME(LVecBase3) get_col(int col) const;
MAKE_SEQ(get_rows, size, get_row);
MAKE_SEQ(get_cols, size, get_col);
MAKE_SEQ_PROPERTY(rows, size, get_row);
MAKE_SEQ_PROPERTY(cols, size, get_col);
INLINE_LINMATH FLOATNAME(LVecBase2) get_row2(int row) const;
INLINE_LINMATH FLOATNAME(LVecBase2) get_col2(int col) const;
MAKE_SEQ(get_col2s, size, get_col2);
MAKE_SEQ(get_row2s, size, get_row2);
// these versions inline better
INLINE_LINMATH void get_row(
FLOATNAME(LVecBase3) &result_vec, int row) const;
INLINE_LINMATH FLOATTYPE &operator () (int row, int col);
INLINE_LINMATH FLOATTYPE operator () (int row, int col) const;
INLINE_LINMATH bool is_nan() const;
INLINE_LINMATH bool is_identity() const;
INLINE_LINMATH FLOATTYPE get_cell(int row, int col) const;
INLINE_LINMATH void set_cell(int row, int col, FLOATTYPE value);
INLINE_LINMATH const FLOATTYPE *get_data() const;
INLINE_LINMATH int get_num_components() const;
public:
INLINE_LINMATH iterator begin();
INLINE_LINMATH iterator end();
INLINE_LINMATH const_iterator begin() const;
INLINE_LINMATH const_iterator end() const;
PUBLISHED:
INLINE_LINMATH bool operator < (const FLOATNAME(LMatrix3) &other) const;
INLINE_LINMATH bool operator == (const FLOATNAME(LMatrix3) &other) const;
INLINE_LINMATH bool operator != (const FLOATNAME(LMatrix3) &other) const;
INLINE_LINMATH int compare_to(const FLOATNAME(LMatrix3) &other) const;
int compare_to(const FLOATNAME(LMatrix3) &other, FLOATTYPE threshold) const;
INLINE_LINMATH size_t get_hash() const;
INLINE_LINMATH size_t get_hash(FLOATTYPE threshold) const;
INLINE_LINMATH size_t add_hash(size_t hash) const;
INLINE_LINMATH size_t add_hash(size_t hash, FLOATTYPE threshold) const;
INLINE_LINMATH FLOATNAME(LVecBase3)
xform(const FLOATNAME(LVecBase3) &v) const;
INLINE_LINMATH FLOATNAME(LVecBase2)
xform_point(const FLOATNAME(LVecBase2) &v) const;
INLINE_LINMATH FLOATNAME(LVecBase2)
xform_vec(const FLOATNAME(LVecBase2) &v) const;
INLINE_LINMATH FLOATNAME(LVecBase3)
xform_vec(const FLOATNAME(LVecBase3) &v) const;
INLINE_LINMATH FLOATNAME(LVecBase3)
xform_vec_general(const FLOATNAME(LVecBase3) &v) const;
INLINE_LINMATH void
xform_in_place(FLOATNAME(LVecBase3) &v) const;
INLINE_LINMATH void
xform_point_in_place(FLOATNAME(LVecBase2) &v) const;
INLINE_LINMATH void
xform_vec_in_place(FLOATNAME(LVecBase2) &v) const;
INLINE_LINMATH void
xform_vec_in_place(FLOATNAME(LVecBase3) &v) const;
INLINE_LINMATH void
xform_vec_general_in_place(FLOATNAME(LVecBase3) &v) const;
// this = other1 * other2
INLINE_LINMATH void multiply(
const FLOATNAME(LMatrix3) &other1, const FLOATNAME(LMatrix3) &other2);
INLINE_LINMATH FLOATNAME(LMatrix3) operator * (
const FLOATNAME(LMatrix3) &other) const;
INLINE_LINMATH FLOATNAME(LMatrix3) operator * (FLOATTYPE scalar) const;
INLINE_LINMATH FLOATNAME(LMatrix3) operator / (FLOATTYPE scalar) const;
INLINE_LINMATH FLOATNAME(LMatrix3) &operator += (
const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH FLOATNAME(LMatrix3) &operator -= (
const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH FLOATNAME(LMatrix3) &operator *= (
const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH FLOATNAME(LMatrix3) &operator *= (FLOATTYPE scalar);
INLINE_LINMATH FLOATNAME(LMatrix3) &operator /= (FLOATTYPE scalar);
INLINE_LINMATH void componentwise_mult(const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH FLOATTYPE determinant() const;
INLINE_LINMATH void transpose_from(const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH void transpose_in_place();
INLINE_LINMATH bool invert_from(const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH bool invert_in_place();
INLINE_LINMATH bool invert_transpose_from(const FLOATNAME(LMatrix3) &other);
INLINE_LINMATH bool invert_transpose_from(const FLOATNAME(LMatrix4) &other);
static INLINE_LINMATH const FLOATNAME(LMatrix3) &ident_mat();
// A 3x3 matrix is likely to be used for one of two purposes. In 2-d
// coordinate space (e.g. texture or surface coordinates), it can contain a
// full affine transform, with scale, rotate, translate. In 3-d coordinate
// space, it can contain only scale andor rotate; e.g., the upper 3x3
// rectangle of a full 4x4 matrix.
// The following named constructors return 3x3 matrices suitable for affine
// transforms in 2-d coordinate space.
INLINE_LINMATH void
set_translate_mat(const FLOATNAME(LVecBase2) &trans);
INLINE_LINMATH void
set_rotate_mat(FLOATTYPE angle);
INLINE_LINMATH void
set_scale_mat(const FLOATNAME(LVecBase2) &scale);
static INLINE_LINMATH FLOATNAME(LMatrix3)
translate_mat(const FLOATNAME(LVecBase2) &trans);
static INLINE_LINMATH FLOATNAME(LMatrix3)
translate_mat(FLOATTYPE tx, FLOATTYPE ty);
static INLINE_LINMATH FLOATNAME(LMatrix3)
rotate_mat(FLOATTYPE angle);
static INLINE_LINMATH FLOATNAME(LMatrix3)
scale_mat(const FLOATNAME(LVecBase2) &scale);
static INLINE_LINMATH FLOATNAME(LMatrix3)
scale_mat(FLOATTYPE sx, FLOATTYPE sy);
// The following named constructors return 3x3 matrices suitable for
// scalerotate transforms in 3-d coordinate space.
void
set_rotate_mat(FLOATTYPE angle,
const FLOATNAME(LVecBase3) &axis,
CoordinateSystem cs = CS_default);
void
set_rotate_mat_normaxis(FLOATTYPE angle,
const FLOATNAME(LVecBase3) &axis,
CoordinateSystem cs = CS_default);
static INLINE_LINMATH FLOATNAME(LMatrix3)
rotate_mat(FLOATTYPE angle,
const FLOATNAME(LVecBase3) &axis,
CoordinateSystem cs = CS_default);
static INLINE_LINMATH FLOATNAME(LMatrix3)
rotate_mat_normaxis(FLOATTYPE angle,
const FLOATNAME(LVecBase3) &axis,
CoordinateSystem cs = CS_default);
INLINE_LINMATH void
set_scale_mat(const FLOATNAME(LVecBase3) &scale);
static INLINE_LINMATH FLOATNAME(LMatrix3)
scale_mat(const FLOATNAME(LVecBase3) &scale);
static INLINE_LINMATH FLOATNAME(LMatrix3)
scale_mat(FLOATTYPE sx, FLOATTYPE sy, FLOATTYPE sz);
INLINE_LINMATH void
set_shear_mat(const FLOATNAME(LVecBase3) &shear,
CoordinateSystem cs = CS_default);
static INLINE_LINMATH FLOATNAME(LMatrix3)
shear_mat(const FLOATNAME(LVecBase3) &shear,
CoordinateSystem cs = CS_default);
static INLINE_LINMATH FLOATNAME(LMatrix3)
shear_mat(FLOATTYPE shxy, FLOATTYPE shxz, FLOATTYPE shyz,
CoordinateSystem cs = CS_default);
void
set_scale_shear_mat(const FLOATNAME(LVecBase3) &scale,
const FLOATNAME(LVecBase3) &shear,
CoordinateSystem cs = CS_default);
static INLINE_LINMATH FLOATNAME(LMatrix3)
scale_shear_mat(const FLOATNAME(LVecBase3) &scale,
const FLOATNAME(LVecBase3) &shear,
CoordinateSystem cs = CS_default);
static INLINE_LINMATH FLOATNAME(LMatrix3)
scale_shear_mat(FLOATTYPE sx, FLOATTYPE sy, FLOATTYPE sz,
FLOATTYPE shxy, FLOATTYPE shxz, FLOATTYPE shyz,
CoordinateSystem cs = CS_default);
static const FLOATNAME(LMatrix3) &convert_mat(CoordinateSystem from,
CoordinateSystem to);
// We don't have a scale_mat() that takes a single uniform scale parameter,
// because it would be ambiguous whether we mean a 2-d or a 3-d scale.
bool almost_equal(const FLOATNAME(LMatrix3) &other,
FLOATTYPE threshold) const;
INLINE_LINMATH bool almost_equal(const FLOATNAME(LMatrix3) &other) const;
void output(std::ostream &out) const;
void write(std::ostream &out, int indent_level = 0) const;
EXTENSION(INLINE_LINMATH std::string __repr__() const);
INLINE_LINMATH void generate_hash(ChecksumHashGenerator &hashgen) const;
void generate_hash(
ChecksumHashGenerator &hashgen, FLOATTYPE threshold) const;
void write_datagram_fixed(Datagram &destination) const;
void read_datagram_fixed(DatagramIterator &scan);
void write_datagram(Datagram &destination) const;
void read_datagram(DatagramIterator &source);
public:
// The underlying implementation is via the Eigen library, if available.
// We don't bother to align LMatrix3, since it won't benefit from SSE2
// optimizations anyway (it's an add number of floats).
typedef UNALIGNED_LINMATH_MATRIX(FLOATTYPE, 3, 3) EMatrix3;
EMatrix3 _m;
INLINE_LINMATH FLOATNAME(LMatrix3)(const EMatrix3 &m) : _m(m) { }
private:
static const FLOATNAME(LMatrix3) _ident_mat;
static const FLOATNAME(LMatrix3) _y_to_z_up_mat;
static const FLOATNAME(LMatrix3) _z_to_y_up_mat;
static const FLOATNAME(LMatrix3) _flip_y_mat;
static const FLOATNAME(LMatrix3) _flip_z_mat;
static const FLOATNAME(LMatrix3) _lz_to_ry_mat;
static const FLOATNAME(LMatrix3) _ly_to_rz_mat;
public:
static TypeHandle get_class_type() {
return _type_handle;
}
static void init_type();
private:
static TypeHandle _type_handle;
};
INLINE std::ostream &operator << (std::ostream &out, const FLOATNAME(LMatrix3) &mat) {
mat.output(out);
return out;
}
BEGIN_PUBLISH
INLINE_LINMATH FLOATNAME(LMatrix3) transpose(const FLOATNAME(LMatrix3) &a);
INLINE_LINMATH FLOATNAME(LMatrix3) invert(const FLOATNAME(LMatrix3) &a);
END_PUBLISH
// We can safely include lmatrix4_src.h down here and avoid circular
// dependencies.
#include "lmatrix4_src.h"
#include "lmatrix3_src.I"