historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/capstone/arch/AArch64/AArch64InstPrinter.c
2024-01-16 11:20:27 -06:00

1397 lines
48 KiB
C

//==-- AArch64InstPrinter.cpp - Convert AArch64 MCInst to assembly syntax --==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class prints an AArch64 MCInst to a .s file.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2014 */
#ifdef CAPSTONE_HAS_ARM64
#include <platform.h>
#include <stdio.h>
#include <stdlib.h>
#include "AArch64InstPrinter.h"
#include "AArch64BaseInfo.h"
#include "../../utils.h"
#include "../../MCInst.h"
#include "../../SStream.h"
#include "../../MCRegisterInfo.h"
#include "../../MathExtras.h"
#include "AArch64Mapping.h"
#include "AArch64AddressingModes.h"
#define GET_REGINFO_ENUM
#include "AArch64GenRegisterInfo.inc"
#define GET_INSTRINFO_ENUM
#include "AArch64GenInstrInfo.inc"
static const char *getRegisterName(unsigned RegNo, int AltIdx);
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O);
static bool printSysAlias(MCInst *MI, SStream *O);
static char *printAliasInstr(MCInst *MI, SStream *OS, void *info);
static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI);
static void printShifter(MCInst *MI, unsigned OpNum, SStream *O);
static void set_mem_access(MCInst *MI, bool status)
{
if (MI->csh->detail != CS_OPT_ON)
return;
MI->csh->doing_mem = status;
if (status) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_MEM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.base = ARM64_REG_INVALID;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.index = ARM64_REG_INVALID;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = 0;
} else {
// done, create the next operand slot
MI->flat_insn->detail->arm64.op_count++;
}
}
void AArch64_printInst(MCInst *MI, SStream *O, void *Info)
{
// Check for special encodings and print the canonical alias instead.
unsigned Opcode = MCInst_getOpcode(MI);
int LSB;
int Width;
char *mnem;
if (Opcode == AArch64_SYSxt && printSysAlias(MI, O))
return;
// SBFM/UBFM should print to a nicer aliased form if possible.
if (Opcode == AArch64_SBFMXri || Opcode == AArch64_SBFMWri ||
Opcode == AArch64_UBFMXri || Opcode == AArch64_UBFMWri) {
MCOperand *Op0 = MCInst_getOperand(MI, 0);
MCOperand *Op1 = MCInst_getOperand(MI, 1);
MCOperand *Op2 = MCInst_getOperand(MI, 2);
MCOperand *Op3 = MCInst_getOperand(MI, 3);
bool IsSigned = (Opcode == AArch64_SBFMXri || Opcode == AArch64_SBFMWri);
bool Is64Bit = (Opcode == AArch64_SBFMXri || Opcode == AArch64_UBFMXri);
if (MCOperand_isImm(Op2) && MCOperand_getImm(Op2) == 0 && MCOperand_isImm(Op3)) {
const char *AsmMnemonic = NULL;
switch (MCOperand_getImm(Op3)) {
default:
break;
case 7:
if (IsSigned)
AsmMnemonic = "sxtb";
else if (!Is64Bit)
AsmMnemonic = "uxtb";
break;
case 15:
if (IsSigned)
AsmMnemonic = "sxth";
else if (!Is64Bit)
AsmMnemonic = "uxth";
break;
case 31:
// *xtw is only valid for signed 64-bit operations.
if (Is64Bit && IsSigned)
AsmMnemonic = "sxtw";
break;
}
if (AsmMnemonic) {
SStream_concat(O, "%s\t%s, %s", AsmMnemonic,
getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName),
getRegisterName(getWRegFromXReg(MCOperand_getReg(Op1)), AArch64_NoRegAltName));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = getWRegFromXReg(MCOperand_getReg(Op1));
MI->flat_insn->detail->arm64.op_count++;
}
MCInst_setOpcodePub(MI, AArch64_map_insn(AsmMnemonic));
return;
}
}
// All immediate shifts are aliases, implemented using the Bitfield
// instruction. In all cases the immediate shift amount shift must be in
// the range 0 to (reg.size -1).
if (MCOperand_isImm(Op2) && MCOperand_isImm(Op3)) {
const char *AsmMnemonic = NULL;
int shift = 0;
int immr = (int)MCOperand_getImm(Op2);
int imms = (int)MCOperand_getImm(Op3);
if (Opcode == AArch64_UBFMWri && imms != 0x1F && ((imms + 1) == immr)) {
AsmMnemonic = "lsl";
shift = 31 - imms;
} else if (Opcode == AArch64_UBFMXri && imms != 0x3f &&
((imms + 1 == immr))) {
AsmMnemonic = "lsl";
shift = 63 - imms;
} else if (Opcode == AArch64_UBFMWri && imms == 0x1f) {
AsmMnemonic = "lsr";
shift = immr;
} else if (Opcode == AArch64_UBFMXri && imms == 0x3f) {
AsmMnemonic = "lsr";
shift = immr;
} else if (Opcode == AArch64_SBFMWri && imms == 0x1f) {
AsmMnemonic = "asr";
shift = immr;
} else if (Opcode == AArch64_SBFMXri && imms == 0x3f) {
AsmMnemonic = "asr";
shift = immr;
}
if (AsmMnemonic) {
SStream_concat(O, "%s\t%s, %s, ", AsmMnemonic,
getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName),
getRegisterName(MCOperand_getReg(Op1), AArch64_NoRegAltName));
printInt32Bang(O, shift);
MCInst_setOpcodePub(MI, AArch64_map_insn(AsmMnemonic));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op1);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = shift;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
}
// SBFIZ/UBFIZ aliases
if (MCOperand_getImm(Op2) > MCOperand_getImm(Op3)) {
SStream_concat(O, "%s\t%s, %s, ", (IsSigned ? "sbfiz" : "ubfiz"),
getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName),
getRegisterName(MCOperand_getReg(Op1), AArch64_NoRegAltName));
printInt32Bang(O, (int)((Is64Bit ? 64 : 32) - MCOperand_getImm(Op2)));
SStream_concat0(O, ", ");
printInt32Bang(O, (int)MCOperand_getImm(Op3) + 1);
MCInst_setOpcodePub(MI, AArch64_map_insn(IsSigned ? "sbfiz" : "ubfiz"));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op1);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = (Is64Bit ? 64 : 32) - (int)MCOperand_getImm(Op2);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op3) + 1;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
// Otherwise SBFX/UBFX is the preferred form
SStream_concat(O, "%s\t%s, %s, ", (IsSigned ? "sbfx" : "ubfx"),
getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName),
getRegisterName(MCOperand_getReg(Op1), AArch64_NoRegAltName));
printInt32Bang(O, (int)MCOperand_getImm(Op2));
SStream_concat0(O, ", ");
printInt32Bang(O, (int)MCOperand_getImm(Op3) - (int)MCOperand_getImm(Op2) + 1);
MCInst_setOpcodePub(MI, AArch64_map_insn(IsSigned ? "sbfx" : "ubfx"));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op1);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op2);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op3) - MCOperand_getImm(Op2) + 1;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
if (Opcode == AArch64_BFMXri || Opcode == AArch64_BFMWri) {
MCOperand *Op0 = MCInst_getOperand(MI, 0); // Op1 == Op0
MCOperand *Op2 = MCInst_getOperand(MI, 2);
int ImmR = (int)MCOperand_getImm(MCInst_getOperand(MI, 3));
int ImmS = (int)MCOperand_getImm(MCInst_getOperand(MI, 4));
// BFI alias
if (ImmS < ImmR) {
int BitWidth = Opcode == AArch64_BFMXri ? 64 : 32;
LSB = (BitWidth - ImmR) % BitWidth;
Width = ImmS + 1;
SStream_concat(O, "bfi\t%s, %s, ",
getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName),
getRegisterName(MCOperand_getReg(Op2), AArch64_NoRegAltName));
printInt32Bang(O, LSB);
SStream_concat0(O, ", ");
printInt32Bang(O, Width);
MCInst_setOpcodePub(MI, AArch64_map_insn("bfi"));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op2);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = LSB;
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Width;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
LSB = ImmR;
Width = ImmS - ImmR + 1;
// Otherwise BFXIL the preferred form
SStream_concat(O, "bfxil\t%s, %s, ",
getRegisterName(MCOperand_getReg(Op0), AArch64_NoRegAltName),
getRegisterName(MCOperand_getReg(Op2), AArch64_NoRegAltName));
printInt32Bang(O, LSB);
SStream_concat0(O, ", ");
printInt32Bang(O, Width);
MCInst_setOpcodePub(MI, AArch64_map_insn("bfxil"));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op0);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(Op2);
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = LSB;
MI->flat_insn->detail->arm64.op_count++;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Width;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
mnem = printAliasInstr(MI, O, Info);
if (mnem) {
MCInst_setOpcodePub(MI, AArch64_map_insn(mnem));
cs_mem_free(mnem);
} else {
printInstruction(MI, O, Info);
}
}
static bool printSysAlias(MCInst *MI, SStream *O)
{
// unsigned Opcode = MCInst_getOpcode(MI);
//assert(Opcode == AArch64_SYSxt && "Invalid opcode for SYS alias!");
const char *Asm = NULL;
MCOperand *Op1 = MCInst_getOperand(MI, 0);
MCOperand *Cn = MCInst_getOperand(MI, 1);
MCOperand *Cm = MCInst_getOperand(MI, 2);
MCOperand *Op2 = MCInst_getOperand(MI, 3);
unsigned Op1Val = (unsigned)MCOperand_getImm(Op1);
unsigned CnVal = (unsigned)MCOperand_getImm(Cn);
unsigned CmVal = (unsigned)MCOperand_getImm(Cm);
unsigned Op2Val = (unsigned)MCOperand_getImm(Op2);
unsigned insn_id = ARM64_INS_INVALID;
unsigned op_ic = 0, op_dc = 0, op_at = 0, op_tlbi = 0;
if (CnVal == 7) {
switch (CmVal) {
default:
break;
// IC aliases
case 1:
if (Op1Val == 0 && Op2Val == 0) {
Asm = "ic\tialluis";
insn_id = ARM64_INS_IC;
op_ic = ARM64_IC_IALLUIS;
}
break;
case 5:
if (Op1Val == 0 && Op2Val == 0) {
Asm = "ic\tiallu";
insn_id = ARM64_INS_IC;
op_ic = ARM64_IC_IALLU;
} else if (Op1Val == 3 && Op2Val == 1) {
Asm = "ic\tivau";
insn_id = ARM64_INS_IC;
op_ic = ARM64_IC_IVAU;
}
break;
// DC aliases
case 4:
if (Op1Val == 3 && Op2Val == 1) {
Asm = "dc\tzva";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_ZVA;
}
break;
case 6:
if (Op1Val == 0 && Op2Val == 1) {
Asm = "dc\tivac";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_IVAC;
}
if (Op1Val == 0 && Op2Val == 2) {
Asm = "dc\tisw";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_ISW;
}
break;
case 10:
if (Op1Val == 3 && Op2Val == 1) {
Asm = "dc\tcvac";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_CVAC;
} else if (Op1Val == 0 && Op2Val == 2) {
Asm = "dc\tcsw";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_CSW;
}
break;
case 11:
if (Op1Val == 3 && Op2Val == 1) {
Asm = "dc\tcvau";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_CVAU;
}
break;
case 14:
if (Op1Val == 3 && Op2Val == 1) {
Asm = "dc\tcivac";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_CIVAC;
} else if (Op1Val == 0 && Op2Val == 2) {
Asm = "dc\tcisw";
insn_id = ARM64_INS_DC;
op_dc = ARM64_DC_CISW;
}
break;
// AT aliases
case 8:
switch (Op1Val) {
default:
break;
case 0:
switch (Op2Val) {
default:
break;
case 0: Asm = "at\ts1e1r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1R; break;
case 1: Asm = "at\ts1e1w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1W; break;
case 2: Asm = "at\ts1e0r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0R; break;
case 3: Asm = "at\ts1e0w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0W; break;
}
break;
case 4:
switch (Op2Val) {
default:
break;
case 0: Asm = "at\ts1e2r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E2R; break;
case 1: Asm = "at\ts1e2w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E2W; break;
case 4: Asm = "at\ts12e1r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1R; break;
case 5: Asm = "at\ts12e1w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E1W; break;
case 6: Asm = "at\ts12e0r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0R; break;
case 7: Asm = "at\ts12e0w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E0W; break;
}
break;
case 6:
switch (Op2Val) {
default:
break;
case 0: Asm = "at\ts1e3r"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E3R; break;
case 1: Asm = "at\ts1e3w"; insn_id = ARM64_INS_AT; op_at = ARM64_AT_S1E3W; break;
}
break;
}
break;
}
} else if (CnVal == 8) {
// TLBI aliases
switch (CmVal) {
default:
break;
case 3:
switch (Op1Val) {
default:
break;
case 0:
switch (Op2Val) {
default:
break;
case 0: Asm = "tlbi\tvmalle1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLE1IS; break;
case 1: Asm = "tlbi\tvae1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE1IS; break;
case 2: Asm = "tlbi\taside1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ASIDE1IS; break;
case 3: Asm = "tlbi\tvaae1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAAE1IS; break;
case 5: Asm = "tlbi\tvale1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE1IS; break;
case 7: Asm = "tlbi\tvaale1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAALE1IS; break;
}
break;
case 4:
switch (Op2Val) {
default:
break;
case 0: Asm = "tlbi\talle2is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE2IS; break;
case 1: Asm = "tlbi\tvae2is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE2IS; break;
case 4: Asm = "tlbi\talle1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE1IS; break;
case 5: Asm = "tlbi\tvale2is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE2IS; break;
case 6: Asm = "tlbi\tvmalls12e1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLS12E1IS; break;
}
break;
case 6:
switch (Op2Val) {
default:
break;
case 0: Asm = "tlbi\talle3is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE3IS; break;
case 1: Asm = "tlbi\tvae3is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE3IS; break;
case 5: Asm = "tlbi\tvale3is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE3IS; break;
}
break;
}
break;
case 0:
switch (Op1Val) {
default:
break;
case 4:
switch (Op2Val) {
default:
break;
case 1: Asm = "tlbi\tipas2e1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2E1IS; break;
case 5: Asm = "tlbi\tipas2le1is"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2LE1IS; break;
}
break;
}
break;
case 4:
switch (Op1Val) {
default:
break;
case 4:
switch (Op2Val) {
default:
break;
case 1: Asm = "tlbi\tipas2e1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2E1; break;
case 5: Asm = "tlbi\tipas2le1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_IPAS2LE1; break;
}
break;
}
break;
case 7:
switch (Op1Val) {
default:
break;
case 0:
switch (Op2Val) {
default:
break;
case 0: Asm = "tlbi\tvmalle1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLE1; break;
case 1: Asm = "tlbi\tvae1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE1; break;
case 2: Asm = "tlbi\taside1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ASIDE1; break;
case 3: Asm = "tlbi\tvaae1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAAE1; break;
case 5: Asm = "tlbi\tvale1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE1; break;
case 7: Asm = "tlbi\tvaale1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAALE1; break;
}
break;
case 4:
switch (Op2Val) {
default:
break;
case 0: Asm = "tlbi\talle2"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE2; break;
case 1: Asm = "tlbi\tvae2"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE2; break;
case 4: Asm = "tlbi\talle1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE1; break;
case 5: Asm = "tlbi\tvale2"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE2; break;
case 6: Asm = "tlbi\tvmalls12e1"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VMALLS12E1; break;
}
break;
case 6:
switch (Op2Val) {
default:
break;
case 0: Asm = "tlbi\talle3"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_ALLE3; break;
case 1: Asm = "tlbi\tvae3"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VAE3; break;
case 5: Asm = "tlbi\tvale3"; insn_id = ARM64_INS_TLBI; op_tlbi = ARM64_TLBI_VALE3; break;
}
break;
}
break;
}
}
if (Asm) {
MCInst_setOpcodePub(MI, insn_id);
SStream_concat0(O, Asm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_SYS;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].sys = op_ic + op_dc + op_at + op_tlbi;
MI->flat_insn->detail->arm64.op_count++;
}
if (!strstr(Asm, "all")) {
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, 4));
SStream_concat(O, ", %s", getRegisterName(Reg, AArch64_NoRegAltName));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
return Asm != NULL;
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
unsigned Reg = MCOperand_getReg(Op);
SStream_concat0(O, getRegisterName(Reg, AArch64_NoRegAltName));
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
if (MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.base == ARM64_REG_INVALID) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.base = Reg;
}
else if (MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.index == ARM64_REG_INVALID) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.index = Reg;
}
} else {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg;
MI->flat_insn->detail->arm64.op_count++;
}
}
} else if (MCOperand_isImm(Op)) {
int64_t imm = MCOperand_getImm(Op);
if (MI->Opcode == AArch64_ADR) {
imm += MI->address;
printUInt64Bang(O, imm);
} else
printUInt64Bang(O, imm);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = (int32_t)imm;
} else {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = imm;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
}
static void printHexImm(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
SStream_concat(O, "#%#llx", MCOperand_getImm(Op));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op);
MI->flat_insn->detail->arm64.op_count++;
}
}
static void printPostIncOperand(MCInst *MI, unsigned OpNo,
unsigned Imm, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
unsigned Reg = MCOperand_getReg(Op);
if (Reg == AArch64_XZR) {
printInt32Bang(O, Imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Imm;
MI->flat_insn->detail->arm64.op_count++;
}
} else {
SStream_concat0(O, getRegisterName(Reg, AArch64_NoRegAltName));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
//llvm_unreachable("unknown operand kind in printPostIncOperand64");
}
static void printPostIncOperand2(MCInst *MI, unsigned OpNo, SStream *O, int Amount)
{
printPostIncOperand(MI, OpNo, Amount, O);
}
static void printVRegOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
//assert(Op.isReg() && "Non-register vreg operand!");
unsigned Reg = MCOperand_getReg(Op);
SStream_concat0(O, getRegisterName(Reg, AArch64_vreg));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = AArch64_map_vregister(Reg);
MI->flat_insn->detail->arm64.op_count++;
}
}
static void printSysCROperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
//assert(Op.isImm() && "System instruction C[nm] operands must be immediates!");
SStream_concat(O, "c%u", MCOperand_getImm(Op));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_CIMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = MCOperand_getImm(Op);
MI->flat_insn->detail->arm64.op_count++;
}
}
static void printAddSubImm(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
if (MCOperand_isImm(MO)) {
unsigned Val = (MCOperand_getImm(MO) & 0xfff);
//assert(Val == MO.getImm() && "Add/sub immediate out of range!");
unsigned Shift = AArch64_AM_getShiftValue((int)MCOperand_getImm(MCInst_getOperand(MI, OpNum + 1)));
printInt32Bang(O, Val);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val;
MI->flat_insn->detail->arm64.op_count++;
}
if (Shift != 0)
printShifter(MI, OpNum + 1, O);
}
}
static void printLogicalImm32(MCInst *MI, unsigned OpNum, SStream *O)
{
int64_t Val = MCOperand_getImm(MCInst_getOperand(MI, OpNum));
Val = AArch64_AM_decodeLogicalImmediate(Val, 32);
printUInt32Bang(O, (int)Val);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
static void printLogicalImm64(MCInst *MI, unsigned OpNum, SStream *O)
{
int64_t Val = MCOperand_getImm(MCInst_getOperand(MI, OpNum));
Val = AArch64_AM_decodeLogicalImmediate(Val, 64);
switch(MI->flat_insn->id) {
default:
printInt64Bang(O, Val);
break;
case ARM64_INS_ORR:
case ARM64_INS_AND:
case ARM64_INS_EOR:
case ARM64_INS_TST:
// do not print number in negative form
if (Val >= 0 && Val <= HEX_THRESHOLD)
SStream_concat(O, "#%u", (int)Val);
else
SStream_concat(O, "#0x%"PRIx64, Val);
break;
}
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
static void printShifter(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
// LSL #0 should not be printed.
if (AArch64_AM_getShiftType(Val) == AArch64_AM_LSL &&
AArch64_AM_getShiftValue(Val) == 0)
return;
SStream_concat(O, ", %s ", AArch64_AM_getShiftExtendName(AArch64_AM_getShiftType(Val)));
printInt32BangDec(O, AArch64_AM_getShiftValue(Val));
if (MI->csh->detail) {
arm64_shifter shifter = ARM64_SFT_INVALID;
switch(AArch64_AM_getShiftType(Val)) {
default: // never reach
case AArch64_AM_LSL:
shifter = ARM64_SFT_LSL;
break;
case AArch64_AM_LSR:
shifter = ARM64_SFT_LSR;
break;
case AArch64_AM_ASR:
shifter = ARM64_SFT_ASR;
break;
case AArch64_AM_ROR:
shifter = ARM64_SFT_ROR;
break;
case AArch64_AM_MSL:
shifter = ARM64_SFT_MSL;
break;
}
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.type = shifter;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.value = AArch64_AM_getShiftValue(Val);
}
}
static void printShiftedRegister(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat0(O, getRegisterName(MCOperand_getReg(MCInst_getOperand(MI, OpNum)), AArch64_NoRegAltName));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
MI->flat_insn->detail->arm64.op_count++;
}
printShifter(MI, OpNum + 1, O);
}
static void printArithExtend(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
AArch64_AM_ShiftExtendType ExtType = AArch64_AM_getArithExtendType(Val);
unsigned ShiftVal = AArch64_AM_getArithShiftValue(Val);
// If the destination or first source register operand is [W]SP, print
// UXTW/UXTX as LSL, and if the shift amount is also zero, print nothing at
// all.
if (ExtType == AArch64_AM_UXTW || ExtType == AArch64_AM_UXTX) {
unsigned Dest = MCOperand_getReg(MCInst_getOperand(MI, 0));
unsigned Src1 = MCOperand_getReg(MCInst_getOperand(MI, 1));
if ( ((Dest == AArch64_SP || Src1 == AArch64_SP) &&
ExtType == AArch64_AM_UXTX) ||
((Dest == AArch64_WSP || Src1 == AArch64_WSP) &&
ExtType == AArch64_AM_UXTW) ) {
if (ShiftVal != 0) {
SStream_concat0(O, ", lsl ");
printInt32Bang(O, ShiftVal);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.type = ARM64_SFT_LSL;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.value = ShiftVal;
}
}
return;
}
}
SStream_concat(O, ", %s", AArch64_AM_getShiftExtendName(ExtType));
if (MI->csh->detail) {
arm64_extender ext = ARM64_EXT_INVALID;
switch(ExtType) {
default: // never reach
case AArch64_AM_UXTB:
ext = ARM64_EXT_UXTB;
break;
case AArch64_AM_UXTH:
ext = ARM64_EXT_UXTH;
break;
case AArch64_AM_UXTW:
ext = ARM64_EXT_UXTW;
break;
case AArch64_AM_UXTX:
ext = ARM64_EXT_UXTX;
break;
case AArch64_AM_SXTB:
ext = ARM64_EXT_SXTB;
break;
case AArch64_AM_SXTH:
ext = ARM64_EXT_SXTH;
break;
case AArch64_AM_SXTW:
ext = ARM64_EXT_SXTW;
break;
case AArch64_AM_SXTX:
ext = ARM64_EXT_SXTX;
break;
}
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].ext = ext;
}
if (ShiftVal != 0) {
SStream_concat0(O, " ");
printInt32Bang(O, ShiftVal);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.type = ARM64_SFT_LSL;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].shift.value = ShiftVal;
}
}
}
static void printExtendedRegister(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
SStream_concat0(O, getRegisterName(Reg, AArch64_NoRegAltName));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Reg;
MI->flat_insn->detail->arm64.op_count++;
}
printArithExtend(MI, OpNum + 1, O);
}
static void printMemExtend(MCInst *MI, unsigned OpNum, SStream *O, char SrcRegKind, unsigned Width)
{
unsigned SignExtend = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
unsigned DoShift = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum + 1));
// sxtw, sxtx, uxtw or lsl (== uxtx)
bool IsLSL = !SignExtend && SrcRegKind == 'x';
if (IsLSL) {
SStream_concat0(O, "lsl");
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].shift.type = ARM64_SFT_LSL;
}
} else {
SStream_concat(O, "%cxt%c", (SignExtend ? 's' : 'u'), SrcRegKind);
if (MI->csh->detail) {
if (!SignExtend) {
switch(SrcRegKind) {
default: break;
case 'b':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_UXTB;
break;
case 'h':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_UXTH;
break;
case 'w':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_UXTW;
break;
}
} else {
switch(SrcRegKind) {
default: break;
case 'b':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTB;
break;
case 'h':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTH;
break;
case 'w':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTW;
break;
case 'x':
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].ext = ARM64_EXT_SXTX;
break;
}
}
}
}
if (DoShift || IsLSL) {
SStream_concat(O, " #%u", Log2_32(Width / 8));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].shift.type = ARM64_SFT_LSL;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].shift.value = Log2_32(Width / 8);
}
}
}
static void printCondCode(MCInst *MI, unsigned OpNum, SStream *O)
{
A64CC_CondCode CC = (A64CC_CondCode)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat0(O, getCondCodeName(CC));
if (MI->csh->detail)
MI->flat_insn->detail->arm64.cc = (arm64_cc)(CC + 1);
}
static void printInverseCondCode(MCInst *MI, unsigned OpNum, SStream *O)
{
A64CC_CondCode CC = (A64CC_CondCode)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
SStream_concat0(O, getCondCodeName(getInvertedCondCode(CC)));
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.cc = (arm64_cc)(getInvertedCondCode(CC) + 1);
}
}
static void printImmScale(MCInst *MI, unsigned OpNum, SStream *O, int Scale)
{
int64_t val = Scale * MCOperand_getImm(MCInst_getOperand(MI, OpNum));
printInt64Bang(O, val);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = (int32_t)val;
} else {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = val;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
static void printUImm12Offset(MCInst *MI, unsigned OpNum, unsigned Scale, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
if (MCOperand_isImm(MO)) {
int64_t val = Scale * MCOperand_getImm(MO);
printInt64Bang(O, val);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].mem.disp = (int32_t)val;
} else {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = val;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
}
static void printUImm12Offset2(MCInst *MI, unsigned OpNum, SStream *O, int Scale)
{
printUImm12Offset(MI, OpNum, Scale, O);
}
static void printPrefetchOp(MCInst *MI, unsigned OpNum, SStream *O)
{
unsigned prfop = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
bool Valid;
const char *Name = A64NamedImmMapper_toString(&A64PRFM_PRFMMapper, prfop, &Valid);
if (Valid) {
SStream_concat0(O, Name);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_PREFETCH;
// we have to plus 1 to prfop because 0 is a valid value of prfop
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].prefetch = prfop + 1;
MI->flat_insn->detail->arm64.op_count++;
}
} else {
printInt32Bang(O, prfop);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = prfop;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
static void printFPImmOperand(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *MO = MCInst_getOperand(MI, OpNum);
double FPImm = MCOperand_isFPImm(MO) ? MCOperand_getFPImm(MO) : AArch64_AM_getFPImmFloat((int)MCOperand_getImm(MO));
// 8 decimal places are enough to perfectly represent permitted floats.
#if defined(_KERNEL_MODE)
// Issue #681: Windows kernel does not support formatting float point
SStream_concat(O, "#<float_point_unsupported>");
#else
SStream_concat(O, "#%.8f", FPImm);
#endif
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_FP;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].fp = FPImm;
MI->flat_insn->detail->arm64.op_count++;
}
}
//static unsigned getNextVectorRegister(unsigned Reg, unsigned Stride = 1)
static unsigned getNextVectorRegister(unsigned Reg, unsigned Stride)
{
while (Stride--) {
switch (Reg) {
default:
// llvm_unreachable("Vector register expected!");
case AArch64_Q0: Reg = AArch64_Q1; break;
case AArch64_Q1: Reg = AArch64_Q2; break;
case AArch64_Q2: Reg = AArch64_Q3; break;
case AArch64_Q3: Reg = AArch64_Q4; break;
case AArch64_Q4: Reg = AArch64_Q5; break;
case AArch64_Q5: Reg = AArch64_Q6; break;
case AArch64_Q6: Reg = AArch64_Q7; break;
case AArch64_Q7: Reg = AArch64_Q8; break;
case AArch64_Q8: Reg = AArch64_Q9; break;
case AArch64_Q9: Reg = AArch64_Q10; break;
case AArch64_Q10: Reg = AArch64_Q11; break;
case AArch64_Q11: Reg = AArch64_Q12; break;
case AArch64_Q12: Reg = AArch64_Q13; break;
case AArch64_Q13: Reg = AArch64_Q14; break;
case AArch64_Q14: Reg = AArch64_Q15; break;
case AArch64_Q15: Reg = AArch64_Q16; break;
case AArch64_Q16: Reg = AArch64_Q17; break;
case AArch64_Q17: Reg = AArch64_Q18; break;
case AArch64_Q18: Reg = AArch64_Q19; break;
case AArch64_Q19: Reg = AArch64_Q20; break;
case AArch64_Q20: Reg = AArch64_Q21; break;
case AArch64_Q21: Reg = AArch64_Q22; break;
case AArch64_Q22: Reg = AArch64_Q23; break;
case AArch64_Q23: Reg = AArch64_Q24; break;
case AArch64_Q24: Reg = AArch64_Q25; break;
case AArch64_Q25: Reg = AArch64_Q26; break;
case AArch64_Q26: Reg = AArch64_Q27; break;
case AArch64_Q27: Reg = AArch64_Q28; break;
case AArch64_Q28: Reg = AArch64_Q29; break;
case AArch64_Q29: Reg = AArch64_Q30; break;
case AArch64_Q30: Reg = AArch64_Q31; break;
// Vector lists can wrap around.
case AArch64_Q31: Reg = AArch64_Q0; break;
}
}
return Reg;
}
static void printVectorList(MCInst *MI, unsigned OpNum, SStream *O, char *LayoutSuffix, MCRegisterInfo *MRI, arm64_vas vas, arm64_vess vess)
{
#define GETREGCLASS_CONTAIN0(_class, _reg) MCRegisterClass_contains(MCRegisterInfo_getRegClass(MRI, _class), _reg)
unsigned Reg = MCOperand_getReg(MCInst_getOperand(MI, OpNum));
unsigned NumRegs = 1, FirstReg, i;
SStream_concat0(O, "{");
// Work out how many registers there are in the list (if there is an actual
// list).
if (GETREGCLASS_CONTAIN0(AArch64_DDRegClassID , Reg) ||
GETREGCLASS_CONTAIN0(AArch64_QQRegClassID, Reg))
NumRegs = 2;
else if (GETREGCLASS_CONTAIN0(AArch64_DDDRegClassID, Reg) ||
GETREGCLASS_CONTAIN0(AArch64_QQQRegClassID, Reg))
NumRegs = 3;
else if (GETREGCLASS_CONTAIN0(AArch64_DDDDRegClassID, Reg) ||
GETREGCLASS_CONTAIN0(AArch64_QQQQRegClassID, Reg))
NumRegs = 4;
// Now forget about the list and find out what the first register is.
if ((FirstReg = MCRegisterInfo_getSubReg(MRI, Reg, AArch64_dsub0)))
Reg = FirstReg;
else if ((FirstReg = MCRegisterInfo_getSubReg(MRI, Reg, AArch64_qsub0)))
Reg = FirstReg;
// If it's a D-reg, we need to promote it to the equivalent Q-reg before
// printing (otherwise getRegisterName fails).
if (GETREGCLASS_CONTAIN0(AArch64_FPR64RegClassID, Reg)) {
const MCRegisterClass *FPR128RC = MCRegisterInfo_getRegClass(MRI, AArch64_FPR128RegClassID);
Reg = MCRegisterInfo_getMatchingSuperReg(MRI, Reg, AArch64_dsub, FPR128RC);
}
for (i = 0; i < NumRegs; ++i, Reg = getNextVectorRegister(Reg, 1)) {
SStream_concat(O, "%s%s", getRegisterName(Reg, AArch64_vreg), LayoutSuffix);
if (i + 1 != NumRegs)
SStream_concat0(O, ", ");
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = AArch64_map_vregister(Reg);
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].vas = vas;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].vess = vess;
MI->flat_insn->detail->arm64.op_count++;
}
}
SStream_concat0(O, "}");
}
static void printTypedVectorList(MCInst *MI, unsigned OpNum, SStream *O, unsigned NumLanes, char LaneKind, MCRegisterInfo *MRI)
{
char Suffix[32];
arm64_vas vas = 0;
arm64_vess vess = 0;
if (NumLanes) {
cs_snprintf(Suffix, sizeof(Suffix), ".%u%c", NumLanes, LaneKind);
switch(LaneKind) {
default: break;
case 'b':
switch(NumLanes) {
default: break;
case 8:
vas = ARM64_VAS_8B;
break;
case 16:
vas = ARM64_VAS_16B;
break;
}
break;
case 'h':
switch(NumLanes) {
default: break;
case 4:
vas = ARM64_VAS_4H;
break;
case 8:
vas = ARM64_VAS_8H;
break;
}
break;
case 's':
switch(NumLanes) {
default: break;
case 2:
vas = ARM64_VAS_2S;
break;
case 4:
vas = ARM64_VAS_4S;
break;
}
break;
case 'd':
switch(NumLanes) {
default: break;
case 1:
vas = ARM64_VAS_1D;
break;
case 2:
vas = ARM64_VAS_2D;
break;
}
break;
case 'q':
switch(NumLanes) {
default: break;
case 1:
vas = ARM64_VAS_1Q;
break;
}
break;
}
} else {
cs_snprintf(Suffix, sizeof(Suffix), ".%c", LaneKind);
switch(LaneKind) {
default: break;
case 'b':
vess = ARM64_VESS_B;
break;
case 'h':
vess = ARM64_VESS_H;
break;
case 's':
vess = ARM64_VESS_S;
break;
case 'd':
vess = ARM64_VESS_D;
break;
}
}
printVectorList(MI, OpNum, O, Suffix, MRI, vas, vess);
}
static void printVectorIndex(MCInst *MI, unsigned OpNum, SStream *O)
{
SStream_concat0(O, "[");
printInt32(O, (int)MCOperand_getImm(MCInst_getOperand(MI, OpNum)));
SStream_concat0(O, "]");
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count - 1].vector_index = (int)MCOperand_getImm(MCInst_getOperand(MI, OpNum));
}
}
static void printAlignedLabel(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
// If the label has already been resolved to an immediate offset (say, when
// we're running the disassembler), just print the immediate.
if (MCOperand_isImm(Op)) {
uint64_t imm = (MCOperand_getImm(Op) << 2) + MI->address;
printUInt64Bang(O, imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = imm;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
}
static void printAdrpLabel(MCInst *MI, unsigned OpNum, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNum);
if (MCOperand_isImm(Op)) {
// ADRP sign extends a 21-bit offset, shifts it left by 12
// and adds it to the value of the PC with its bottom 12 bits cleared
uint64_t imm = (MCOperand_getImm(Op) << 12) + (MI->address & ~0xfff);
if (imm > HEX_THRESHOLD)
SStream_concat(O, "#0x%"PRIx64, imm);
else
SStream_concat(O, "#%"PRIu64, imm);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = imm;
MI->flat_insn->detail->arm64.op_count++;
}
return;
}
}
static void printBarrierOption(MCInst *MI, unsigned OpNo, SStream *O)
{
unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo));
unsigned Opcode = MCInst_getOpcode(MI);
bool Valid;
const char *Name;
if (Opcode == AArch64_ISB)
Name = A64NamedImmMapper_toString(&A64ISB_ISBMapper, Val, &Valid);
else
Name = A64NamedImmMapper_toString(&A64DB_DBarrierMapper, Val, &Valid);
if (Valid) {
SStream_concat0(O, Name);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_BARRIER;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].barrier = Val;
MI->flat_insn->detail->arm64.op_count++;
}
} else {
printUInt32Bang(O, Val);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
static void printMRSSystemRegister(MCInst *MI, unsigned OpNo, SStream *O)
{
unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo));
bool Valid;
char Name[128];
A64SysRegMapper_toString(&AArch64_MRSMapper, Val, &Valid, Name);
if (Valid) {
SStream_concat0(O, Name);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG_MRS;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
static void printMSRSystemRegister(MCInst *MI, unsigned OpNo, SStream *O)
{
unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo));
bool Valid;
char Name[128];
A64SysRegMapper_toString(&AArch64_MSRMapper, Val, &Valid, Name);
if (Valid) {
SStream_concat0(O, Name);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_REG_MSR;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].reg = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
}
static void printSystemPStateField(MCInst *MI, unsigned OpNo, SStream *O)
{
unsigned Val = (unsigned)MCOperand_getImm(MCInst_getOperand(MI, OpNo));
bool Valid;
const char *Name;
Name = A64NamedImmMapper_toString(&A64PState_PStateMapper, Val, &Valid);
if (Valid) {
SStream_concat0(O, Name);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_PSTATE;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].pstate = Val;
MI->flat_insn->detail->arm64.op_count++;
}
} else {
printInt32Bang(O, Val);
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
static void printSIMDType10Operand(MCInst *MI, unsigned OpNo, SStream *O)
{
uint8_t RawVal = (uint8_t)MCOperand_getImm(MCInst_getOperand(MI, OpNo));
uint64_t Val = AArch64_AM_decodeAdvSIMDModImmType10(RawVal);
SStream_concat(O, "#%#016llx", Val);
if (MI->csh->detail) {
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].type = ARM64_OP_IMM;
MI->flat_insn->detail->arm64.operands[MI->flat_insn->detail->arm64.op_count].imm = Val;
MI->flat_insn->detail->arm64.op_count++;
}
}
#define PRINT_ALIAS_INSTR
#include "AArch64GenAsmWriter.inc"
void AArch64_post_printer(csh handle, cs_insn *flat_insn, char *insn_asm, MCInst *mci)
{
if (((cs_struct *)handle)->detail != CS_OPT_ON)
return;
// check if this insn requests write-back
if (strrchr(insn_asm, '!') != NULL)
flat_insn->detail->arm64.writeback = true;
}
#endif