historical/m0-applesillicon.git/xnu-qemu-arm64-5.1.0/roms/openbios/arch/ppc/qemu/context.c
2024-01-16 11:20:27 -06:00

298 lines
8.1 KiB
C

/*
* context switching
* 2003-10 by SONE Takeshi
*
* Residual data portions:
* Copyright (c) 2004-2005 Jocelyn Mayer
*/
#include "config.h"
#include "kernel/kernel.h"
#include "context.h"
#include "arch/ppc/processor.h"
#include "arch/ppc/residual.h"
#include "drivers/drivers.h"
#include "libopenbios/bindings.h"
#include "libopenbios/ofmem.h"
#include "libopenbios/initprogram.h"
#include "libopenbios/sys_info.h"
#include "arch/ppc/processor.h"
#define MAIN_STACK_SIZE 16384
#define IMAGE_STACK_SIZE 4096*2
#define debug printk
#ifdef CONFIG_PPC_64BITSUPPORT
#ifdef __powerpc64__
#define ULONG_SIZE 8
#define STACKFRAME_MINSIZE 48
#define STKOFF STACKFRAME_MINSIZE
#define SAVE_SPACE 320
#else
#define ULONG_SIZE 4
#define STACKFRAME_MINSIZE 16
#define STKOFF 8
#define SAVE_SPACE 144
#endif
#endif
static void start_main(void); /* forward decl. */
void __exit_context(void); /* assembly routine */
void entry(void);
void of_client_callback(void);
/*
* Main context structure
* It is placed at the bottom of our stack, and loaded by assembly routine
* to start us up.
*/
static struct context main_ctx = {
.pc = (unsigned long) start_main,
.return_addr = (unsigned long) __exit_context,
};
/* This is used by assembly routine to load/store the context which
* it is to switch/switched. */
struct context * volatile __context = &main_ctx;
/* Client program context */
static struct context *client_ctx;
/* Stack for loaded ELF image */
static uint8_t image_stack[IMAGE_STACK_SIZE];
/* Pointer to startup context (physical address) */
unsigned long __boot_ctx;
/*
* Main starter
* This is the C function that runs first.
*/
static void start_main(void)
{
/* Save startup context, so we can refer to it later.
* We have to keep it in physical address since we will relocate. */
__boot_ctx = virt_to_phys(__context);
/* Set up client context */
client_ctx = init_context(image_stack, sizeof image_stack, 1);
__context = client_ctx;
/* Start the real fun */
entry();
/* Returning from here should jump to __exit_context */
__context = boot_ctx;
}
/* Setup a new context using the given stack.
*/
struct context *
init_context(uint8_t *stack, uint32_t stack_size, int num_params)
{
struct context *ctx;
ctx = (struct context *)
(stack + stack_size - (sizeof(*ctx) + num_params*sizeof(unsigned long)));
memset(ctx, 0, sizeof(*ctx));
/* Fill in reasonable default for flat memory model */
ctx->sp = virt_to_phys(SP_LOC(ctx));
ctx->return_addr = virt_to_phys(__exit_context);
return ctx;
}
/* Build PReP residual data */
static void *
residual_build(uint32_t memsize, uint32_t load_base, uint32_t load_size)
{
residual_t *res;
const unsigned char model[] = "IBM PPS Model 6015\0";
int i;
res = malloc(sizeof(residual_t));
if (res == NULL) {
return NULL;
}
res->length = sizeof(residual_t);
res->version = 1;
res->revision = 0;
memcpy(res->vital.model, model, sizeof(model));
res->vital.version = 1;
res->vital.revision = 0;
res->vital.firmware = 0x1D1;
res->vital.NVRAM_size = 0x2000;
res->vital.nSIMMslots = 1;
res->vital.nISAslots = 0;
res->vital.nPCIslots = 0;
res->vital.nPCMCIAslots = 0;
res->vital.nMCAslots = 0;
res->vital.nEISAslots = 0;
res->vital.CPUHz = 200 * 1000 * 1000;
res->vital.busHz = 100 * 1000 * 1000;
res->vital.PCIHz = 33 * 1000 * 1000;
res->vital.TBdiv = 1000;
res->vital.wwidth = 32;
res->vital.page_size = 4096;
res->vital.ChBlocSize = 32;
res->vital.GrSize = 32;
res->vital.cache_size = 0;
res->vital.cache_type = 0; /* No cache */
res->vital.cache_assoc = 8; /* Same as 601 */
res->vital.cache_lnsize = 32;
res->vital.Icache_size = 0;
res->vital.Icache_assoc = 8;
res->vital.Icache_lnsize = 32;
res->vital.Dcache_size = 0;
res->vital.Dcache_assoc = 8;
res->vital.Dcache_lnsize = 32;
res->vital.TLB_size = 0;
res->vital.TLB_type = 0; /* None */
res->vital.TLB_assoc = 2;
res->vital.ITLB_size = 0;
res->vital.ITLB_assoc = 2;
res->vital.DTLB_size = 0;
res->vital.DTLB_assoc = 2;
res->vital.ext_vital = NULL;
res->nCPUs = 1;
res->CPUs[0].pvr = mfpvr();
res->CPUs[0].serial = 0;
res->CPUs[0].L2_size = 0;
res->CPUs[0].L2_assoc = 8;
/* Memory infos */
res->max_mem = memsize;
res->good_mem = memsize;
/* Memory mappings */
/* First segment: firmware */
res->maps[0].usage = 0x0007;
res->maps[0].base = 0xfff00000;
res->maps[0].count = 0x00100000 >> 12;
i = 1;
/* Boot image */
load_size = (load_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
res->maps[i].usage = 0x0008;
res->maps[i].base = load_base >> 12;
res->maps[i].count = load_size >> 12;
i++;
/* Free memory */
res->maps[i].usage = 0x0010;
res->maps[i].base = (load_base + load_size) >> 12;
res->maps[i].count = (memsize >> 12) - res->maps[i].base;
i++;
/* ISA IO region : 8MB */
res->maps[i].usage = 0x0040;
res->maps[i].base = 0x80000000 >> 12;
res->maps[i].count = 0x00800000 >> 12;
i++;
/* System registers : 8MB */
res->maps[i].usage = 0x0200;
res->maps[i].base = 0xBF800000 >> 12;
res->maps[i].count = 0x00800000 >> 12;
i++;
/* System ROM : 64 kB */
res->maps[i].usage = 0x2000;
res->maps[i].base = 0xFFFF0000 >> 12;
res->maps[i].count = 0x00010000 >> 12;
i++;
res->nmaps = i;
/* Memory SIMMs */
res->nmems = 1;
res->memories[0].size = memsize;
/* Describe no devices */
res->ndevices = 0;
return res;
}
/* init-program */
int
arch_init_program(void)
{
volatile struct context *ctx = __context;
ucell entry, param, loadbase, loadsize;
ofmem_t *ofmem = ofmem_arch_get_private();
/* According to IEEE 1275, PPC bindings:
*
* MSR = FP, ME + (DR|IR)
* r1 = stack (32 K + 32 bytes link area above)
* r5 = client interface handler
* r6 = address of client program arguments (unused)
* r7 = length of client program arguments (unused)
*
* Yaboot and Linux use r3 and r4 for initrd address and size
* PReP machines use r3 and r4 for residual data and load image
*/
ctx->regs[REG_R5] = (unsigned long)of_client_callback;
ctx->regs[REG_R6] = 0;
ctx->regs[REG_R7] = 0;
/* Override the stack in the default context: the OpenBSD bootloader
fails soon after setting up virt to phys mappings with the default
stack. My best guess is that this is because the malloc() heap
doesn't have a 1:1 virt to phys mapping. So for the moment we use
the original (pre-context) location just under the MMU hash table
(SDR1) which is mapped 1:1 and makes the bootloader happy. */
ctx->sp = mfsdr1() - 32768 - 65536;
/* Set param */
feval("load-state >ls.param @");
param = POP();
ctx->param[0] = param;
/* Set entry point */
feval("load-state >ls.entry @");
entry = POP();
ctx->pc = entry;
/* Residual data for PReP */
if (!is_apple()) {
fword("load-base");
loadbase = POP();
fword("load-size");
loadsize = POP();
ctx->regs[REG_R3] = (uintptr_t)residual_build((uint32_t)ofmem->ramsize,
loadbase, loadsize);
ctx->regs[REG_R4] = loadbase;
}
return 0;
}
/* Switch to another context. */
struct context *switch_to(struct context *ctx)
{
volatile struct context *save;
struct context *ret;
unsigned int lr;
debug("switching to new context:\n");
save = __context;
__context = ctx;
asm __volatile__ ("mflr %%r9\n\t"
"stw %%r9, %0\n\t"
"bl __switch_context\n\t"
"lwz %%r9, %0\n\t"
"mtlr %%r9\n\t" : "=m" (lr) : "m" (lr) : "%r9" );
ret = __context;
__context = (struct context *)save;
return ret;
}
/* Start ELF Boot image */
unsigned int start_elf(void)
{
volatile struct context *ctx = __context;
ctx = switch_to((struct context *)ctx);
return ctx->regs[REG_R3];
}