mirror of
https://github.com/Lime3DS/Lime3DS
synced 2025-01-09 13:43:27 +00:00
de3d7cf49f
* kernel/thread: Change owner_process to std::weak_ptr Previously this leaked almost all kernel objects. In short, Threads own Processes which own HandleTables which own maps of Objects which include Threads. Changing this to weak_ptr at least got the camera interfaces to destruct properly. Did not really check the other objects though, and I think there are probably more leaks. * hle/kernel: Lock certain objects while deserializing When deserializing other kernel objects, these objects (`MemoryRegion`s and `VMManager`s) can possibly get modified. To avoid inconsistent state caused by destructor side-effects, we may as well simply lock them until loading is fully completed. * Fix silly typo Somehow this didn't break?!
263 lines
8.5 KiB
C++
263 lines
8.5 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "core/core.h"
|
|
#include "core/hle/kernel/config_mem.h"
|
|
#include "core/hle/kernel/memory.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/shared_page.h"
|
|
#include "core/hle/kernel/vm_manager.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
#include "core/settings.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace Kernel {
|
|
|
|
/// Size of the APPLICATION, SYSTEM and BASE memory regions (respectively) for each system
|
|
/// memory configuration type.
|
|
static const u32 memory_region_sizes[8][3] = {
|
|
// Old 3DS layouts
|
|
{0x04000000, 0x02C00000, 0x01400000}, // 0
|
|
{/* This appears to be unused. */}, // 1
|
|
{0x06000000, 0x00C00000, 0x01400000}, // 2
|
|
{0x05000000, 0x01C00000, 0x01400000}, // 3
|
|
{0x04800000, 0x02400000, 0x01400000}, // 4
|
|
{0x02000000, 0x04C00000, 0x01400000}, // 5
|
|
|
|
// New 3DS layouts
|
|
{0x07C00000, 0x06400000, 0x02000000}, // 6
|
|
{0x0B200000, 0x02E00000, 0x02000000}, // 7
|
|
};
|
|
|
|
namespace MemoryMode {
|
|
enum N3DSMode : u8 {
|
|
Mode6 = 1,
|
|
Mode7 = 2,
|
|
Mode6_2 = 3,
|
|
};
|
|
}
|
|
|
|
void KernelSystem::MemoryInit(u32 mem_type, u8 n3ds_mode) {
|
|
ASSERT(mem_type != 1);
|
|
|
|
const bool is_new_3ds = Settings::values.is_new_3ds;
|
|
u32 reported_mem_type = mem_type;
|
|
if (is_new_3ds) {
|
|
if (n3ds_mode == MemoryMode::Mode6 || n3ds_mode == MemoryMode::Mode6_2) {
|
|
mem_type = 6;
|
|
reported_mem_type = 6;
|
|
} else if (n3ds_mode == MemoryMode::Mode7) {
|
|
mem_type = 7;
|
|
reported_mem_type = 7;
|
|
} else {
|
|
// On the N3ds, all O3ds configurations (<=5) are forced to 6 instead.
|
|
mem_type = 6;
|
|
}
|
|
}
|
|
|
|
// The kernel allocation regions (APPLICATION, SYSTEM and BASE) are laid out in sequence, with
|
|
// the sizes specified in the memory_region_sizes table.
|
|
VAddr base = 0;
|
|
for (int i = 0; i < 3; ++i) {
|
|
memory_regions[i]->Reset(base, memory_region_sizes[mem_type][i]);
|
|
|
|
base += memory_regions[i]->size;
|
|
}
|
|
|
|
// We must've allocated the entire FCRAM by the end
|
|
ASSERT(base == (is_new_3ds ? Memory::FCRAM_N3DS_SIZE : Memory::FCRAM_SIZE));
|
|
|
|
config_mem_handler = std::make_shared<ConfigMem::Handler>();
|
|
auto& config_mem = config_mem_handler->GetConfigMem();
|
|
config_mem.app_mem_type = reported_mem_type;
|
|
config_mem.app_mem_alloc = memory_region_sizes[reported_mem_type][0];
|
|
config_mem.sys_mem_alloc = memory_regions[1]->size;
|
|
config_mem.base_mem_alloc = memory_regions[2]->size;
|
|
|
|
shared_page_handler = std::make_shared<SharedPage::Handler>(timing);
|
|
}
|
|
|
|
std::shared_ptr<MemoryRegionInfo> KernelSystem::GetMemoryRegion(MemoryRegion region) {
|
|
switch (region) {
|
|
case MemoryRegion::APPLICATION:
|
|
return memory_regions[0];
|
|
case MemoryRegion::SYSTEM:
|
|
return memory_regions[1];
|
|
case MemoryRegion::BASE:
|
|
return memory_regions[2];
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void KernelSystem::HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping) {
|
|
using namespace Memory;
|
|
|
|
struct MemoryArea {
|
|
VAddr vaddr_base;
|
|
PAddr paddr_base;
|
|
u32 size;
|
|
};
|
|
|
|
// The order of entries in this array is important. The VRAM and IO VAddr ranges overlap, and
|
|
// VRAM must be tried first.
|
|
static constexpr MemoryArea memory_areas[] = {
|
|
{VRAM_VADDR, VRAM_PADDR, VRAM_SIZE},
|
|
{IO_AREA_VADDR, IO_AREA_PADDR, IO_AREA_SIZE},
|
|
{DSP_RAM_VADDR, DSP_RAM_PADDR, DSP_RAM_SIZE},
|
|
{N3DS_EXTRA_RAM_VADDR, N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE - 0x20000},
|
|
};
|
|
|
|
VAddr mapping_limit = mapping.address + mapping.size;
|
|
if (mapping_limit < mapping.address) {
|
|
LOG_CRITICAL(Loader, "Mapping size overflowed: address=0x{:08X} size=0x{:X}",
|
|
mapping.address, mapping.size);
|
|
return;
|
|
}
|
|
|
|
auto area =
|
|
std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) {
|
|
return mapping.address >= area.vaddr_base &&
|
|
mapping_limit <= area.vaddr_base + area.size;
|
|
});
|
|
if (area == std::end(memory_areas)) {
|
|
LOG_ERROR(Loader,
|
|
"Unhandled special mapping: address=0x{:08X} size=0x{:X}"
|
|
" read_only={} unk_flag={}",
|
|
mapping.address, mapping.size, mapping.read_only, mapping.unk_flag);
|
|
return;
|
|
}
|
|
|
|
u32 offset_into_region = mapping.address - area->vaddr_base;
|
|
if (area->paddr_base == IO_AREA_PADDR) {
|
|
LOG_ERROR(Loader, "MMIO mappings are not supported yet. phys_addr=0x{:08X}",
|
|
area->paddr_base + offset_into_region);
|
|
return;
|
|
}
|
|
|
|
auto target_pointer = memory.GetPhysicalRef(area->paddr_base + offset_into_region);
|
|
|
|
// TODO(yuriks): This flag seems to have some other effect, but it's unknown what
|
|
MemoryState memory_state = mapping.unk_flag ? MemoryState::Static : MemoryState::IO;
|
|
|
|
auto vma =
|
|
address_space.MapBackingMemory(mapping.address, target_pointer, mapping.size, memory_state)
|
|
.Unwrap();
|
|
address_space.Reprotect(vma,
|
|
mapping.read_only ? VMAPermission::Read : VMAPermission::ReadWrite);
|
|
}
|
|
|
|
void KernelSystem::MapSharedPages(VMManager& address_space) {
|
|
auto cfg_mem_vma = address_space
|
|
.MapBackingMemory(Memory::CONFIG_MEMORY_VADDR, {config_mem_handler},
|
|
Memory::CONFIG_MEMORY_SIZE, MemoryState::Shared)
|
|
.Unwrap();
|
|
address_space.Reprotect(cfg_mem_vma, VMAPermission::Read);
|
|
|
|
auto shared_page_vma = address_space
|
|
.MapBackingMemory(Memory::SHARED_PAGE_VADDR, {shared_page_handler},
|
|
Memory::SHARED_PAGE_SIZE, MemoryState::Shared)
|
|
.Unwrap();
|
|
address_space.Reprotect(shared_page_vma, VMAPermission::Read);
|
|
}
|
|
|
|
void MemoryRegionInfo::Reset(u32 base, u32 size) {
|
|
ASSERT(!is_locked);
|
|
|
|
this->base = base;
|
|
this->size = size;
|
|
used = 0;
|
|
free_blocks.clear();
|
|
|
|
// mark the entire region as free
|
|
free_blocks.insert(Interval::right_open(base, base + size));
|
|
}
|
|
|
|
MemoryRegionInfo::IntervalSet MemoryRegionInfo::HeapAllocate(u32 size) {
|
|
ASSERT(!is_locked);
|
|
|
|
IntervalSet result;
|
|
u32 rest = size;
|
|
|
|
// Try allocating from the higher address
|
|
for (auto iter = free_blocks.rbegin(); iter != free_blocks.rend(); ++iter) {
|
|
ASSERT(iter->bounds() == boost::icl::interval_bounds::right_open());
|
|
if (iter->upper() - iter->lower() >= rest) {
|
|
// Requested size is fulfilled with this block
|
|
result += Interval(iter->upper() - rest, iter->upper());
|
|
rest = 0;
|
|
break;
|
|
}
|
|
result += *iter;
|
|
rest -= iter->upper() - iter->lower();
|
|
}
|
|
|
|
if (rest != 0) {
|
|
// There is no enough free space
|
|
return {};
|
|
}
|
|
|
|
free_blocks -= result;
|
|
used += size;
|
|
return result;
|
|
}
|
|
|
|
bool MemoryRegionInfo::LinearAllocate(u32 offset, u32 size) {
|
|
ASSERT(!is_locked);
|
|
|
|
Interval interval(offset, offset + size);
|
|
if (!boost::icl::contains(free_blocks, interval)) {
|
|
// The requested range is already allocated
|
|
return false;
|
|
}
|
|
free_blocks -= interval;
|
|
used += size;
|
|
return true;
|
|
}
|
|
|
|
std::optional<u32> MemoryRegionInfo::LinearAllocate(u32 size) {
|
|
ASSERT(!is_locked);
|
|
|
|
// Find the first sufficient continuous block from the lower address
|
|
for (const auto& interval : free_blocks) {
|
|
ASSERT(interval.bounds() == boost::icl::interval_bounds::right_open());
|
|
if (interval.upper() - interval.lower() >= size) {
|
|
Interval allocated(interval.lower(), interval.lower() + size);
|
|
free_blocks -= allocated;
|
|
used += size;
|
|
return allocated.lower();
|
|
}
|
|
}
|
|
|
|
// No sufficient block found
|
|
return std::nullopt;
|
|
}
|
|
|
|
void MemoryRegionInfo::Free(u32 offset, u32 size) {
|
|
if (is_locked) {
|
|
return;
|
|
}
|
|
|
|
Interval interval(offset, offset + size);
|
|
ASSERT(!boost::icl::intersects(free_blocks, interval)); // must be allocated blocks
|
|
free_blocks += interval;
|
|
used -= size;
|
|
}
|
|
|
|
void MemoryRegionInfo::Unlock() {
|
|
is_locked = false;
|
|
}
|
|
|
|
} // namespace Kernel
|