79 lines
2.9 KiB
TypeScript
79 lines
2.9 KiB
TypeScript
|
import { ChatPromptTemplate } from "@langchain/core/prompts";
|
||
|
import { StructuredToolInterface } from "@langchain/core/tools";
|
||
|
import { LanguageModelLike, ToolDefinition } from "@langchain/core/language_models/base";
|
||
|
import { AgentRunnableSequence } from "../agent.js";
|
||
|
import { ToolsAgentStep } from "./output_parser.js";
|
||
|
/**
|
||
|
* Params used by the createOpenAIToolsAgent function.
|
||
|
*/
|
||
|
export type CreateToolCallingAgentParams = {
|
||
|
/**
|
||
|
* LLM to use as the agent. Should work with OpenAI tool calling,
|
||
|
* so must either be an OpenAI model that supports that or a wrapper of
|
||
|
* a different model that adds in equivalent support.
|
||
|
*/
|
||
|
llm: LanguageModelLike;
|
||
|
/** Tools this agent has access to. */
|
||
|
tools: StructuredToolInterface[] | ToolDefinition[];
|
||
|
/** The prompt to use, must have an input key of `agent_scratchpad`. */
|
||
|
prompt: ChatPromptTemplate;
|
||
|
/**
|
||
|
* Whether to invoke the underlying model in streaming mode,
|
||
|
* allowing streaming of intermediate steps. Defaults to true.
|
||
|
*/
|
||
|
streamRunnable?: boolean;
|
||
|
};
|
||
|
/**
|
||
|
* Create an agent that uses tools.
|
||
|
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
|
||
|
* @returns A runnable sequence representing an agent. It takes as input all the same input
|
||
|
* variables as the prompt passed in does. It returns as output either an
|
||
|
* AgentAction or AgentFinish.
|
||
|
* @example
|
||
|
* ```typescript
|
||
|
* import { ChatAnthropic } from "@langchain/anthropic";
|
||
|
* import { ChatPromptTemplate, MessagesPlaceholder } from "@langchain/core/prompts";
|
||
|
* import { AgentExecutor, createToolCallingAgent } from "langchain/agents";
|
||
|
*
|
||
|
* const prompt = ChatPromptTemplate.fromMessages(
|
||
|
* [
|
||
|
* ["system", "You are a helpful assistant"],
|
||
|
* ["placeholder", "{chat_history}"],
|
||
|
* ["human", "{input}"],
|
||
|
* ["placeholder", "{agent_scratchpad}"],
|
||
|
* ]
|
||
|
* );
|
||
|
*
|
||
|
*
|
||
|
* const llm = new ChatAnthropic({
|
||
|
* modelName: "claude-3-opus-20240229",
|
||
|
* temperature: 0,
|
||
|
* });
|
||
|
*
|
||
|
* // Define the tools the agent will have access to.
|
||
|
* const tools = [...];
|
||
|
*
|
||
|
* const agent = createToolCallingAgent({ llm, tools, prompt });
|
||
|
*
|
||
|
* const agentExecutor = new AgentExecutor({ agent, tools });
|
||
|
*
|
||
|
* const result = await agentExecutor.invoke({input: "what is LangChain?"});
|
||
|
*
|
||
|
* // Using with chat history
|
||
|
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
|
||
|
*
|
||
|
* const result2 = await agentExecutor.invoke(
|
||
|
* {
|
||
|
* input: "what's my name?",
|
||
|
* chat_history: [
|
||
|
* new HumanMessage({content: "hi! my name is bob"}),
|
||
|
* new AIMessage({content: "Hello Bob! How can I assist you today?"}),
|
||
|
* ],
|
||
|
* }
|
||
|
* );
|
||
|
* ```
|
||
|
*/
|
||
|
export declare function createToolCallingAgent({ llm, tools, prompt, streamRunnable, }: CreateToolCallingAgentParams): AgentRunnableSequence<{
|
||
|
steps: ToolsAgentStep[];
|
||
|
}, import("@langchain/core/agents").AgentFinish | import("@langchain/core/agents").AgentAction[]>;
|