agsamantha/node_modules/langchain/dist/agents/tool_calling/index.d.ts
2024-10-02 15:15:21 -05:00

78 lines
2.9 KiB
TypeScript

import { ChatPromptTemplate } from "@langchain/core/prompts";
import { StructuredToolInterface } from "@langchain/core/tools";
import { LanguageModelLike, ToolDefinition } from "@langchain/core/language_models/base";
import { AgentRunnableSequence } from "../agent.js";
import { ToolsAgentStep } from "./output_parser.js";
/**
* Params used by the createOpenAIToolsAgent function.
*/
export type CreateToolCallingAgentParams = {
/**
* LLM to use as the agent. Should work with OpenAI tool calling,
* so must either be an OpenAI model that supports that or a wrapper of
* a different model that adds in equivalent support.
*/
llm: LanguageModelLike;
/** Tools this agent has access to. */
tools: StructuredToolInterface[] | ToolDefinition[];
/** The prompt to use, must have an input key of `agent_scratchpad`. */
prompt: ChatPromptTemplate;
/**
* Whether to invoke the underlying model in streaming mode,
* allowing streaming of intermediate steps. Defaults to true.
*/
streamRunnable?: boolean;
};
/**
* Create an agent that uses tools.
* @param params Params required to create the agent. Includes an LLM, tools, and prompt.
* @returns A runnable sequence representing an agent. It takes as input all the same input
* variables as the prompt passed in does. It returns as output either an
* AgentAction or AgentFinish.
* @example
* ```typescript
* import { ChatAnthropic } from "@langchain/anthropic";
* import { ChatPromptTemplate, MessagesPlaceholder } from "@langchain/core/prompts";
* import { AgentExecutor, createToolCallingAgent } from "langchain/agents";
*
* const prompt = ChatPromptTemplate.fromMessages(
* [
* ["system", "You are a helpful assistant"],
* ["placeholder", "{chat_history}"],
* ["human", "{input}"],
* ["placeholder", "{agent_scratchpad}"],
* ]
* );
*
*
* const llm = new ChatAnthropic({
* modelName: "claude-3-opus-20240229",
* temperature: 0,
* });
*
* // Define the tools the agent will have access to.
* const tools = [...];
*
* const agent = createToolCallingAgent({ llm, tools, prompt });
*
* const agentExecutor = new AgentExecutor({ agent, tools });
*
* const result = await agentExecutor.invoke({input: "what is LangChain?"});
*
* // Using with chat history
* import { AIMessage, HumanMessage } from "@langchain/core/messages";
*
* const result2 = await agentExecutor.invoke(
* {
* input: "what's my name?",
* chat_history: [
* new HumanMessage({content: "hi! my name is bob"}),
* new AIMessage({content: "Hello Bob! How can I assist you today?"}),
* ],
* }
* );
* ```
*/
export declare function createToolCallingAgent({ llm, tools, prompt, streamRunnable, }: CreateToolCallingAgentParams): AgentRunnableSequence<{
steps: ToolsAgentStep[];
}, import("@langchain/core/agents").AgentFinish | import("@langchain/core/agents").AgentAction[]>;