In the kernel, there isn't a singular handle table that everything gets
tossed into or used, rather, each process gets its own handle table that
it uses. This currently isn't an issue for us, since we only execute one
process at the moment, but we may as well get this out of the way so
it's not a headache later on.
There's no real need to use a shared pointer in these cases, and only
makes object management more fragile in terms of how easy it would be to
introduce cycles. Instead, just do the simple thing of using a regular
pointer. Much of this is just a hold-over from citra anyways.
It also doesn't make sense from a behavioral point of view for a
process' thread to prolong the lifetime of the process itself (the
process is supposed to own the thread, not the other way around).
Given we now have the kernel as a class, it doesn't make sense to keep
the current process pointer within the System class, as processes are
related to the kernel.
This also gets rid of a subtle case where memory wouldn't be freed on
core shutdown, as the current_process pointer would never be reset,
causing the pointed to contents to continue to live.
Now that we have a class representing the kernel in some capacity, we
now have a place to put the named port map, so we move it over and get
rid of another piece of global state within the core.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
General moving to keep kernel object types separate from the direct
kernel code. Also essentially a preliminary cleanup before eliminating
global kernel state in the kernel code.
Kernel/HLE: Use a mutex to synchronize access to the HLE kernel state between the cpu thread and any other possible threads that might touch the kernel (network thread, etc).
This mutex is acquired in SVC::CallSVC, ie, as soon as the guest application enters the HLE kernel, and should be acquired by the aforementioned threads before modifying kernel structures.
The implementation is based on reverse engineering of the 3DS's kernel.
A mutex holder's priority will be temporarily boosted to the best priority among any threads that want to acquire any of its held mutexes.
When the holder releases the mutex, it's priority will be boosted to the best priority among the threads that want to acquire any of its remaining held mutexes.
Define a variable with the value of the sync timeout error code.
Use a boost::flat_map instead of an unordered_map to hold the equivalence of objects and wait indices in a WaitSynchN call.
Threads will now be awakened when the objects they're waiting on are signaled, instead of repeating the WaitSynchronization call every now and then.
The scheduler is now called once after every SVC call, and once after a thread is awakened from sleep by its timeout callback.
This new implementation is based off reverse-engineering of the real kernel.
See https://gist.github.com/Subv/02f29bd9f1e5deb7aceea1e8f019c8f4 for a more detailed description of how the real kernel handles rescheduling.
All handles obtained via srv::GetServiceHandle or svcConnectToPort are references to ClientSessions.
Service modules will wait on the counterpart of those ClientSessions (Called ServerSessions) using svcReplyAndReceive or svcWaitSynchronization[1|N], and will be awoken when a SyncRequest is performed.
HLE Interfaces are now ClientPorts which override the HandleSyncRequest virtual member function to perform command handling immediately.
The code now properly configures the process image to match the loaded
binary segments (code, rodata, data) instead of just blindly allocating
a large chunk of dummy memory.
Implemented svcs GetResourceLimit, GetResourceLimitCurrentValues and GetResourceLimitLimitValues.
Note that the resource limits do not currently keep track of used objects, since we have no way to distinguish between an object created by the application, and an object created by some HLE module once we're inside Kernel::T::Create.