A normal user shouldn't change this, as it will slow down the emulation and can lead to bugs or crashes. The renaming is done in order to prevent users from leaving this on without a way to turn it off from the UI.
Extracts out all of the thread local storage management from thread
instances themselves and makes the owning process handle the management
of the memory. This brings the memory management slightly more in line
with how the kernel handles these allocations.
Furthermore, this also makes the TLS page management a little more
readable compared to the lingering implementation that was carried over
from Citra.
This will be necessary for making our TLS slot management slightly more
straightforward. This can also be utilized for other purposes in the
future.
We can implement the existing simpler overload in terms of this one
anyways, we just pass the beginning and end of the ASLR region as the
boundaries.
We shouldn't be incrementing if wave buffers are empty. They are considered invalid/unused wave buffers.
This fixes the issue of certain sounds looping when they shouldn't
The event should only be signaled when an output audio device gets changed. Example, Speaker to USB headset. We don't identify different devices internally yet so there's no need to signal the event yet.
DeltaFragments are only used to download and apply partial patches on a real console, and are not useful to us at all. Most patch NSPs do not include them, and when they do, it's a waste of space to install them.
StartLrAssignmentMode and StopLrAssignmentMode don't require any implementation as it's just used for showing the screen of changing the controller orientation if the user wishes to do so. Ever since #1634 this has not been needed as users can specify the controller orientation from the config and swap at any time. We store a private member just in case this gets used for anything extra in the future
InitializeApplicationInfoRestricted will need further implementation as it's checking for other user requirements about the game. As we're emulating, we're assuming the user owns the game so we skip these checks currently, implementation will need to be added further on
This PR attempts to implement the shared memory provided by GetSharedMemoryNativeHandle. There is still more work to be done however that requires a rehaul of the current time module to handle clock contexts. This PR is mainly to get the basic functionality of the SharedMemory working and allow the use of addition to it whilst things get improved on.
Things to note:
Memory Barriers are used in the SharedMemory and a better solution would need to be done to implement this. Currently in this PR I’m faking the memory barriers as everything is sync and single threaded. They work by incrementing the counter and just populate the two data slots. On data reading, it will read the last added data.
Specific values in the shared memory would need to be updated periodically. This isn't included in this PR since we don't actively do this yet. In a later PR when time is refactored this should be done.
Finally, as we don't handle clock contexts. When time is refactored, we will need to update the shared memory for specific contexts. This PR does this already however since the contexts are all identical and not separated. We're just updating the same values for each context which in this case is empty.
Tiime:SetStandardUserSystemClockAutomaticCorrectionEnabled, Time:IsStandardUserSystemClockAutomaticCorrectionEnabled are also partially implemented in this PR. The reason the implementation is partial is because once again, a lack of clock contexts. This will be improved on in a future PR.
This PR closes issue #2556
This is more representative of what actually occurs, as web does support remote URLs which wouldn't need a romfs callback. This paves for easy future support of this with a call like 'OpenPageRemote' or similar.
This makes conflicts between non compress and compress textures to be
auto recycled. It also limits the amount of mipmaps a texture can have
if it goes above it's limit.
Instead of storing all block width, height and depths in their shifted
form:
block_width = 1U << block_shift;
Store them like they are provided by the emulated hardware (their
block_shift form). This way we can avoid doing the costly
Common::AlignUp operation to align texture sizes and drop CPU integer
divisions with bitwise logic (defined in Common::AlignBits).
Due to our current infrastructure, it is possible for a mipmap to be set
on as a render target before a texception of that mipmap's superset be
set afterwards. This is problematic as we rely on texture views to set
up texceptions and protecting render targets targets for 3D texture
rendering.
One simple solution is to configure framebuffers after texture setup but
this brings other problems. This solution, forces a reconfiguration of
the framebuffers after such event happens.
Even though it has been proven that IAudioRenderer:SystemEvent is
actually an automatic event. The current implementation of such event is
all thought to be manual. Thus it's implementation needs to be corrected
when doing such change. As it is right now this PR introduced a series
of regressions on softlocks on multiple games. Therefore, this pr
reverts such change until a correct implementation is made.
These source files have been unused for the entire lifecycle of the
project. They're a hold-over from Citra and only add to the build time
of the project, so they can be removed.
There's also likely no way this would ever work in yuzu in its current
form without revamping quite a bit of it, given how different the GPU on
the Switch is compared to the 3DS.
The old implementation had faulty Threadsafe methods where events could
be missing. This implementation unifies unsafe/safe methods and makes
core timing thread safe overall.
IPC-100 was changed to InitializeApplicationInfoOld instead of InitializeApplicationInfo. IPC-150 makes an indentical call to IPC-100 however does extra processing. They should not have the same name as it's quite confusing to debug.
Avoids potentially performing multiple reallocations (depending on the
size of the input data) by reserving the necessary amount of memory
ahead of time.
This is trivially doable, so there's no harm in it.
These can be generified together by using a concept type to designate
them. This also has the benefit of not making copies of potentially very
large arrays.
This is performing more work than would otherwise be necessary during
VMManager's destruction. All we actually want to occur in this scenario
is for any allocated memory to be freed, which will happen automatically
as the VMManager instance goes out of scope.
Anything else being done is simply unnecessary work.
This test is intended to be invalid GLSL, but it was being invalid in
two points instead of one. The intention is to use a non-immediate
parameter in a textureOffset like function.
The problem is that this shader was being compiled as a separable
shader object and the text was writting to gl_Position without a
redeclaration, being invalid GLSL.
Address that issue by using a user-defined output attribute.
Given we don't currently implement the personal heap yet, the existing
memory querying functions are essentially doing what the memory querying
types introduced in 6.0.0 do.
So, we can build the necessary machinery over the top of those and just
use them as part of info types.
Hardware testing revealed that SSY and PBK push to a different stack,
allowing code like this:
SSY label1;
PBK label2;
SYNC;
label1: PBK;
label2: EXIT;
Analysis passes do not have a good reason to depend on shader_ir.h to
work on top of nodes. This splits node-related declarations to their own
file and leaves the IR in shader_ir.h
To prepare for translation support, this makes all of the widgets
cognizant of the language change event that occurs whenever
installTranslator() is called and automatically retranslates their text
where necessary.
This is important as calling the backing UI's retranslateUi() is often
not enough, particularly in cases where we add our own strings that
aren't controlled by it. In that case we need to manually refresh the
strings ourselves.
Instead of having a vector of unique_ptr stored in a vector and
returning star pointers to this, use shared_ptr. While changing
initialization code, move it to a separate file when possible.
This is a first step to allow code analysis and node generation beyond
the ShaderIR class.
Enforces the use of the proper URL resolution functions. e.g.
url = some_local_path_string;
should actually be:
url = QUrl::fromLocalPath(some_local_path_string);
etc.
This makes it harder to cause bugs when operating with both strings and
URLs at the same time.
Other overloads of start() are considerably much safer to use if we ever
need this in the future and need to pass arguments to the program, given
it contains separate parameters for the program path and the arguments
themselves, whereas this unsafe overload contains both as a single
string.
Given the alternatives are much safer, we can disable this.
If this path was ever taken, a runtime exception would occur due to the
lack of a formatting specifier to insert the error code into the format
string.
Its prototype declared at the top of the translation unit contains the
static qualifier, so the function itself should also contain it to make
it a proper internally linked function.
The deleter can just be set in the constructor and maintained throughout
the lifetime of the object.
If a contained pointer is null, then the deleter won't execute, so this
is safe to do. We don't need to swap it out with a version of a deleter
that does nothing.
We can make this message more meaningful by indicating the location the
screenshot has been saved to. We can also log out whenever a screenshot
could not be saved (e.g. due to filesystem permissions or some other
reason).
Treating it as a u16 can result in a sign-conversion warning when
performing arithmetic with it, as u16 promotes to an int when aritmetic
is performed on it, not unsigned int.
This also makes the interface more uniform, as the layout interface now
operates on u32 across the board.
We can just pass a pointer to GMainWindow directly and make it a
requirement of the interface. This makes the interface a little safer,
since this would technically otherwise allow any random QWidget to be
the parent of a render window, downcasting it to GMainWindow (which is
undefined behavior).
"position" was being written but not read anywhere besides geometry
shaders, where it had the same value as gl_Position.
This commit replaces "position" with gl_Position, reducing the
complexity of our code and the emitted GLSL code.
Allows for things such as:
auto rect = Common::Rectangle{0, 0, 0, 0};
as opposed to being required to explicitly write out the underlying
type, such as:
auto rect = Common::Rectangle<int>{0, 0, 0, 0};
The only requirement for the deduction is that all constructor arguments
be the same type.
Stays consistent in our code with using Qt's provided mechanisms, and
also properly handles Unicode paths (which file streams on Windows don't
do very well).
Qt uses a signed value to represent indices. We should follow this
convention where applicable to avoid unnecessary sign-conversion
warnings, as well as making it easier to interoperate with other aspects
of Qt.
While we're at it, we can also make a sign-conversion explicit.
Makes the dependency explicit in the TelemetrySession's interface
instead of making it a hidden dependency.
This also revealed a hidden issue with the way the telemetry session was
being initialized. It was attempting to retrieve the app loader and log
out title-specific information. However, this isn't always guaranteed to
be possible.
During the initialization phase, everything is being constructed. It
doesn't mean an actual title has been selected. This is what the Load()
function is for. This potentially results in dead code paths involving
the app loader. Instead, we explicitly add this information when we know
the app loader instance is available.
Fix missing OpSelectionMerge instruction. This caused devices loses on
most hardware, Intel didn't care.
Fix [-1;1] -> [0;1] depth conversions.
Conditionally use VK_EXT_scalar_block_layout. This allows us to use
non-std140 layouts on UBOs.
Update external Vulkan headers.
Keeps track of native ASTC support, VK_EXT_scalar_block_layout
availability and SSBO range.
Check for independentBlend and vertexPipelineStorageAndAtomics as a
required feature. Always enable it.
Use vk::to_string format to log Vulkan enums.
Style changes.
critical() is intended for critical/fatal errors that threaten the
overall stability of an application. A user entering a conflicting key
sequence is neither of those.
1. This is something that should be solely emitted by the hotkey dialog
itself
2. This is functionally unused, given there's nothing listening for the
signal.
The previous code was all "smushed" together wasn't really grouped
together that well.
This spaces things out and separates them by relation to one another,
making it easier to visually parse the individual sections of code that
make up the constructor.
Uses a std::string_view instead of a std::string, given the pointed to
string isn't modified and is only used in a formatting operation.
This is nice because a few usages directly supply a string literal to
the function, allowing these usages to otherwise not heap allocate,
unlike the std::string overloads.
While we're at it, we can combine the address formatting into a single
formatting call.
A checkbox is able to be tri-state, giving it three possible activity
types, so in the connect call here, it would actually be truncating an
int into a bool.
Instead, we can just listen on the toggled() signal, which passes along
a bool, not an int.
The following code is broken on AMD's proprietary GLSL compiler:
```glsl
uint idx = ...;
vec4 values = ...;
float some_value = values[idx & 3];
```
It index the wrong components, to fix this the following pessimized code
is emitted when that bug is present:
```glsl
uint idx = ...;
vec4 values = ...;
float some_value;
if ((idx & 3) == 0) some_value = values.x;
if ((idx & 3) == 1) some_value = values.y;
if ((idx & 3) == 2) some_value = values.z;
if ((idx & 3) == 3) some_value = values.w;
```
Component indexing on AMD's proprietary driver is broken. This commit adds
a test to detect when we are on a driver that can't successfully manage
component indexing.
It dispatches a dummy draw with just one vertex shader that writes to an
indexed SSBO from the GPU with data sent through uniforms, it then reads
that data from the CPU and compares the expected output.
nullptr was being returned in the error case, which, at a glance may
seem perfectly OK... until you realize that std::string has the
invariant that it may not be constructed from a null pointer. This
means that if this error case was ever hit, then the application would
most likely crash from a thrown exception in std::string's constructor.
Instead, we can change the function to return an optional value,
indicating if a failure occurred.
Makes the parameter ordering consistent, and also makes the filename
parameter a std::string. A std::string would be constructed anyways with
the previous code, as IOFile's only constructor with a filepath is one
taking a std::string.
We can also make WriteStringToFile's string parameter utilize a
std::string_view for the string, making use of our previous changes to
IOFile.
We don't need to force the usage of a std::string here, and can instead
use a std::string_view, which allows writing out other forms of strings
(e.g. C-style strings) without any unnecessary heap allocations.
This allows for forming comment nodes without making unnecessary copies
of the std::string instance.
e.g. previously:
Comment(fmt::format("Base address is c[0x{:x}][0x{:x}]",
cbuf->GetIndex(), cbuf_offset));
Would result in a copy of the string being created, as CommentNode()
takes a std::string by value (a const ref passed to a value parameter
results in a copy).
Now, only one instance of the string is ever moved around. (fmt::format
returns a std::string, and since it's returned from a function by value,
this is a prvalue (which can be treated like an rvalue), so it's moved
into Comment's string parameter), we then move it into the CommentNode
constructor, which then moves the string into its member variable).
Amends cases where we were using things that were indirectly being
satisfied through other headers. This way, if those headers change and
eliminate dependencies on other headers in the future, we don't have
cascading compilation errors.
Previously, the code was accumulating data into a std::vector and then
tossing all of it away if a setting was disabled.
Instead, we can just check if it's disabled and do no work at all if
possible. If it's enabled, then we can append to the vector and
allocate.
Unlikely to impact usage much, but it is slightly less sloppy with
resources.
A few of the aoc service stubs/implementations weren't fully popping all
of the parameters passed to them. This ensures that all parameters are
popped and, at minimum, logged out.
Given the array is a private static array, we can just make it
internally linked to hide it from external code. This also allows us to
remove an inclusion within the header.
SMDH is a metadata format used in some executable formats for the
Nintendo 3DS. Switch executables don't utilize this metadata format, so
this just a holdover from Citra and can be corrected.
Allows the loading screen code to compile with implicit string
conversions disabled.
While we're at it remove unnecessary const usages, and add it to nearby
variables where appropriate.
Gets rid of the need to special-case brace handling depending on the
overload used, and makes it consistent across the board with how fmt
handles them.
Strings with compile-time deducible strings are directly forwarded to
std::string's constructor, so we don't need to worry about the
performance difference here, as it'll be identical.
In a lot of places throughout the decompiler, string concatenation via
operator+ is used quite heavily. This is usually fine, when not heavily
used, but when used extensively, can be a problem. operator+ creates an
entirely new heap allocated temporary string and given we perform
expressions like:
std::string thing = a + b + c + d;
this ends up with a lot of unnecessary temporary strings being created
and discarded, which kind of thrashes the heap more than we need to.
Given we utilize fmt in some AddLine calls, we can make this a part of
the ShaderWriter's API. We can make an overload that simply acts as a
passthrough to fmt.
This way, whenever things need to be appended to a string, the operation
can be done via a single string formatting operation instead of
discarding numerous temporary strings. This also has the benefit of
making the strings themselves look nicer and makes it easier to spot
errors in them.
Many of these constructors don't even need to be templated. The only
ones that need to be templated are the ones that actually make use of
the parameter pack.
Even then, since std::vector accepts an initializer list, we can supply
the parameter pack directly to it instead of creating our own copy of
the list, then copying it again into the std::vector.
Given the class contains quite a lot of non-trivial types, place the
constructor and destructor within the cpp file to avoid inlining
construction and destruction code everywhere the class is used.
Avoids performing copies into the pair being returned. Instead, we can
just move the resources into the pair, avoiding the need to make copies
of both the std::string and ShaderEntries struct.
Given the offset is assigned a fixed value in the constructor, we can
just assign it directly and get rid of the need to write the name of the
variable again in the constructor initializer list.
Given the disk shader cache contains non-trivial types, we should
default it in the cpp file in order to prevent inlining of the
complex destruction logic.
The standard library expects hash specializations that don't throw
exceptions. Make this explicit in the type to allow selection of better
code paths if possible in implementations.
We don't need to load the code into a vector and then construct a string
over the data. We can just create a string with the necessary size ahead
of time, and read the data directly into it, getting rid of an
unnecessary heap allocation.
std::move does nothing when applied to a const variable. Resources can't
be moved if the object is immutable. With this change, we don't end up
making several unnecessary heap allocations and copies.
Booleans don't have a guaranteed size, but we still want to have them
integrate into the disk cache system without needing to actually use a
different type. We can do this by supplying non-template overloads for
the bool type.
Non-template overloads always have precedence during function
resolution, so this is safe to provide.
This gets rid of the need to smatter ternary conditionals, as well as
the need to use u8 types to store the value in.
These are only used from within this translation unit, so they don't
need to have external linkage. They were intended to be marked with this
anyways to be consistent with the other service functions.
Renames the members to more accurately indicate what they signify.
"OneShot" and "Sticky" are kind of ambiguous identifiers for the reset
types, and can be kind of misleading. Automatic and Manual communicate
the kind of reset type in a clearer manner. Either the event is
automatically reset, or it isn't and must be manually cleared.
The "OneShot" and "Sticky" terminology is just a hold-over from Citra
where the kernel had a third type of event reset type known as "Pulse".
Given the Switch kernel only has two forms of event reset types, we
don't need to keep the old terminology around anymore.
This reduces the boilerplate that services have to write out the current thread explicitly. Using current thread instead of client thread is also semantically incorrect, and will be a problem when we implement multicore (at which time there will be multiple current threads)
Nvidia's proprietary driver creates a real OpenGL compatibility profile
without this option, meanwhile Intel (and probably AMD, I haven't tested
it) require that QSurfaceFormat::FormatOption::DeprecatedFunctions is
explicitly enabled.
This was reduced due to happening on most games and at such constant
rate that it affected performance heavily for the end user. In general,
we are well aware of the assert and an implementation is already
planned.
Avoids inlining destruction logic where applicable, and also makes
forward declarations not cause unexpected compilation errors depending
on where the State class is used.
Lessens the amount of code that needs to be read, and gets rid of the
need to introduce an indexing variable. Instead, we just operate on the
objects directly.
std::memset is used to clear the entire register structure, which
requires that the Regs struct be trivially copyable (otherwise undefined
behavior is invoked). This prevents the case where a non-trivial type is
potentially added to the struct.
std::move within a copy constructor (on a data member that isn't
mutable) will always result in a copy. Because of that, the behavior of
this copy constructor is identical to the one that would be generated
automatically by the compiler, so we can remove it.
This corrects cases where it was possible to write more entries into the
write buffer than were requested. Now, we check the size of the buffer
before actually writing into them.
We were also returning the wrong value for
GetAvailableLanguageCodeCount2(). This was previously returning 64, but
only 17 should have been returned. 64 entries is the size of the static
array used in MakeLanguageCode() within the service binary itself, but
isn't the actual total number of language codes present.
Makes the class less surprising when it comes to forward declaring the
type, and also prevents inlining the destruction code of the class,
given it contains non-trivial types.
These are able to be omitted from the declaration of functions, since
they don't do anything at the type system level. The definitions of the
functions can retain the use of const though, since they make the
variables immutable in the implementation of the function where they're
used.
Instead of retrieving the data from the std::variant instance, we can
just check if the variant contains that type of data.
This is essentially the same behavior, only it returns a bool indicating
whether or not the type in the variant is currently active, instead of
actually retrieving the data.
By default, MSVC doesn't use standards-compliant volatile semantics.
This makes it behave in a standards-compliant manner, making
expectations more uniform across compilers.
For similar reasons to the previous change, we move this to a single
function, so we don't need to duplicate the conversion logic in several
places within main.cpp.
Specifies the conversions explicitly to avoid implicit conversions from
const char* to QString. This makes it easier to disable implicit QString
conversions in the future.
In this case, the implicit conversion was technically wrong as well. The
implicit conversion treats the input strings as ASCII characters. This
would result in an incorrect conversion being performed in the rare case
a branch name was created with a non-ASCII Unicode character, likely
resulting in junk being displayed.
Over time our config values have grown quite numerous in size.
Unfortunately it also makes the single functions we have for loading and
saving values more error prone.
For example, we were loading the core settings twice when they only
should have been loaded once. In another section, a variable was
shadowing another variable used to load settings from a completely
different section.
Finally, in one other case, there was an extraneous endGroup() call used
that didn't need to be done. This was essentially dead code and also a
bug waiting to happen.
This separates the section loading code into its own separate functions.
This keeps variables only visible to the code that actually needs it,
and makes it much easier to visually see the end of each individual
configuration group. It also makes it much easier to visually catch bugs
during code review.
While we're at it, this also uses QStringLiteral instead of raw string
literals, which both avoids constructing a lot of QString instances, but
also makes it much easier to disable implicit ASCII to QString and
vice-versa in the future via setting QT_NO_CAST_FROM_ASCII and
QT_NO_CAST_TO_ASCII as compilation flags.
The C++ standard allows constexpr variables declared with the extern
keyword to have external linkage. Previously MSVC wasn't abiding by
this. This just makes the compiler more standards compliant during
builds.
Given we currently don't make use of anything that would break by this,
this is safe to enable.
The backend is not used until we decide to submit the testcase/telemetry, and creating it early prevents users from updating the credentials properly while the games are running.
Also introduced in REV5 was a variable-size audio command buffer. This
also affects how the size of the work buffer should be determined, so we
can add handling for this as well.
Thankfully, no other alterations were made to how the work buffer size
is calculated in 7.0.0-8.0.0. There were indeed changes made to to how
some of the actual audio commands are generated though (particularly in
REV7), however they don't apply here.
Introduced in REV5. This is trivial to add support for, now that
everything isn't a mess of random magic constant values.
All this is, is a change in data type sizes as far as this function
cares.
"Unmagics" quite a few magic constants within this code, making it much
easier to understand. Particularly given this factors out specific
sections into their own self-contained lambda functions.
Instead of asserting on already stored shader variants, silently skip them.
This shouldn't be happening but when a shader is invalidated and it is
not stored in the shader cache, this assert would hit and save that
shader anyways when the asserts are disabled.
These are actually quite important indicators of thread lifetimes, so
they should be going into the debug log, rather than being treated as
misc info and delegated to the trace log.
Makes the code much nicer to follow in terms of behavior and control
flow. It also fixes a few bugs in the implementation.
Notably, the thread's owner process shouldn't be accessed in order to
retrieve the core mask or ideal core. This should be done through the
current running process. The only reason this bug wasn't encountered yet
is because we currently only support running one process, and thus every
owner process will be the current process.
We also weren't checking against the process' CPU core mask to see if an
allowed core is specified or not.
With this out of the way, it'll be less noisy to implement proper
handling of the affinity flags internally within the kernel thread
instances.
Provides serialization/deserialization to the database in system save files, accessors for database state and proper handling of both major Mii formats (MiiInfo and MiiStoreData)
This option allows picking the compatibility profile since a lot of bugs
are fixed in it. We devs will use this option to easierly debug current
problems in our Core implementation.:wq
flushing is now responsability of children caches instead of the cache
object. This change will allow the specific cache to pass extra
parameters on flushing and will allow more flexibility.
This is a holdover from Citra, where the 3DS has both
WaitSynchronization1 and WaitSynchronizationN. The switch only has one
form of wait synchronizing (literally WaitSynchonization). This allows
us to throw out code that doesn't apply at all to the Switch kernel.
Because of this unnecessary dichotomy within the wait synchronization
utilities, we were also neglecting to properly handle waiting on
multiple objects.
While we're at it, we can also scrub out any lingering references to
WaitSynchronization1/WaitSynchronizationN in comments, and change them
to WaitSynchronization (or remove them if the mention no longer
applies).
The actual behavior of this function is slightly more complex than what
we're currently doing within the supervisor call. To avoid dumping most
of this behavior in the supervisor call itself, we can migrate this to
another function.
The default constructor will always run, even when not specified, so
this is redundant.
However, the context member can indeed be initialized in the constructor
initializer list.
Previously we were building with MBCS, which is pretty undesirable. We
want the application to be Unicode-aware in general.
Currently, we make the command line variant of yuzu use ANSI variants of
the non-standard getopt functions that we link in for Windows, given we
only have an ANSI option-set.
We should really replace getopt with a library that we make all build
types of yuzu link in, but this will have to do for the time being.
Operations done before the main half float operation (like HAdd) were
managing a packed value instead of the unpacked one. Adding an unpacked
operation allows us to drop the per-operand MetaHalfArithmetic entry,
simplifying the code overall.
This is a compile definition introduced in Qt 4.8 for reducing the total
potential number of strings created when performing string
concatenation. This allows for less memory churn.
This can be read about here:
https://blog.qt.io/blog/2011/06/13/string-concatenation-with-qstringbuilder/
For a change that isn't source-compatible, we only had one occurrence
that actually need to have its type clarified, which is pretty good, as
far as transitioning goes.
This member variable is entirely unused. It was only set but never
actually utilized. Given that, we can remove it to get rid of noise in
the thread interface.
Essentially performs the inverse of svcMapProcessCodeMemory. This unmaps
the aliasing region first, then restores the general traits of the
aliased memory.
What this entails, is:
- Restoring Read/Write permissions to the VMA.
- Restoring its memory state to reflect it as a general heap memory region.
- Clearing the memory attributes on the region.
Uses arithmetic that can be identified more trivially by compilers for
optimizations. e.g. Rather than shifting the halves of the value and
then swapping and combining them, we can swap them in place.
e.g. for the original swap32 code on x86-64, clang 8.0 would generate:
mov ecx, edi
rol cx, 8
shl ecx, 16
shr edi, 16
rol di, 8
movzx eax, di
or eax, ecx
ret
while GCC 8.3 would generate the ideal:
mov eax, edi
bswap eax
ret
now both generate the same optimal output.
MSVC used to generate the following with the old code:
mov eax, ecx
rol cx, 8
shr eax, 16
rol ax, 8
movzx ecx, cx
movzx eax, ax
shl ecx, 16
or eax, ecx
ret 0
Now MSVC also generates a similar, but equally optimal result as clang/GCC:
bswap ecx
mov eax, ecx
ret 0
====
In the swap64 case, for the original code, clang 8.0 would generate:
mov eax, edi
bswap eax
shl rax, 32
shr rdi, 32
bswap edi
or rax, rdi
ret
(almost there, but still missing the mark)
while, again, GCC 8.3 would generate the more ideal:
mov rax, rdi
bswap rax
ret
now clang also generates the optimal sequence for this fallback as well.
This is a case where MSVC unfortunately falls short, despite the new
code, this one still generates a doozy of an output.
mov r8, rcx
mov r9, rcx
mov rax, 71776119061217280
mov rdx, r8
and r9, rax
and edx, 65280
mov rax, rcx
shr rax, 16
or r9, rax
mov rax, rcx
shr r9, 16
mov rcx, 280375465082880
and rax, rcx
mov rcx, 1095216660480
or r9, rax
mov rax, r8
and rax, rcx
shr r9, 16
or r9, rax
mov rcx, r8
mov rax, r8
shr r9, 8
shl rax, 16
and ecx, 16711680
or rdx, rax
mov eax, -16777216
and rax, r8
shl rdx, 16
or rdx, rcx
shl rdx, 16
or rax, rdx
shl rax, 8
or rax, r9
ret 0
which is pretty unfortunate.
This gives us significantly more control over where in the
initialization process we start execution of the main process.
Previously we were running the main process before the CPU or GPU
threads were initialized (not good). This amends execution to start
after all of our threads are properly set up.
Initially required due to the split codepath with how the initial main
process instance was initialized. We used to initialize the process
like:
Init() {
main_process = Process::Create(...);
kernel.MakeCurrentProcess(main_process.get());
}
Load() {
const auto load_result = loader.Load(*kernel.GetCurrentProcess());
if (load_result != Loader::ResultStatus::Success) {
// Handle error here.
}
...
}
which presented a problem.
Setting a created process as the main process would set the page table
for that process as the main page table. This is fine... until we get to
the part that the page table can have its size changed in the Load()
function via NPDM metadata, which can dictate either a 32-bit, 36-bit,
or 39-bit usable address space.
Now that we have full control over the process' creation in load, we can
simply set the initial process as the main process after all the loading
is done, reflecting the potential page table changes without any
special-casing behavior.
We can also remove the cache flushing within LoadModule(), as execution
wouldn't have even begun yet during all usages of this function, now
that we have the initialization order cleaned up.
Now that we have dependencies on the initialization order, we can move
the creation of the main process to a more sensible area: where we
actually load in the executable data.
This allows localizing the creation and loading of the process in one
location, making the initialization of the process much nicer to trace.
Like with CPU emulation, we generally don't want to fire off the threads
immediately after the relevant classes are initialized, we want to do
this after all necessary data is done loading first.
This splits the thread creation into its own interface member function
to allow controlling when these threads in particular get created.
Our initialization process is a little wonky than one would expect when
it comes to code flow. We initialize the CPU last, as opposed to
hardware, where the CPU obviously needs to be first, otherwise nothing
else would work, and we have code that adds checks to get around this.
For example, in the page table setting code, we check to see if the
system is turned on before we even notify the CPU instances of a page
table switch. This results in dead code (at the moment), because the
only time a page table switch will occur is when the system is *not*
running, preventing the emulated CPU instances from being notified of a
page table switch in a convenient manner (technically the code path
could be taken, but we don't emulate the process creation svc handlers
yet).
This moves the threads creation into its own member function of the core
manager and restores a little order (and predictability) to our
initialization process.
Previously, in the multi-threaded cases, we'd kick off several threads
before even the main kernel process was created and ready to execute (gross!).
Now the initialization process is like so:
Initialization:
1. Timers
2. CPU
3. Kernel
4. Filesystem stuff (kind of gross, but can be amended trivially)
5. Applet stuff (ditto in terms of being kind of gross)
6. Main process (will be moved into the loading step in a following
change)
7. Telemetry (this should be initialized last in the future).
8. Services (4 and 5 should ideally be alongside this).
9. GDB (gross. Uses namespace scope state. Needs to be refactored into a
class or booted altogether).
10. Renderer
11. GPU (will also have its threads created in a separate step in a
following change).
Which... isn't *ideal* per-se, however getting rid of the wonky
intertwining of CPU state initialization out of this mix gets rid of
most of the footguns when it comes to our initialization process.
Allows the compiler to inform when the result of a swap function is
being ignored (which is 100% a bug in all usage scenarios). We also mark
them noexcept to allow other functions using them to be able to be
marked as noexcept and play nicely with things that potentially inspect
"nothrowability".
Including every OS' own built-in byte swapping functions is kind of
undesirable, since it adds yet another build path to ensure compilation
succeeds on.
Given we only support clang, GCC, and MSVC for the time being, we can
utilize their built-in functions directly instead of going through the
OS's API functions.
This shrinks the overall code down to just
if (msvc)
use msvc's functions
else if (clang or gcc)
use clang/gcc's builtins
else
use the slow path
The template type here is actually a forwarding reference, not an rvalue
reference in this case, so it's more appropriate to use std::forward to
preserve the value category of the type being moved.
Some objects declare their handle type as const, while others declare it
as constexpr. This makes the const ones constexpr for consistency, and
prevent unexpected compilation errors if these happen to be attempted to be
used within a constexpr context.
These indicate options that alter how a read/write is performed.
Currently we don't need to handle these, as the only one that seems to
be used is for writes, but all the custom options ever seem to do is
immediate flushing, which we already do by default.
Without passing in a parent, this can result in focus being stolen from
the dialog in certain cases.
Example:
On Windows, if the logging window is left open, the logging Window will
potentially get focus over the hotkey dialog itself, since it brings all
open windows for the application into view. By specifying a parent, we
only bring windows for the parent into view (of which there are none,
aside from the hotkey dialog).
Avoids dumping all of the core settings machinery into whatever files
include this header. Nothing inside the header itself actually made use
of anything in settings.h anyways.
We need to ensure dynarmic gets a valid pointer if the page table is
resized (the relevant pointers would be invalidated in this scenario).
In this scenario, the page table can be resized depending on what kind
of address space is specified within the NPDM metadata (if it's
present).
In our error console, when loading a game, the strings:
QString::arg: Argument missing: "Loading...", 0
QString::arg: Argument missing: "Launching...", 0
would occasionally pop up when the loading screen was running. This was
due to the strings being assumed to have formatting indicators in them,
however only two out of the four strings actually have them.
This only applies the arguments to the strings that have formatting
specifiers provided, which avoids these warnings from occurring.
Adjusts the interface of the wrappers to take a system reference, which
allows accessing a system instance without using the global accessors.
This also allows getting rid of all global accessors within the
supervisor call handling code. While this does make the wrappers
themselves slightly more noisy, this will be further cleaned up in a
follow-up. This eliminates the global system accessors in the current
code while preserving the existing interface.
Keeps the return type consistent with the function name. While we're at
it, we can also reduce the amount of boilerplate involved with handling
these by using structured bindings.
This doesn't actually work anymore, and given how long it's been left in
that state, it's unlikely anyone actually seriously used it.
Generally it's preferable to use RenderDoc or Nsight to view surfaces.
Given we already ensure nothing can set the zeroth register in
SetRegister(), we don't need to check if the index is zero and special
case it. We can just access the register normally, since it's already
going to be zero.
We can also replace the assertion with .at() to perform the equivalent
behavior inline as part of the API.
Now, since we have a const qualified variant of GetPointer(), we can put
it to use in ReadBlock() to retrieve the source pointer that is passed
into memcpy.
Now block reading may be done from a const context.
- Use QStringLiteral where applicable.
- Use const where applicable
- Remove unnecessary precondition check (we already assert the pixbuf
being non null)
Fills in the missing surface types that were marked as unknown. The
order corresponds with the TextureFormat enum within
video_core/texture.h.
We also don't need to all of these strings as translatable (only the
first string, as it's an English word).
Since c5d41fd812 callback parameters were
changed to use an s64 to represent late cycles instead of an int, so
this was causing a truncation warning to occur here. Changing it to s64
is sufficient to silence the warning.
Replaces header inclusions with forward declarations where applicable
and also removes unused headers within the cpp file. This reduces a few
more dependencies on core/memory.h
BitField has been trivially copyable since
e99a148628, so we can eliminate these
TODO comments and use ReadObject() directly instead of memcpying the
data.
Makes the return type consistently uniform (like the intrinsics we're
wrapping). This also conveniently silences a truncation warning within
the kernel multi_level_queue.
Rather than make a full copy of the path, we can just use a string view
and truncate the viewed portion of the string instead of creating a totally
new truncated string.
Temporal generally indicates a relation to time, but this is just
creating a temporary, so this isn't really an accurate name for what the
function is actually doing.
TXQ returns integer types. Shaders usually do:
R0 = TXQ(); // => int
R0 = static_cast<float>(R0);
If we don't treat it as an integer, it will cast a binary float value as
float - resulting in a corrupted number.
In several places, we have request parsers where there's nothing to
really parse, simply because the HLE function in question operates on
buffers. In these cases we can just remove these instances altogether.
In the other cases, we can retrieve the relevant members from the parser
and at least log them out, giving them some use.
Applies the override specifier where applicable. In the case of
destructors that are defaulted in their definition, they can
simply be removed.
This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.
Quite a few unused includes have built up over time, particularly on
core/memory.h. Removing these includes means the source files including
those files will no longer need to be rebuilt if they're changed, making
compilation slightly faster in this scenario.
Rather than scream that the file doesn't exist, we can clearly state
what specifically doesn't exist, to avoid ambiguity, and make it easier
to understand for non-primary English speakers/readers.
Quite a bit of these were out of sync with Switchbrew (and in some cases
entirely wrong). While we're at it, also expand the section of named
members. A segment within the control metadata is used to specify
maximum values for the user, device, and cache storage max sizes and
journal sizes.
These appear to be generally used by the am service (e.g. in
CreateCacheStorage, etc).
We need to be checking whether or not the given address is within the
kernel address space or if the given address isn't word-aligned and bail
in these scenarios instead of trashing any kernel state.
For whatever reason, shared memory was being used here instead of
transfer memory, which (quite clearly) will not work based off the name
of the function.
This corrects this wonky usage of shared memory.
Given server sessions can be given a name, we should allow retrieving
it instead of using the default implementation of GetName(), which would
just return "[UNKNOWN KERNEL OBJECT]".
The AddressArbiter type isn't actually used, given the arbiter itself
isn't a direct kernel object (or object that implements the wait object
facilities).
Given this, we can remove the enum entry entirely.
Moves includes into the cpp file where necessary. This way,
microprofile-related stuff isn't dumped into other UI-related code when
the dialog header gets included.
Similarly like svcGetProcessList, this retrieves the list of threads
from the current process. In the kernel itself, a process instance
maintains a list of threads, which are used within this function.
Threads are registered to a process' thread list at thread
initialization, and unregistered from the list upon thread destruction
(if said thread has a non-null owning process).
We assert on the debug event case, as we currently don't implement
kernel debug objects.
Now that ShouldWait() is a const qualified member function, this one can
be made const qualified as well, since it can handle passing a const
qualified this pointer to ShouldWait().
Previously this was performing a u64 + int sign conversion. When dealing
with addresses, we should generally be keeping the arithmetic in the
same signedness type.
This also gets rid of the static lifetime of the constant, as there's no
need to make a trivial type like this potentially live for the entire
duration of the program.
This doesn't really provide any benefit to the resource limit interface.
There's no way for callers to any of the service functions for resource
limits to provide a custom name, so all created instances of resource
limits other than the system resource limit would have a name of
"Unknown".
The system resource limit itself is already trivially identifiable from
its limit values, so there's no real need to take up space in the object to
identify one object meaningfully out of N total objects.
Since C++17, the introduction of deduction guides for locking facilities
means that we no longer need to hardcode the mutex type into the locks
themselves, making it easier to switch mutex types, should it ever be
necessary in the future.
Since C++17, we no longer need to explicitly specify the type of the
mutex within the lock_guard. The type system can now deduce these with
deduction guides.
Based off RE, most of these structure members are register values, which
makes, sense given this service is used to convey fatal errors.
One member indicates the program entry point address, one is a set of
bit flags used to determine which registers to print, and one member
indicates the architecture type.
The only member that still isn't determined is the final member within
the data structure.
The kernel makes sure that the given size to unmap is always the same
size as the entire region managed by the shared memory instance,
otherwise it returns an error code signifying an invalid size.
This is similarly done for transfer memory (which we already check for).
Many of these functions are carried over from Dolphin (where they aren't
used anymore). Given these have no use (and we really shouldn't be
screwing around with OS-specific thread scheduler handling from the
emulator, these can be removed.
The function for setting the thread name is left, however, since it can
have debugging utility usages.
This was initially added to prevent problems from stubbed/not implemented NFC services, but as we never encountered such and as it's only used in a deprecated function anyway, I guess we can just remove it to prevent more clutter of the settings.
Reports the (mostly) correct size through svcGetInfo now for queries to
total used physical memory. This still doesn't correctly handle memory
allocated via svcMapPhysicalMemory, however, we don't currently handle
that case anyways.
This will make operating with the process-related SVC commands much
nicer in the future (the parameter representing the stack size in
svcStartProcess is a 64-bit value).
This isn't used at all in the OpenGL shader cache, so we can remove it's
include here, meaning one less file needs to be recompiled if any
changes ever occur within that header.
core/memory.h is also not used within this file at all, so we can remove
it as well.
We can just pass in the Maxwell3D instance instead of going through the
system class to get at it.
This also lets us simplify the interface a little bit. Since we pass in
the Maxwell3D context now, we only really need to pass the shader stage
index value in.
The pusher instance is only ever used in the constructor of the
ThreadManager for creating the thread that the ThreadManager instance
contains. Aside from that, the member is unused, so it can be removed.
These functions act in tandem similar to how a lock or mutex require a
balanced lock()/unlock() sequence.
EnterFatalSection simply increments a counter for how many times it has
been called, while LeaveFatalSection ensures that a previous call to
EnterFatalSection has occured. If a previous call has occurred (the
counter is not zero), then the counter gets decremented as one would
expect. If a previous call has not occurred (the counter is zero), then
an error code is returned.
In some cases, our callbacks were using s64 as a parameter, and in other
cases, they were using an int, which is inconsistent.
To make all callbacks consistent, we can just use an s64 as the type for
late cycles, given it gets rid of the need to cast internally.
While we're at it, also resolve some signed/unsigned conversions that
were occurring related to the callback registration.
One behavior that we weren't handling properly in our heap allocation
process was the ability for the heap to be shrunk down in size if a
larger size was previously requested.
This adds the basic behavior to do so and also gets rid of HeapFree, as
it's no longer necessary now that we have allocations and deallocations
going through the same API function.
While we're at it, fully document the behavior that this function
performs.
Makes it more obvious that this function is intending to stand in for
the actual supervisor call itself, and not acting as a general heap
allocation function.
Also the following change will merge the freeing behavior of HeapFree
into this function, so leaving it as HeapAllocate would be misleading.
In cases where HeapAllocate is called with the same size of the current
heap, we can simply do nothing and return successfully.
This avoids doing work where we otherwise don't have to. This is also
what the kernel itself does in this scenario.
Another holdover from citra that can be tossed out is the notion of the
heap needing to be allocated in different addresses. On the switch, the
base address of the heap will always be managed by the memory allocator
in the kernel, so this doesn't need to be specified in the function's
interface itself.
The heap on the switch is always allocated with read/write permissions,
so we don't need to add specifying the memory permissions as part of the
heap allocation itself either.
This also corrects the error code returned from within the function.
If the size of the heap is larger than the entire heap region, then the
kernel will report an out of memory condition.
The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.
This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.
This source file was utilizing its own version of the NSO header.
Instead of keeping this around, we can have the patch manager also use
the version of the header that we have defined in loader/nso.h
The total struct itself is 0x100 (256) bytes in size, so we should be
providing that amount of data.
Without the data, this can result in omitted data from the final loaded
NSO file.
Implements an API agnostic texture view based texture cache. Classes
defined here are intended to be inherited by the API implementation and
used in API-specific code.
This implementation exposes protected virtual functions to be called
from the implementer.
Before executing any surface copies methods (defined in API-specific code)
it tries to detect if the overlapping surface is a superset and if it
is, it creates a view. Views are references of a subset of a surface, it
can be a superset view (the same as referencing the whole texture).
Current code manages 1D, 1D array, 2D, 2D array, cube maps and cube map
arrays with layer and mipmap level views. Texture 3D slices views are
not implemented.
If the view attempt fails, the fast path is invoked with the overlapping
textures (defined in the implementer). If that one fails (returning
nullptr) it will flush and reload the texture.
Makes it more evident that one is for actual code and one is for actual
data. Mutable and static are less than ideal terms here, because
read-only data is technically not mutable, but we were mapping it with
that label.
In 93da8e0abf, the page table construct
was moved to the common library (which utilized these inclusions). Since
the move, nothing requires these headers to be included within the
memory header.
- GPU will be released on shutdown, before pages are unmapped.
- On subsequent runs, current_page_table will be not nullptr, but GPU might not be valid yet.
When #2247 was created, thread_queue_list.h was the only user of
boost-related code, however #2252 moved the page table struct into
common, which makes use of Boost.ICL, so we need to add the dependency
to the common library's link interface again.
Given this is utilized by the loaders, this allows avoiding inclusion of
the kernel process definitions where avoidable.
This also keeps the loading format for all executable data separate from
the kernel objects.
Neither the NRO or NSO loaders actually make use of the functions or
members provided by the Linker interface, so we can just remove the
inheritance altogether.
This function passes in the desired main applet and library applet
volume levels. We can then just pass those values back within the
relevant volume getter functions, allowing us to unstub those as well.
The initial values for the library and main applet volumes differ. The
main applet volume is 0.25 by default, while the library applet volume
is initialized to 1.0 by default in the services themselves.
Modifying CMAKE_* related flags directly applies those changes to every
single CMake target. This includes even the targets we have in the
externals directory.
So, if we ever increased our warning levels, or enabled particular ones,
or enabled any other compilation setting, then this would apply to
externals as well, which is often not desirable.
This makes our compilation flag setup less error prone by only applying
our settings to our targets and leaving the externals alone entirely.
This also means we don't end up clobbering any provided flags on the
command line either, allowing users to specifically use the flags they
want.
We generally shouldn't be hijacking CMAKE_CXX_FLAGS, etc as a means to
append flags to the targets, since this adds the compilation flags to
everything, including our externals, which can result in weird issues
and makes the build hierarchy fragile.
Instead, we want to just apply these compilation flags to our targets,
and let those managing external libraries to properly specify their
compilation flags.
This also results in us not getting as many warnings, as we don't raise
the warning level on every external target.
We really don't need to pull in several headers of boost related
machinery just to perform the erase-remove idiom (particularly with
C++20 around the corner, which adds universal container std::erase and
std::erase_if, which we can just use instead).
With this, we don't need to link in anything boost-related into common.
Rather than make a global accessor for this sort of thing. We can make
it a part of the thread interface itself. This allows getting rid of a
hidden global accessor in the kernel code.
This condition was checking against the nominal thread priority, whereas
the kernel itself checks against the current priority instead. We were
also assigning the nominal priority, when we should be assigning
current_priority, which takes priority inheritance into account.
This can lead to the incorrect priority being assigned to a thread.
Given we recursively update the relevant threads, we don't need to go
through the whole mutex waiter list. This matches what the kernel does
as well (only accessing the first entry within the waiting list).
* gdbstub: fix IsMemoryBreak() returning false while connected to client
As a result, the only existing codepath for a memory watchpoint hit to break into GDB (InterpeterMainLoop, GDB_BP_CHECK, ARMul_State::RecordBreak) is finally taken,
which exposes incorrect logic* in both RecordBreak and ServeBreak.
* a blank BreakpointAddress structure is passed, which sets r15 (PC) to NULL
* gdbstub: DynCom: default-initialize two members/vars used in conditionals
* gdbstub: DynCom: don't record memory watchpoint hits via RecordBreak()
For now, instead check for GDBStub::IsMemoryBreak() in InterpreterMainLoop and ServeBreak.
Fixes PC being set to a stale/unhit breakpoint address (often zero) when a memory watchpoint (rwatch, watch, awatch) is handled in ServeBreak() and generates a GDB trap.
Reasons for removing a call to RecordBreak() for memory watchpoints:
* The``breakpoint_data`` we pass is typed Execute or None. It describes the predicted next code breakpoint hit relative to PC;
* GDBStub::IsMemoryBreak() returns true if a recent Read/Write operation hit a watchpoint. It doesn't specify which in return, nor does it trace it anywhere. Thus, the only data we could give RecordBreak() is a placeholder BreakpointAddress at offset NULL and type Access. I found the idea silly, compared to simply relying on GDBStub::IsMemoryBreak().
There is currently no measure in the code that remembers the addresses (and types) of any watchpoints that were hit by an instruction, in order to send them to GDB as "extended stop information."
I'm considering an implementation for this.
* gdbstub: Change an ASSERT to DEBUG_ASSERT
I have never seen the (Reg[15] == last_bkpt.address) assert fail in practice, even after several weeks of (locally) developping various branches around GDB. Only leave it inside Debug builds.
Makes it an instantiable class like it is in the actual kernel. This
will also allow removing reliance on global accessors in a following
change, now that we can encapsulate a reference to the system instance
in the class.
Within the kernel, shared memory and transfer memory facilities exist as
completely different kernel objects. They also have different validity
checking as well. Therefore, we shouldn't be treating the two as the
same kind of memory.
They also differ in terms of their behavioral aspect as well. Shared
memory is intended for sharing memory between processes, while transfer
memory is intended to be for transferring memory to other processes.
This breaks out the handling for transfer memory into its own class and
treats it as its own kernel object. This is also important when we
consider resource limits as well. Particularly because transfer memory
is limited by the resource limit value set for it.
While we currently don't handle resource limit testing against objects
yet (but we do allow setting them), this will make implementing that
behavior much easier in the future, as we don't need to distinguish
between shared memory and transfer memory allocations in the same place.
The previous code had some minor issues with it, really not a big deal,
but amending it is basically 'free', so I figured, "why not?".
With the standard container maps, when:
map[key] = thing;
is done, this can cause potentially undesirable behavior in certain
scenarios. In particular, if there's no value associated with the key,
then the map constructs a default initialized instance of the value
type.
In this case, since it's a std::shared_ptr (as a type alias) that is
the value type, this will construct a std::shared_pointer, and then
assign over it (with objects that are quite large, or actively heap
allocate this can be extremely undesirable).
We also make the function take the region by value, as we can avoid a
copy (and by extension with std::shared_ptr, a copy causes an atomic
reference count increment), in certain scenarios when ownership isn't a
concern (i.e. when ReserveGlobalRegion is called with an rvalue
reference, then no copy at all occurs). So, it's more-or-less a "free"
gain without many downsides.
With this, all kernel objects finally have all of their data members
behind an interface, making it nicer to reason about interactions with
other code (as external code no longer has the freedom to totally alter
internals and potentially messing up invariants).
After doing a little more reading up on the Opus codec, it turns out
that the multistream API that is part of libopus can handle regular
packets. Regular packets are just a degenerate case of multistream Opus
packets, and all that's necessary is to pass the number of streams as 1
and provide a basic channel mapping, then everything works fine for
that case.
This allows us to get rid of the need to use both APIs in the future
when implementing multistream variants in a follow-up PR, greatly
simplifying the code that needs to be written.
Previously this was required, as BitField wasn't trivially copyable.
BitField has since been made trivially copyable, so now this isn't
required anymore.
Relocates the error code to where it's most related, similar to how all
the other error codes are. Previously we were including a non-generic
error in the main result code header.
These can just be passed regularly, now that we use fmt instead of our
old logging system.
While we're at it, make the parameters to MakeFunctionString
std::string_views.
Instead of holding a reference that will get invalidated by
dma_pushbuffer.pop(), hold it as a copy. This doesn't have any
performance cost since CommandListHeader is 8 bytes long.
There's no real need to use a shared lifetime here, since we don't
actually expose them to anything else. This is also kind of an
unnecessary use of the heap given the objects themselves are so small;
small enough, in fact that changing over to optionals actually reduces
the overall size of the HLERequestContext struct (818 bytes to 808
bytes).
Now that we have the address arbiter extracted to its own class, we can
fix an innaccuracy with the kernel. Said inaccuracy being that there
isn't only one address arbiter. Each process instance contains its own
AddressArbiter instance in the actual kernel.
This fixes that and gets rid of another long-standing issue that could
arise when attempting to create more than one process.
Similar to how WaitForAddress was isolated to its own function, we can
also move the necessary conditional checking into the address arbiter
class itself, allowing us to hide the implementation details of it from
public use.
Rather than let the service call itself work out which function is the
proper one to call, we can make that a behavior of the arbiter itself,
so we don't need to directly expose those implementation details.
This makes the class much more flexible and doesn't make performing
copies with classes that contain a bitfield member a pain.
Given BitField instances are only intended to be used within unions, the
fact the full storage value would be copied isn't a big concern (only
sizeof(union_type) would be copied anyways).
While we're at it, provide defaulted move constructors for consistency.
Because of the recent separation of GPU functionality into sync/async
variants, we need to mark the destructor virtual to provide proper
destruction behavior, given we use the base class within the System
class.
Prior to this, it was undefined behavior whether or not the destructor
in the derived classes would ever execute.
This will be utilized by more than just that class in the future. This
also renames it from OpusHeader to OpusPacketHeader to be more specific
about what kind of header it is.
We already have the thread instance that was created under the current
process, so we can just pass the handle table of it along to retrieve
the owner of the mutex.
Removes a few unnecessary dependencies on core-related machinery, such
as the core.h and memory.h, which reduces the amount of rebuilding
necessary if those files change.
This also uncovered some indirect dependencies within other source
files. This also fixes those.
Places all error codes in an easily includable header.
This also corrects the unsupported error code (I accidentally used the
hex value when I meant to use the decimal one).
Places all of the functions for address arbiter operation into a class.
This will be necessary for future deglobalizing efforts related to both
the memory and system itself.
Removes a few inclusion dependencies from the headers or replaces
existing ones with ones that don't indirectly include the required
headers.
This allows removing an inclusion of core/memory.h, meaning that if the
memory header is ever changed in the future, it won't result in
rebuilding the entirety of the HLE services (as the IPC headers are used
quite ubiquitously throughout the HLE service implementations).
Avoids directly relying on the global system instance and instead makes
an arbitrary system instance an explicit dependency on construction.
This also allows removing dependencies on some global accessor functions
as well.
Given we already pass in a reference to the kernel that the shared
memory instance is created under, we can just use that to check the
current process, rather than using the global accessor functions.
This allows removing direct dependency on the system instance entirely.
In these cases the system object is nearby, and in the other, the
long-form of accessing the telemetry instance is already used, so we can
get rid of the use of the global accessor.
We already pass a reference to the system object to the constructor of the renderer,
so we can just use that instead of using the global accessor functions.
Reduces the potential amount of rebuilding necessary if any headers
change. In particular, we were including a header from the core library
when we don't even link the core library to the web_service library, so
this also gets rid of an indirect dependency.
Moves local global state into the Impl class itself and initializes it
at the creation of the instance instead of in the function.
This makes it nicer for weakly-ordered architectures, given the
CreateEntry() class won't need to have atomic loads executed for each
individual call to the CreateEntry class.
Any SDL invocation can call the even callback on the same thread, which can call GetSDLJoystickBySDLID and eventually cause double lock on joystick_map_mutex. To avoid this, lock guard should be placed as closer as possible to the object accessing code, so that any SDL invocation is with the mutex unlocked
Changes the interface as well to remove any unique methods that
frontends needed to call such as StartJoystickEventHandler by
conditionally starting the polling thread only if the frontend hasn't
started it already. Additionally, moves all global state into a single
SDLState class in order to guarantee that the destructors are called in
the proper order
MSVC does not seem to like using constexpr values in a lambda that were declared outside of it.
Previously on MSVC build the hotkeys to inc-/decrease the speed limit were not working correctly because in the lambda the SPEED_LIMIT_STEP had garbage values.
After googling around a bit I found: https://github.com/codeplaysoftware/computecpp-sdk/issues/95 which seems to be a similar issue.
Trying the suggested fix to make the variable static constexpr also fixes the bug here.
The comment already invalidates itself: neither MMIO nor rasterizer cache belongsHLE kernel state. This mutex has a too large scope if MMIO or cache is included, which is prone to dead lock when multiple thread acquires these resource at the same time. If necessary, each MMIO component or rasterizer should have their own lock.
This currently has the same behavior as the regular
OpenAudioRenderer API function, so we can just move the code within
OpenAudioRenderer to an internal function that both service functions
call.
This service function appears to do nothing noteworthy on the switch.
All it does at the moment is either return an error code or abort the
system. Given we obviously don't want to kill the system, we just opt
for always returning the error code.
Provides names for previously unknown entries (aside from the two u8
that appear to be padding bytes, and a single word that also appears
to be reserved or padding).
This will be useful in subsequent changes when unstubbing behavior related
to the audio renderer services.
This function is also supposed to check its given policy type with the
permission of the service itself. This implements the necessary
machinery to unstub these functions.
Policy::User seems to just be basic access (which is probably why vi:u
is restricted to that policy), while the other policy seems to be for
extended abilities regarding which displays can be managed and queried,
so this is assumed to be for a background compositor (which I've named,
appropriately, Policy::Compositor).
There's no real reason this shouldn't be allowed, given some values sent
via a request can be signed. This also makes it less annoying to work
with popping enum values, given an enum class with no type specifier
will work out of the box now.
It's also kind of an oversight to allow popping s64 values, but nothing
else.
This didn't really provide much benefit here, especially since the
subsequent change requires that the behavior for each service's
GetDisplayService differs in a minor detail.
This also arguably makes the services nicer to read, since it gets rid
of an indirection in the class hierarchy.
The kernel allows restricting the total size of the handle table through
the process capability descriptors. Until now, this functionality wasn't
hooked up. With this, the process handle tables become properly restricted.
In the case of metadata-less executables, the handle table will assume
the maximum size is requested, preserving the behavior that existed
before these changes.
This manages two kinds of streaming buffers: one for unified memory
models and one for dedicated GPUs. The first one skips the copy from the
staging buffer to the real buffer, since it creates an unified buffer.
This implementation waits for all fences to finish their operation
before "invalidating". This is suboptimal since it should allocate
another buffer or start searching from the beginning. There is room for
improvement here.
This could also handle AMD's "pinned" memory (a heap with 256 MiB) that
seems to be designed for buffer streaming.
The scheduler abstracts command buffer and fence management with an
interface that's able to do OpenGL-like operations on Vulkan command
buffers.
It returns by value a command buffer and fence that have to be used for
subsequent operations until Flush or Finish is executed, after that the
current execution context (the pair of command buffers and fences) gets
invalidated a new one must be fetched. Thankfully validation layers will
quickly detect if this is skipped throwing an error due to modifications
to a sent command buffer.
The NVFlinger service is already passed into services that need to
guarantee its lifetime, so the BufferQueue instances will already live
as long as they're needed. Making them std::shared_ptr instances in this
case is unnecessary.
Like the previous changes made to the Display struct, this prepares the
Layer struct for changes to its interface. Given Layer will be given
more invariants in the future, we convert it into a class to better
signify that.
With the display and layer structures relocated to the vi service, we
can begin giving these a proper interface before beginning to properly
support the display types.
This converts the display struct into a class and provides it with the
necessary functions to preserve behavior within the NVFlinger class.
* Fixes Unicode Key File Directories
Adds code so that when loading a file it converts to UTF16 first, to
ensure the files can be opened. Code borrowed from FileUtil::Exists.
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
* Using FileUtil instead to be cleaner.
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
These are more closely related to the vi service as opposed to the
intermediary nvflinger.
This also places them in their relevant subfolder, as future changes to
these will likely result in subclassing to represent various displays
and services, as they're done within the service itself on hardware.
The reasoning for prefixing the display and layer source files is to
avoid potential clashing if two files with the same name are compiled
(e.g. if 'display.cpp/.h' or 'layer.cpp/.h' is added to another service
at any point), which MSVC will actually warn against. This prevents that
case from occurring.
This also presently coverts the std::array introduced within
f45c25aaba back to a std::vector to allow
the forward declaration of the Display type. Forward declaring a type
within a std::vector is allowed since the introduction of N4510
(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4510.html) by
Zhihao Yuan.
As fetching command list headers and and the list of command headers is a fixed 1:1 relation now, they can be implemented within a single call.
This cleans up the Step() logic quite a bit.
Fetching every u32 from memory leads to a big overhead. So let's fetch all of them as a block if possible.
This reduces the Memory::* calls by the dma_pusher by a factor of 10.
A fairly trivial change. Other sections of the codebase use nested
namespaces instead of separate namespaces here. This one must have just
been overlooked.
Gets rid of the largest set of mutable global state within the core.
This also paves a way for eliminating usages of GetInstance() on the
System class as a follow-up.
Note that no behavioral changes have been made, and this simply extracts
the functionality into a class. This also has the benefit of making
dependencies on the core timing functionality explicit within the
relevant interfaces.
Previously, we were completely ignoring for screenshots whether the game uses RGB or sRGB.
This resulted in screenshot colors that looked off for some titles.
There are some potential edge cases where gl_state may fail to track the
state if a related state changes while the toggle is disabled or it
didn't change. This addresses that.
Handles a pool of resources protected by fences. Manages resource
overflow allocating more resources.
This class is intended to be used through inheritance.
Fences take ownership of objects, protecting them from GPU-side or
driver-side concurrent access. They must be commited from the resource
manager. Their usage flow is: commit the fence from the resource
manager, protect resources with it and use them, send the fence to an
execution queue and Wait for it if needed and then call Release. Used
resources will automatically be signaled when they are free to be
reused.
Makes it consistent with the regular standard containers in terms of
size representation. This also gets rid of dependence on our own
type aliases, removing the need for an include.
The necessity of this parameter is dubious at best, and in 2019 probably
offers completely negligible savings as opposed to just leaving this
enabled. This removes it and simplifies the overall interface.
VKDevice contains all the data required to manage and initialize a
physical device. Its intention is to be passed across Vulkan objects to
query device-specific data (for example the logical device and the
dispatch loader).
We already store a reference to the system instance that the renderer is
created with, so we don't need to refer to the system instance via
Core::System::GetInstance()
This file is intended to be included instead of vulkan/vulkan.hpp. It
includes declarations of unique handlers using a dynamic dispatcher
instead of a static one (which would require linking to a Vulkan
library).
Places all of the timing-related functionality under the existing Core
namespace to keep things consistent, rather than having the timing
utilities sitting in its own completely separate namespace.
When I originally added the compute assert I used the wrong
documentation. This addresses that.
The dispatch register was tested with homebrew against hardware and is
triggered by some games (e.g. Super Mario Odyssey). What exactly is
missing to get a valid program bound by this engine requires more
investigation.
This was originally included because texture operations returned a vec4.
These operations now return a single float and the F4 prefix doesn't
mean anything.
Previous code relied on GLSL parameter order (something that's always
ill-formed on an IR design). This approach passes spatial coordiantes
through operation nodes and array and depth compare values in the the
texture metadata. It still contains an "extra" vector containing generic
nodes for bias and component index (for example) which is still a bit
ill-formed but it should be better than the previous approach.
i965 (and probably all mesa drivers) require GL_PROGRAM_SEPARABLE when using
glProgramBinary. This is probably required by the standard but it's ignored by
permisive proprietary drivers.
This commit it automatically generated by command in zsh:
sed -i -- 's/BitField<\(.*\)_le>/BitField<\1>/g' **/*(D.)
BitField is now aware to endianness and default to little endian. It expects a value representation type without storage specification for its template parameter.
This is compromise for swap type being used in union. A union has deleted default constructor if it has at least one variant member with non-trivial default constructor, and no variant member of T has a default member initializer. In the use case of Bitfield, all variant members will be the swap type on endianness mismatch, which would all have non-trivial default constructor if default value is specified, and non of them can have member initializer
Converts many of the Find* functions to return a std::optional<T> as
opposed to returning the raw return values directly. This allows
removing a few assertions and handles error cases like the service
itself does.
Some games search conditionally use global memory instructions. This
allows the heuristic to search inside conditional nodes for the source
constant buffer.
Some games call LDG at the top of a basic block, making the tracking
heuristic to fail. This commit lets the heuristic the decoded nodes as a
whole instead of per basic blocks.
This may lead to some false positives but allows it the heuristic to
track cases it previously couldn't.
A holdover from citra, the Horizon kernel on the switch has no
prominent kernel object that functions as a timer. At least not
to the degree of sophistication that this class provided.
As such, this can be removed entirely. This class also wasn't used at
all in any meaningful way within the core, so this was just code sitting
around doing nothing. This also allows removing a few things from the
main KernelCore class that allows it to use slightly less resources
overall (though very minor and not anything really noticeable).
No inheritors of the WaitObject class actually make use of their own
implementations of these functions, so they can be made non-virtual.
It's also kind of sketchy to allow overriding how the threads get added
to the list anyways, given the kernel itself on the actual hardware
doesn't seem to customize based off this.
This was previously causing:
warning C4828: The file contains a character starting at offset 0xa33
that is illegal in the current source character set (codepage 65001).
warnings on Windows when compiling yuzu.
This functions almost identically to DecodeInterleavedWithPerfOld,
however this function also has the ability to reset the decoder context.
This is documented as a potentially desirable thing in the libopus
manual in some circumstances as it says for the OPUS_RESET_STATE ctl:
"This should be called when switching streams in order to prevent the
back to back decoding from giving different result from one at a time
decoding."
Constant buffer values on the shader IR were using different offsets if
the access direct or indirect. cbuf34 has a non-multiplied offset while
cbuf36 does. On shader decoding this commit multiplies it by four on
cbuf34 queries.
* Implemented the puller semaphore operations.
* Nit: Fix 2 style issues
* Nit: Add Break to default case.
* Fix style.
* Update for comments. Added ReferenceCount method
* Forgot to remove GpuSmaphoreAddress union.
* Fix the clang-format issues.
* More clang formatting.
* two more white spaces for the Clang formatting.
* Move puller members into the regs union
* Updated to use Memory::WriteBlock instead of Memory::Write*
* Fix clang style issues
* White space clang error
* Removing unused funcitons and other pr comment
* Removing unused funcitons and other pr comment
* More union magic for setting regs value.
* union magic refcnt as well
* Remove local var
* Set up the regs and regs_assert_positions up properly
* Fix clang error
Cubemaps are considered layered and to create a texture view the texture
mustn't be a layered texture, resulting in cubemaps being bound as
cubemap arrays. To fix this issue this commit introduces an extra
surface parameter called "is_array" and uses this to query for texture
view creation.
Now that texture views for cubemaps are actually being created, this
also fixes the number of layers created for the texture view (since they
have to be 6 to create a texture view of cubemaps).
Some games (like Xenoblade Chronicles 2) clear both depth and stencil
buffers while there's a depth-only texture attached (e.g. D16 Unorm).
This commit reads the zeta format of the bound surface on
ConfigureFramebuffers and returns if depth and/or stencil attachments
were set. This is ignored on DrawArrays but on Clear it's used to just
clear those attachments, bypassing an OpenGL error.
In addition to the default, external, EDID, and internal displays,
there's also a null display provided as well, which as the name
suggests, does nothing but discard all commands given to it. This is
provided for completeness.
Opening a display isn't really a thing to warn about. It's an expected
thing, so this can be a debug log. This also alters the string to
indicate the display name better.
Opening "Default" display reads a little nicer compared to Opening
display Default.
This quite literally functions as a basic setter. No other error
checking or anything (since there's nothing to really check against).
With this, it completes the pm:bm interface in terms of functionality.
This appears to be a vestigial API function that's only kept around for
compatibility's sake, given the function only returns a success error
code and exits.
Since that's the case, we can remove the stubbed notification from the
log, since doing nothing is technically the correct behavior in this
case.
std::moveing a local variable in a return statement has the potential to
prevent copy elision from occurring, so this can just be converted into
a regular return.
Looking into the implementation of the C++ standard facilities that seem
to be within all modules, it appears that they use 7 as a break reason
to indicate an uncaught C++ exception.
This was primarily found via the third last function called within
Horizon's equivalent of libcxxabi's demangling_terminate_handler(),
which passes the value 0x80000007 to svcBreak.
According to documentation, if the argument of std::exp is zero, one is returned.
However we want the return value to be also zero in this case so no audio is played.
Commercial games assume that this value is 1 but they never set it. On
the other hand nouveau manually sets this register. On
ConfigureFramebuffers we were asserting for what we are actually
implementing (according to envytools).
With the loading screen merged, we don't want to actually show at this
point, but it still needs to be shown to actually create the context.
Turns out you can just show and hide it immediately and it'll work.
With shader caches on the horizon, one requirement is to provide visible
feedback for the progress. The shader cache reportedly takes several
minutes to load for large caches that were invalidated, and as such we
should provide a loading screen with progress.
Adds a loading screen widget that will be shown until the first frame of
the game is swapped. This was chosen in case shader caches are not being
used, several games still take more than a few seconds to launch and
could benefit from a loading screen.
This is a function that definitely doesn't always have a non-modifying
behavior across all implementations, so this should be made non-const.
This gets rid of the need to mark data members as mutable to work around
the fact mutating data members needs to occur.
There is a bug on Intel's blob driver where it fails to properly build a
vertex array object if it's not bound even after creating it with
glCreateVertexArrays. This workaround binds it after creating it to
bypass the issue.
Since the data is doing the path CPU -> GPU -> GPU copy is the most
approximate hint. Using GL_STREAM_DRAW generated a performance warning
on Nvidia's stack. Changing this hint removed the warning.
These values are not equivalent, based off RE. The internal value is put
into a lookup table with the following values:
[3, 0, 1, 2, 4]
So the values absolutely do not map 1:1 like the comment was indicating.
Avoids entangling the IPC buffer appending with the actual operation of
converting the scaling values over. This also inserts the proper error
handling for invalid scaling values.
This appears to only check if the scaling mode can actually be
handled, rather than actually setting the scaling mode for the layer.
This implements the same error handling performed on the passed in
values.
Within the actual service, it makes no distinguishing between docked and
undocked modes. This will always return the constants values reporting
1280x720 as the dimensions.
This IPC command is simply a stub inside the actual service itself, and
just returns a successful error code regardless of input. This is likely
only retained in the service interface to not break older code that relied
upon it succeeding in some way.
In many cases, we didn't bother to log out any of the popped data
members. This logs them out to the console within the logging call to
provide more contextual information.
Internally within the vi services, this is essentially all that
OpenDefaultDisplay does, so it's trivial to just do the same, and
forward the default display string into the function.
It appears that the two members indicate whether a display has a bounded
number of layers (and if set, the second member indicates the total
number of layers).
This is a bounds check to ensure that the thread priority is within the
valid range of 0-64. If it exceeds 64, that doesn't necessarily mean
that an actual priority of 64 was expected (it actually means whoever
called the function screwed up their math).
Instead clarify the message to indicate the allowed range of thread
priorities.
Now that we handle the kernel capability descriptors we can correct
CreateThread to properly check against the core and priority masks
like the actual kernel does.
When a shader samples a texture array but that texture in OpenGL is
created without layers, use a texture view to increase the texture
hierarchy. For example, instead of binding a GL_TEXTURE_2D bind a
GL_TEXTURE_2D_ARRAY view.
These two macros being used in tandem were used prior to the
introduction of UNIMPLEMENTED and UNIMPLEMENTED_MSG. This provides
equivalent behavior, just with less typing/reading involved.
This makes the naming more closely match its meaning. It's just a
preferred core, not a required default core. This also makes the usages
of this term consistent across the thread and process implementations.
This function isn't a general purpose function that should be exposed to
everything, given it's specific to initializing the main thread for a
Process instance.
Given that, it's a tad bit more sensible to place this within
process.cpp, which keeps it visible only to the code that actually needs
it.
Provides extra information that makes it easier to tell if an executable
being run is using a 36-bit address space or a 39-bit address space.
While we don't support AArch32 executables yet, this also puts in
distinguishing information for the 32-bit address space types as well.
In all cases that these functions are needed, the VMManager can just be
retrieved and used instead of providing the same functions in Process'
interface.
This also makes it a little nicer dependency-wise, since it gets rid of
cases where the VMManager interface was being used, and then switched
over to using the interface for a Process instance. Instead, it makes
all accesses uniform and uses the VMManager instance for all necessary
tasks.
All the basic memory mapping functions did was forward to the Process'
VMManager instance anyways.
This stores a file in the save directory called '.yuzu_save_size' which stores the two save sizes (normal area and journaled area) sequentially as u64s.
Calling tr() from a file-scope array isn't advisable, since it can be
executed before the Qt libraries are even fully initialized, which can
lead to crashes.
Instead, the translatable strings should be annotated, and the tr()
function should be called at the string's usage site.
This allows us to present a much nicer UI to the user over a simple combo box and is made easy with the modular nature of the profile-selection applet frontend.
Using the QtProfileSelectorDialog, this implementation is trivial. This mimics the real switch behavior of asking which user on every game boot, but it is default disabled as that might get inconvenient.
Similar to the service capability flags, however, we currently don't
emulate the GIC, so this currently handles all interrupts as being valid
for the time being.
Handles the priority mask and core mask flags to allow building up the
masks to determine the usable thread priorities and cores for a kernel
process instance.
We've had the old kernel capability parser from Citra, however, this is
unused code and doesn't actually map to how the kernel on the Switch
does it. This introduces the basic functional skeleton for parsing
process capabilities.
If a thread handle is passed to svcGetProcessId, the kernel attempts to
access the process ID via the thread's instance's owning process.
Technically, this function should also be handling the kernel debug
objects as well, however we currently don't handle those kernel objects
yet, so I've left a note via a comment about it to remind myself when
implementing it in the future.
Starts the process ID counter off at 81, which is what the kernel itself
checks against internally when creating processes. It's actually
supposed to panic if the PID is less than 81 for a userland process.
Now it also indicates the name and max session count. This also gives a
name to the unknown bool. This indicates if the created port is supposed
to be using light handles or regular handles internally. This is passed
to the respective svcCreatePort parameter internally.
Allows capturing screenshot at the current internal resolution (native for software renderer), but a setting is available to capture it in other resolutions. The screenshot is saved to a single PNG in the current layout.
Adds the barebones enumeration constants and functions in place to
handle memory attributes, while also essentially leaving the attribute
itself non-functional.
We can hide the direct array from external view and instead provide
functions to retrieve the necessary info. This has the benefit of
completely hiding the makeup of the SinkDetails structure from the rest
of the code.
Given that this makes the array hidden, we can also make the array
constexpr by altering the members slightly. This gets rid of several
static constructor calls related to std::vector and std::function.
Now we don't have heap allocations here that need to occur before the
program can even enter main(). It also has the benefit of saving a
little bit of heap space, but this doesn't matter too much, since the
savings in that regard are pretty tiny.
Services created with the ServiceFramework base class install themselves as HleHandlers with an owning shared_ptr in the ServerPort ServiceFrameworkBase::port member variable, creating a cyclic ownership between ServiceFrameworkBase and the ServerPort, preventing deletion of the service objects.
Fix that by removing the ServiceFrameworkBase::port member because that was only used to detect multiple attempts at installing a port. Instead store a flag if the port was already installed to achieve the same functionality.
In the previous change, the memory writing was moved into the service
function itself, however it still had a problem, in that the entire
MemoryInfo structure wasn't being written out, only the first 32 bytes
of it were being written out. We still need to write out the trailing
two reference count members and zero out the padding bits.
Not doing this can result in wrong behavior in userland code in the following
scenario:
MemoryInfo info; // Put on the stack, not quaranteed to be zeroed out.
svcQueryMemory(&info, ...);
if (info.device_refcount == ...) // Whoops, uninitialized read.
This can also cause the wrong thing to happen if the user code uses
std::memcmp to compare the struct, with another one (questionable, but
allowed), as the padding bits are not guaranteed to be a deterministic
value. Note that the kernel itself also fully zeroes out the structure
before writing it out including the padding bits.
Moves the memory writes directly into QueryProcessMemory instead of
letting the wrapper function do it. It would be inaccurate to allow the
handler to do it because there's cases where memory shouldn't even be
written to. For example, if the given process handle is invalid.
HOWEVER, if the memory writing is within the wrapper, then we have no
control over if these memory writes occur, meaning in an error case, 68
bytes of memory randomly get trashed with zeroes, 64 of those being
written to wherever the memory info address points to, and the remaining
4 being written wherever the page info address points to.
One solution in this case would be to just conditionally check within
the handler itself, but this is kind of smelly, given the handler
shouldn't be performing conditional behavior itself, it's a behavior of
the managed function. In other words, if you remove the handler from the
equation entirely, does the function still retain its proper behavior?
In this case, no.
Now, we don't potentially trash memory from this function if an invalid
query is performed.
This would result in svcSetMemoryAttribute getting the wrong value for
its third parameter. This is currently fine, given the service function
is stubbed, however this will be unstubbed in a future change, so this
needs to change.
The kernel returns a memory info instance with the base address set to
the end of the address space, and the size of said block as
0 - address_space_end, it doesn't set both of said members to zero.
Gets the two structures out of an unrelated header and places them with
the rest of the memory management code.
This also corrects the structures. PageInfo appears to only contain a
32-bit flags member, and the extra padding word in MemoryInfo isn't
necessary.
Amends the MemoryState enum to use the same values like the actual
kernel does. Also provides the necessary operators to operate on them.
This will be necessary in the future for implementing
svcSetMemoryAttribute, as memory block state is checked before applying
the attribute.
The Process object kept itself alive indefinitely because its handle_table
contains a SharedMemory object which owns a reference to the same Process object,
creating a circular ownership scenario.
Break that up by storing only a non-owning pointer in the SharedMemory object.
fmt::format() returns a std::string instance by value, so calling
.c_str() on it here is equivalent to doing:
auto* ptr = std::string{}.c_str();
The data being pointed to isn't guaranteed to actually be valid anymore
after that expression ends. Instead, we can just take the string as is,
and provide the necessary formatting parameters.
Based off RE, the backing code only ever seems to use 0-2 as the range
of values 1 being a generic log enable, with 2 indicating logging should
go to the SD card. These are used as a set of flags internally.
Given we only care about receiving the log in general, we can just
always signify that we want logging in general.
This was causing some games (most notably Pokemon Quest) to softlock due to an event being fired when not supposed to. This also removes a hack wherein we were firing the state changed event when the game retrieves it, which is incorrect.
Amends it with missing values deduced from RE (ProperSystem being from
SwitchBrew for naming)
(SdCardUser wasn't that difficult to discern given it's used alongside
SdCardSystem when creating the save data indexer, based off the usage of
the string "saveDataIxrDbSd" nearby).
Original reason:
As Windows multi-byte character codec is unspecified while we always assume std::string uses UTF-8 in our code base, this can output gibberish when the string contains non-ASCII characters. ::OutputDebugStringW combined with Common::UTF8ToUTF16W is preferred here.
This was only ever public so that code could check whether or not a
handle was valid or not. Instead of exposing the object directly and
allowing external code to potentially mess with the map contents, we
just provide a member function that allows checking whether or not a
handle is valid.
This makes all member variables of the VMManager class private except
for the page table.
These auto-deduce the result based off its arguments, so there's no need
to do that work for the compiler, plus, the function return value itself
already indicates what we're returning.
Similarly, here we can avoid doing unnecessary work twice by retrieving
the file type only once and comparing it against relevant operands,
avoiding potential unnecessary object construction/destruction.
While GetFileType() is indeed a getter function, that doesn't mean it's
a trivial function, given some case require reading from the data or
constructing other objects in the background. Instead, only do necessary
work once.
No implementations actually modify instance state (and it would be
questionable to do that in the first place given the name), so we can
make this a const member function.
Greatly simplifies the current input UI, while still allowing power users to tweak advanced settings. Adds 'input profiles', which are easy autoconfigurations to make getting started easy and fast. Also has a custom option which brings up the current, full UI.
This allows the array to be constexpr. std::function is also allowed to
allocate memory, which makes its constructor non-trivial, we definitely
don't want to have all of these execute at runtime, taking up time
before the application can actually load.
While partially correct, this service call allows the retrieved event to
be null, as it also uses the same handle to check if it was referring to
a Process instance. The previous two changes put the necessary machinery
in place to allow for this, so we can simply call those member functions
here and be done with it.
Process instances can be waited upon for state changes. This is also
utilized by svcResetSignal, which will be modified in an upcoming
change. This simply puts all of the WaitObject related machinery in
place.
svcResetSignal relies on the event instance to have already been
signaled before attempting to reset it. If this isn't the case, then an
error code has to be returned.
In some constexpr functions, msvc is building the LUT at runtime
(pushing each element onto the stack) out of an abundance of caution. Moving the
arrays into be file-scoped constexpr's avoids this and turns the functions into
simple look-ups as intended.
This function simply does a handle table lookup for a writable event
instance identified by the given handle value. If a writable event
cannot be found for the given handle, then an invalid handle error is
returned. If a writable event is found, then it simply signals the
event, as one would expect.
svcCreateEvent operates by creating both a readable and writable event
and then attempts to add both to the current process' handle table.
If adding either of the events to the handle table fails, then the
relevant error from the handle table is returned.
If adding the readable event after the writable event to the table
fails, then the writable event is removed from the handle table and the
relevant error from the handle table is returned.
Note that since we do not currently test resource limits, we don't check
the resource limit table yet.
Two kernel object should absolutely never have the same handle ID type.
This can cause incorrect behavior when it comes to retrieving object
types from the handle table. In this case it allows converting a
WritableEvent into a ReadableEvent and vice-versa, which is undefined
behavior, since the object types are not the same.
This also corrects ClearEvent() to check both kernel types like the
kernel itself does.
Previously, ILibraryAppletAccessor would signal upon creation of any applet, but this is incorrect. A flag inside of the applet code determines whether or not creation should signal state change and swkbd happens to be one of these applets.
Load() is already given the process instance as a parameter, so instead
of coupling the class to the System class, we can just forward that
parameter to LoadNro()
These slots are only ever attached to event handling mechanisms within
the class itself, they're never used externally. Because of this, we can
make the functions private.
This also removes redundant usages of the private access specifier.
The previous code could potentially be a compilation issue waiting to
occur, given we forward declare the type for a std::unique_ptr. If the
complete definition of the forward declared type isn't visible in a
translation unit that the class is used in, then it would fail to
compile.
Defaulting the destructor in a cpp file ensures the std::unique_ptr's
destructor is only invoked where its complete type is known.
The kernel uses the handle table of the current process to retrieve the
process that should be used to retrieve certain information. To someone
not familiar with the kernel, this might raise the question of "Ok,
sounds nice, but doesn't this make it impossible to retrieve information
about the current process?".
No, it doesn't, because HandleTable instances in the kernel have the
notion of a "pseudo-handle", where certain values allow the kernel to
lookup objects outside of a given handle table. Currently, there's only
a pseudo-handle for the current process (0xFFFF8001) and a pseudo-handle
for the current thread (0xFFFF8000), so to retrieve the current process,
one would just pass 0xFFFF8001 into svcGetInfo.
The lookup itself in the handle table would be something like:
template <typename T>
T* Lookup(Handle handle) {
if (handle == PSEUDO_HANDLE_CURRENT_PROCESS) {
return CurrentProcess();
}
if (handle == PSUEDO_HANDLE_CURRENT_THREAD) {
return CurrentThread();
}
return static_cast<T*>(&objects[handle]);
}
which, as is shown, allows accessing the current process or current
thread, even if those two objects aren't actually within the HandleTable
instance.
Our implementation of svcGetInfo was slightly incorrect in that we
weren't doing proper error checking everywhere. Instead, reorganize it
to be similar to how the kernel seems to do it.
We can just return a new instance of this when it's requested. This only
ever holds pointers to the existing registed caches, so it's not a large
object. Plus, this also gets rid of the need to keep around a separate
member function just to properly clear out the union.
Gets rid of one of five globals in the filesystem code.
We don't need to call out to our own file handling functions when we're
going to construct a QFileInfo instance right after it. We also don't
need to convert to a std::string again just to compare the file
extension.
This is the same behavior-wise as DeleteDirectoryRecursively, with the
only difference being that it doesn't delete the top level directory in
the hierarchy, so given:
root_dir/
- some_dir/
- File.txt
- OtherFile.txt
The end result is just:
root_dir/
More hardware accurate. On the actual system, there is a differentiation between the signaler and signalee, they form a client/server relationship much like ServerPort and ClientPort.
- BlitSurface with different texture targets is inherently broken.
- When target is the same, we can just use FastCopySurface.
- Fixes rendering issues with Breath of the Wild.
Prevents compiler warnings related to truncation when invoking the
dialog. It's also extremely suspect to use a u8 value here instead of a
more general type to begin with.
These parameters don't need to utilize a shared lifecycle directly in
the interface. Instead, the caller should provide a regular reference
for the function to use. This also allows the type system to flag
attempts to pass nullptr and makes it more generic, since it can now be
used in contexts where a shared_ptr isn't being used (in other words, we
don't constrain the usage of the interface to a particular mode of
memory management).
While we're at it, organize the array linearly, since clang formats the
array elements quite wide length-wise with the addition of the missing
'u'.
Technically also fixes patch lookup and icon lookup with Portuguese,
though I doubt anyone has actually run into this issue.
On invalidating the streaming buffer, we need to reupload all vertex buffers.
But we don't need to reconfigure the vertex format.
This was a (silly) misstake in #1723.
Thanks at Rodrigo for discovering the issue.
Fun fact, as configuring the vertex format also invalidate the vertex buffer,
this misstake had no affect on the behavior.
The opposite of the getter functions, this function sets the limit value
for a particular ResourceLimit resource category, with the restriction
that the new limit value must be equal to or greater than the current
resource value. If this is violated, then ERR_INVALID_STATE is returned.
e.g.
Assume:
current[Events] = 10;
limit[Events] = 20;
a call to this service function lowering the limit value to 10 would be
fine, however, attempting to lower it to 9 in this case would cause an
invalid state error.
This kernel service function is essentially the exact same as
svcGetResourceLimitLimitValue(), with the only difference being that it
retrieves the current value for a given resource category using the
provided resource limit handle, rather than retrieving the limiting
value of that resource limit instance.
Given these are exactly the same and only differ on returned values, we
can extract the existing code for svcGetResourceLimitLimitValue() to
handle both values.
This kernel service function retrieves the maximum allowable value for
a provided resource category for a given resource limit instance. Given
we already have the functionality added to the resource limit instance
itself, it's sufficient to just hook it up.
The error scenarios for this are:
1. If an invalid resource category type is provided, then ERR_INVALID_ENUM is returned.
2. If an invalid handle is provided, then ERR_INVALID_HANDLE is returned (bad thing goes in, bad thing goes out, as one would expect).
If neither of the above error cases occur, then the out parameter is
provided with the maximum limit value for the given category and success
is returned.
This function simply creates a ResourceLimit instance and attempts to
create a handle for it within the current process' handle table. If the
kernal fails to either create the ResourceLimit instance or create a
handle for the ResourceLimit instance, it returns a failure code
(OUT_OF_RESOURCE, and HANDLE_TABLE_FULL respectively). Finally, it exits
by providing the output parameter with the handle value for the
ResourceLimit instance and returning that it was successful.
Note: We do not return OUT_OF_RESOURCE because, if yuzu runs out of
available memory, then new will currently throw. We *could* allocate the
kernel instance with std::nothrow, however this would be inconsistent
with how all other kernel objects are currently allocated.
Avoids the need to create a copy of the std::string instance
(potentially allocating).
The only reason RegisterService takes its argument by value is because
it's std::moved internally.
Keeps the CPU-specific behavior from being spread throughout the main
System class. This will also act as the home to contain member functions
that perform operations on all cores. The reason for this being that the
following pattern is sort of prevalent throughout sections of the
codebase:
If clearing the instruction cache for all 4 cores is necessary:
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
This is kind of... well, silly to copy around whenever it's needed.
especially when it can be reduced down to a single line.
This change also puts the basics in place to begin "ungrafting" all of the
forwarding member functions from the System class that are used to
access CPU state or invoke CPU-specific behavior. As such, this change
itself makes no changes to the direct external interface of System. This
will be covered by another changeset.
While admirable as a means to ensure immutability, this has the
unfortunate downside of making the class non-movable. std::move cannot
actually perform a move operation if the provided operand has const data
members (std::move acts as an operation to "slide" resources out of an
object instance). Given Barrier contains move-only types such as
std::mutex, this can lead to confusing error messages if an object ever
contained a Barrier instance and said object was attempted to be moved.
This is also unused and superceded by standard functionality. The
standard library provides std::this_thread::sleep_for(), which provides
a much more flexible interface, as different time units can be used with
it.
This is an old function that's no longer necessary. C++11 introduced
proper threading support to the language and a thread ID can be
retrieved via std::this_thread::get_id() if it's ever needed.
This is an analog of BitSet from Dolphin that was introduced to allow
iterating over a set of bits. Given it's currently unused, and given
that std::bitset exists, we can remove this. If it's ever needed in the
future it can be brought back.
Xbyak is currently entirely unused. Rather than carting it along, remove
it and get rid of a dependency. If it's ever needed in the future, then
it can be re-added (and likely be more up to date at that point in
time).
The interface for shared memory was changed, but another commit was
merged that relied on the (previously public) internals of SharedMemory.
This amends that discrepancy.
The decision was made to name them LayeredExeFS instead of just LayeredFS to differentiate from normal RomFS-based mods. The name may be long/unweildy, but conveys the meaning well.
Currently, there's no way to specify if an assertion should
conditionally occur due to unimplemented behavior. This is useful when
something is only partially implemented (e.g. due to ongoing RE work).
In particular, this would be useful within the graphics code.
The rationale behind this is it allows a dev to disable unimplemented
feature assertions (which can occur in an unrelated work area), while
still enabling regular assertions, which act as behavior guards for
conditions or states which must not occur. Previously, the only way a
dev could temporarily disable asserts, was to disable the regular
assertion macros, which has the downside of also disabling, well, the
regular assertions which hold more sanitizing value, as opposed to
unimplemented feature assertions.
Currently, this was only performing a logging call, which doesn't
actually invoke any assertion behavior. This is unlike
UNIMPLEMENTED_MSG, which *does* assert.
This makes the expected behavior uniform across both macros.
This will scan the <mod>/exefs dir for all files and then layer those on top of the game's exefs and use this as the new exefs. This allows for overriding of the compressed NSOs or adding new files. This does use the same dir as IPS/IPSwitch patch, but since the loader will not look for those they are ignored.
<random> isn't necesary directly within the header and can be placed in
the cpp file where its needed. Avoids propagating random generation
utilities via a header file.
Uses Qt's built-in interface instead of rolling our own separate one on
top of it. This also fixes a bug in reject() where we were calling
accept() instead of reject().
Cleans out the citra/3DS-specific implementation details that don't
apply to the Switch. Sets the stage for implementing ResourceLimit
instances properly.
While we're at it, remove the erroneous checks within CreateThread() and
SetThreadPriority(). While these are indeed checked in some capacity,
they are not checked via a ResourceLimit instance.
In the process of moving out Citra-specifics, this also replaces the
system ResourceLimit instance's values with ones from the Switch.
This service function was likely intended to be a way to redirect where
the output of a log went. e.g. Firing a log over a network, dumping over
a tunneling session, etc.
Given we always want to see the log and not change its output. It's one
of the lucky service functions where the easiest implementation is to
just do nothing at all and return success.
Both member functions assume the passed in target process will not be
null. Instead of making this assumption implicit, we can change the
functions to be references and enforce this at the type-system level.
Makes the interface nicer to use in terms of 64-bit code, as it makes it
less likely for one to get truncation warnings (and also makes sense in
the context of the rest of the interface where 64-bit types are used for
sizes and offsets
The separate enum isn't particularly necessary here, and the values can
just be directly put into the ResultCode instances, given the names are
also self-documenting here.
This allows adjusting the finger, diameter, and angle of the emulated touchscreen. It also provides a warning to the user about what changing these parameters can do.
Used by developers to test games, not present on retail systems. Some games are known to respond to DebugPad input though, for example Kirby Star Allies.
* Correctly sets default system language for yuzu-CLI
A user reported that yuzu_cmd runs games in Japanese rather than the correct default of English (like yuzu-qt does correctly), this change fixes that.
* fix clang issue
deleted whitespace
Default implementation will return "yuzu" for any string. GUI clients (or CLI) can implement the Frontend::SoftwareKeyboardApplet class and register an instance to provide functionality.
Similar to PR 1706, which cleans up the error codes for the filesystem
code, but done for the kernel error codes. This removes the ErrCodes
namespace and specifies the errors directly. This also fixes up any
straggling lines of code that weren't using the named error codes where
applicable.
Storing signed type causes the following behaviour: extractValue can do overflow/negative left shift. Now it only relies on two implementation-defined behaviours (which are almost always defined as we want): unsigned->signed conversion and signed right shift
It seems palma is done through bluetooth, we need this for pokemon go however more research needs to be done when we actually get palma working. This is presumably used for transfering data between the controller and the console, it does not seem for actual input as far as I know.
There's no real point to keeping the separate enum around, especially
given the name of the error code itself is supposed to document what the
value actually represents.
empty() in this case will always return false, since the returned
container is a std::array. Instead, check if all given users are invalid
before returning the error code.
The previous expression would copy sizeof(size_t) amount of bytes (8 on
a 64-bit platform) rather than the full 10 bytes comprising the uuid
member.
Given the source and destination types are the same, we can just use an
assignment here instead.
When yuzu is compiled in release mode this function is unused, however,
when compiled in debug mode, it's used within a LOG_TRACE statement.
This prevents erroneous compilation warnings about an unused function
(that isn't actually totally unused).
An old function from Dolphin. This is also unused, and pretty inflexible
when it comes to printing out different data types (for example, one
might not want to print out an array of u8s but a different type
instead. Given we use fmt, there's no need to keep this implementation
of the function around.
This is an unused hold-over from Dolphin that was primarily used to
parse values out of the .ini files. Given we already have libraries that
do this for us, we don't need to keep this around.
Geometry shaders follow a pattern that results in out of bound reads.
This pattern is:
- VSETP to predicate
- Use that predicate to conditionally set a register a big number
- Use the register to access geometry shaders
At the time of writing this commit I don't know what's the intent of
this number. Some drivers argue about these out of bound reads. To avoid
this issue, input reads are guarded limiting reads to the highest
posible vertex input of the current topology (e.g. points to 1 and
triangles to 3).
Rather than have a transparent dependency, we can make it explicit in
the interface. This also gets rid of the need to put the core include in
a header.
* svcBreak now dumps information from the debug buffer passed
info1 and info2 seem to somtimes hold an address to a buffer, this is usually 4 bytes or the size of the int and contains an error code. There's other circumstances where it can be something different so we hexdump these to examine them at a later date.
* Addressed comments
Started implementation of the AM message queue mainly used in state getters. Added the ability to switch docked mode whilst in game without stopping emulation. Also removed some things which shouldn't be labelled as stubs as they're implemented correctly
They were missed, and Copy is very high in profile here. It doesn't block the GPU,
but it stalls the driver thread. So with our bad GL instructions, this might block quite a while.
This was created with the unfinished resampling PR in mind.
As the resampling is now on the audio thread, we don't need to care about this here any more.
Those implementations are quite costly, so there is no need to inline them to the caller.
Ressource deletion is often a performance bug, so in this way, we support to add breakpoints to them.
These are needed by Edizon to boot. They are used to see if a user is using SX OS, as SX OS registers a custom service called 'tx' and attempting to register a service of the same name lets the application know if it is present.
As the add-ons column takes the most processing time out of any (as it needs to search registration for updates/dlc, patch control NCAs, search for mods, etc.), an option was added to disable it. This does not affect the application of add-ons. In large game collections, this decreases game list refresh time by as much as 70%.
Allows resuing a common KeyManager when a large amount of NCAs are handled by the same class. Should the parameter not be provided, a new KeyManager will be constructed, as was the default behavior prior to this.
Previously, we would let a user enter an unbounded name and then
silently truncate away characters that went over the 32-character limit.
This is kind of bad from the UX point of view, because we're essentially
not doing what the user intended in certain scenarios.
Instead, we clamp it to 32 characters and make that visually apparent in
the dialog box to provide a name for a user.
* get rid of boost::optional
* Remove optional references
* Use std::reference_wrapper for optional references
* Fix clang format
* Fix clang format part 2
* Adressed feedback
* Fix clang format and MacOS build
Returns the raw NACP bytes and the raw icon bytes into a title-provided buffer. Pulls from Registration Cache for control data, returning all zeros should it not exist.
When enabled in settings, PatchNSO will dump the unmodified NSO that it was passed to a file named <build id>.nso in the dump root for the current title ID.
Also adds UI option in Debug > Dump section, with the idea later things to be dumped (i.e. other game data or textures, etc) will use the same group box.
An object to read SaveDataInfo objects, which describe a unique save on the system. This implementation iterates through all the directories in the save data space and uses the paths to reconstruct the metadata.
Many of the Current<Thing> getters (as well as a few others) were
missing const qualified variants, which makes it a pain to retrieve
certain things from const qualified references to System.
Avoids the need to put the scaling parameters all over the place for the
common case. The only other time scaling is done is to generate the
smaller 48x48 image, so this is fine.
We already ignore them on listing devices. We should do the same when selecting devices. This fix a crash when opening a specific device while there is a null device in the list
We can just make the function accept an arbitrary ProfileManager
reference and operate on that instead of tying the function to the class
itself. This allows us to keep the function internal to the cpp file and
removes the need to forward declare the UUID struct.
These should be initialized to deterministic values so it's easier to
catch improper behavior, as it'll always be reproducable, instead of
performing uninitialized reads.
These are only used within this class, so we can make them private to
keep their use contained. This also gets rid of the pre-Qt5 'slot'
identifier, since Qt 5's connection syntax doesn't require a function to
be declared a slot anymore.
This is just flat data, so it doesn't really need to be in the function
itself. This also allows deduplicating the constant for the backup size
in GetImageSize().
Now that we've gotten the innaccurate error codes out of the way, we can
finally toss away a bunch of these, trimming down the error codes to
ones that are actually used and knocking out two TODO comments.
All priority checks are supposed to occur before checking the validity
of the thread handle, we're also not supposed to return
ERR_NOT_AUTHORIZED here.
Using fmt here requires unnecessary string conversions back into
QString. Instead, we can just use QString's formatting and get the end
result of the formatting operation in the proper type.
tr() will not function properly on static/global data like this, as the
object is only ever constructed once, so the strings won't translate if
the language is changed without restarting the program, which is
undesirable. Instead we can just turn the map into a plain old function
that maps the values to their equivalent strings. This is also lessens
the memory allocated, since it's only allocating memory for the strings
themselves, and not an encompassing map as well.
We can just use the facilities that Qt provides instead of pulling in
stuff from common. While we're at it, we can also simplify the nearby
logging statement's argument by just calling .toStdString()
This gets rid of an unnecessary type conversion. We can just use the
regular QStringLiteral to already format the string as the type
setWindowTitle accepts instead of converting from a std::string
instance.
We can just call the function instead of duplicating the code here. This
also prevents an unused function warning.
We also don't need to take the lambda capture by reference. It's just a
u64 value, so by value is fine here.
* Fixed conflict with nfp
* Few fixups for nfc
* Conflict 2
* Fixed AttachAvailabilityChangeEvent
* Conflict 3
* Fixed byte padding
* Refactored amiibo to not reside in "System"
* Removed remaining references of nfc from system
* used enum for Nfc GetStateOld
* Added missing newline
* Moved file operations to front end
* Conflict 4
* Amiibos now use structs and added mutexes
* Removed amiibo_path
Everything from here is completely unused and also written with the
notion of supporting 32-bit architecture variants in mind. Given the
Switch itself is on a 64-bit architecture, we won't be supporting 32-bit
architectures. If we need specific allocation functions in the future,
it's likely more worthwhile to new functions for that purpose.
This is more localized to what we want to enforce directory-wise with
the project. CMAKE_SOURCE_DIR indicates the root of the source tree, but
this would cause the wrong behavior if someone included yuzu as part of
a larger buildsystem (for whatever reason). Instead, we want to use the
directory where the "project(yuzu)" command was declared as the root
path reference.
Keeps the definition constrained to the yuzu target and prevents
polluting anything else in the same directory (should that ever happen).
It also keeps it consistent with how the USE_DISCORD_PRESENCE definition
is introduced below it.
Given we link in httplib privately, we can also make the definition
enabling OpenSSL support private as well. Prevents leaking a definition
into other libraries that link with this one, like the core library.
In the kernel, there isn't a singular handle table that everything gets
tossed into or used, rather, each process gets its own handle table that
it uses. This currently isn't an issue for us, since we only execute one
process at the moment, but we may as well get this out of the way so
it's not a headache later on.
These three source files are the only ones within the engines directory
that don't use nested namespaces. We may as well change these over to
keep things consistent.
This should be comparing against the queried process' vma_map, not the
current process'. The only reason this hasn't become an issue yet is we
currently only handle one process being active at any time.
The intention of declaring them in gl_shader_decompiler was to be able
to use blocks to implement geometry shaders. But that wasn't needed in
the end and it caused issues when both vertex stages were being used,
resulting in a redeclaration of "position".
This is a subset of the better-hid-2 changes, this fixes input in various games which don't support dual joycons. This pr will search for the next best controller which is supported by the current game
This event signals the game when new DLC is purchased from the eShop while the game is running. Since, for the forseeable future, yuzu will not have this ability, it seems safe to stub with a dummy event that will never fire. This is needed to boot Sonic Mania Plus (update v1.04).
When writing VFS, it initally seemed useful to include a function to in-place convert container files into directories in one homogenous directory structure, but re-evaluating it now there have been plenty of chances to use it and there has always been a better way. Removing as it is unused and likely will not be used.
Now that the changes clarifying the address spaces has been merged, we
can wrap the checks that the kernel performs when mapping shared memory
(and other forms of memory) into its own helper function and then use
those within MapSharedMemory and UnmapSharedMemory to complete the
sanitizing checks that are supposed to be done.
swap.h only needs to be present in the header for the type aliases and
definitions, it's not actually needed in the cpp files though. input.h
is just unused entirely in xpad.h
These classes are non-trivial and are definitely going to be changed in
the future, so we default these to prevent issues with forward
declarations, and to keep the compiler from inlining tear-down code.
The constructor alone is pretty large, the reading code should be split
into its consistuent parts to make it easier to understand it without
having to build a mental model of a 300+ line function.
The only reason the getter existed was to check whether or not the
program NCA was null. Instead, we can just provide a function to query
for the existence of it, instead of exposing it entirely.
The data retrieved in these cases are ultimately chiefly owned by either
the RegisteredCache instance itself, or the filesystem factories. Both
these should live throughout the use of their contained data. If they
don't, it should be considered an interface/design issue, and using
shared_ptr instances here would mask that, as the data would always be
prolonged after the main owner's lifetime ended.
This makes the lifetime of the data explicit and makes it harder to
accidentally create cyclic references. It also makes the interface
slightly more flexible than the previous API, as a shared_ptr can be
created from a unique_ptr, but not the other way around, so this allows
for that use-case if it ever becomes necessary in some form.
Control Code 0xf means to unconditionally execute the instruction. This
value is passed to most BRA, EXIT and SYNC instructions (among others)
but this may not always be the case.
There's no need for shared ownership here, as the only owning class
instance of those Cpu instances is the System class itself. We can also
make the thread_to_cpu map use regular pointers instead of shared_ptrs,
given that the Cpu instances will always outlive the cases where they're
used with that map.
Like the barrier, this is owned entirely by the System and will always
outlive the encompassing state, so shared ownership semantics aren't
necessary here.
This will always outlive the Cpu instances, since it's destroyed after
we destroy the Cpu instances on shutdown, so there's no need for shared
ownership semantics here.
This function doesn't need to care about ownership semantics, so we can
just pass it a reference to the file itself, rather than a
std::shared_ptr alias.
So, one thing that's puzzled me is why the kernel seemed to *not* use
the direct code address ranges in some cases for some service functions.
For example, in svcMapMemory, the full address space width is compared
against for validity, but for svcMapSharedMemory, it compares against
0xFFE00000, 0xFF8000000, and 0x7FF8000000 as upper bounds, and uses
either 0x200000 or 0x8000000 as the lower-bounds as the beginning of the
compared range. Coincidentally, these exact same values are also used in
svcGetInfo, and also when initializing the user address space, so this
is actually retrieving the ASLR extents, not the extents of the address
space in general.
This should help diagnose crashes easier and prevent many users thinking that a game is still running when in fact it's just an audio thread still running(this is typically not killed when svcBreak is hit since the game expects us to do this)
A fairly basic service function, which only appears to currently support
retrieving the process state. This also alters the ProcessStatus enum to
contain all of the values that a kernel process seems to be able of
reporting with regards to state.
Neither of these functions alter the ownership of the provided pointer,
so we can simply make the parameters a reference rather than a direct
shared pointer alias. This way we also disallow passing incorrect memory values like
nullptr.
We can utilize QStringList's join() function to perform all of the
appending in a single function call.
While we're at it, make the extension list a single translatable string
and add a disambiguation comment to explain to translators what %1
actually is.
Depending on whether or not USE_DISCORD_PRESENCE is defined, the "state"
parameter can be used or unused. If USE_DISCORD_PRESENCE is not defined,
the parameter will be considered unused, which can lead to compiler
warnings. So, we can explicitly mark it with [[maybe_unused]] to inform
the compiler that this is intentional.
We can just reserve the memory then perform successive insertions
instead of needing to use memcpy. This also avoids the need to zero out
the output vector's memory before performing the insertions.
We can also std::move the output std::vector into the destination so
that we don't need to make a completely new copy of the vector, getting
rid of an unnecessary allocation.
Additionally, we can use iterators to determine the beginning and end
ranges of the std::vector instances that comprise the output vector, as
the end of one range just becomes the beginning for the next successive
range, and since std::vector's iterator constructor copies data within
the range [begin, end), this is more straightforward and gets rid of the
need to have an offset variable that keeps getting incremented to
determine where to do the next std::memcpy.
Given it's only used in one spot and has a fairly generic name, we can
just specify it directly in the function call. This also the benefit of
automatically moving it.
Instead, we can make it part of the type and make named variables for
them, so they only require one definition (and if they ever change for
whatever reason, they only need to be changed in one spot).
Given the VirtualFile instance isn't stored into the class as a data
member, or written to, this can just be turned into a const reference,
as the constructor doesn't need to make a copy of it.
If the data is unconditionally being appended to the back of a
std::vector, we can just directly insert it there without the need to
insert all of the elements one-by-one with a std::back_inserter.
Given the filesystem should always be assumed to be volatile, we should
check and bail out if a seek operation isn't successful. This'll prevent
potentially writing/returning garbage data from the function in rare
cases.
This also allows removing a check to see if an offset is within the
bounds of a file before perfoming a seek operation. If a seek is
attempted beyond the end of a file, it will fail, so this essentially
combines two checks into one in one place.
Given the file is opened a few lines above and no operations are done,
other than check if the file is in a valid state, the read/write pointer
will always be at the beginning of the file.
These only exist to ferry data into a Process instance and end up going
out of scope quite early. Because of this, we can just make it a plain
struct for holding things and just std::move it into the relevant
function. There's no need to make this inherit from the kernel's Object
type.
Regular value initialization is adequate here for zeroing out data. It
also has the benefit of not invoking undefined behavior if a non-trivial
type is ever added to the struct for whatever reason.
Now that all external dependencies are hidden, we can remove
json-headers from the publically linked libraries, as the use of this
library is now completely hidden from external users of the web_service
library. We can also make the web_services library private as well,
considering it's not a requirement. If a library needs to link in
web_service, it should be done explicitly -- not via indirect linking.
Like with TelemetryJson, we can make the implementation details private
and avoid the need to expose httplib to external libraries that need to
use the Client class.
Users of the web_service library shouldn't need to care about an
external library like json.h. However, given it's exposed in our
interface, this requires that other libraries publicly link in the JSON
library. We can do better.
By using the PImpl idiom, we can hide this dependency in the cpp file
and remove the need to link that library in altogether.
Taking them by const reference isn't advisable here, because it means
the std::move calls were doing nothing and we were always copying the
std::string instances.
This adds the missing address range checking that the service functions
do before attempting to map or unmap memory. Given that both service
functions perform the same set of checks in the same order, we can wrap
these into a function and just call it from both functions, which
deduplicates a little bit of code.
HandheldVariant is for specific games which expect handheld controllers to be at position 8(kirby), however this doesn't fix all games as some games require handhelds to be at position 0(snipperclips)
There's no real need to use a shared pointer in these cases, and only
makes object management more fragile in terms of how easy it would be to
introduce cycles. Instead, just do the simple thing of using a regular
pointer. Much of this is just a hold-over from citra anyways.
It also doesn't make sense from a behavioral point of view for a
process' thread to prolong the lifetime of the process itself (the
process is supposed to own the thread, not the other way around).
We don't need to potentially heap-allocate a std::string instance here,
given the data is known ahead of time. We can just place it within an
array and pass this to the mbedtls functions.
Neither of these functions require the use of shared ownership of the
returned pointer. This makes it more difficult to create reference
cycles with, and makes the interface more generic, as std::shared_ptr
instances can be created from a std::unique_ptr, but the vice-versa
isn't possible. This also alters relevant functions to take NCA
arguments by const reference rather than a const reference to a
std::shared_ptr. These functions don't alter the ownership of the memory
used by the NCA instance, so we can make the interface more generic by
not assuming anything about the type of smart pointer the NCA is
contained within and make it the caller's responsibility to ensure the
supplied NCA is valid.
change TouchToPixelPos to return std::pair<int, int>
static_cast (SDL)
various minor style and code improvements
style - PascalCase for function names
made touch events private
const pointer arg in touch events
make TouchToPixelPos a const member function
did I do this right?
braces on barely-multiline if
remove question comment (confirmed in Discord)
fixed consts
remove unused parameter from TouchEndEvent
DRY - High-DPI scaled touch put in separate function
also fixes a bug where if you start touching (with either mouse or touchscreen) and drag the mouse to the LEFT of the emulator window, the touch point jumps to the RIGHT side of the touchscreen; draggin to above the window would make it jump to the bottom.
implicit conversion from QPoint to QPointF, apparently
I have no idea what const even means but I'll put it here anyway
remove unused or used-once variables
make touch scaling functions const, and put their implementations together
removed unused FingerID parameters
QTouchEvent forward declaration; add comment to TouchBegin that was lost in an edit
better DRY in SDL
To do -> TODO(NeatNit)
remove unused include
We can just compare the existing std::vector instance with a constexpr
std::array containing the desired match. This is lighter resource-wise,
as we don't need to allocate on the heap.
Adds missing includes to prevent potential compilation issues in the
future. Also moves the definition of a struct into the cpp file, so that
some includes don't need to be introduced within the header.
When loading NROs, svcBreak is called to signal to the debugger that a new "module" is loaded. As no debugger is technically attached we shouldn't be killing the programs execution.
Hardware tests show that trying to unmap an unmapped buffer already should always succeed. Hardware test was tested up to 32 iterations of attempting to unmap
Softlock explanation:
after effects are initialized in smo, nothing actually changes the state. It expects the state to always be initialized. With the previous testing, updating the states much like how we handle the memory pools continue to have the softlock(which is why I said it probably wasn't effects) after further examination it seems like effects need to be initialized but the state remains unchanged until further notice. For now, assertions are added for the aux buffers to see if they update, unable to check as I haven't gotten smo to actually update them yet.
* Added a context menu on the buttons including Clear & Restore Default
* Allow clearing (unsetting) inputs. Added a Clear All button
* Allow restoring a single input to default (instead of all)
This was the result of a typo accidentally introduced in
e51d715700. This restores the previous
correct behavior.
The behavior with the reference was incorrect and would cause some games
to fail to boot.
Conceptually, it doesn't make sense for a thread to be able to persist
the lifetime of a scheduler. A scheduler should be taking care of the
threads; the threads should not be taking care of the scheduler.
If the threads outlive the scheduler (or we simply don't actually
terminate/shutdown the threads), then it should be considered a bug
that we need to fix.
Attributing this to balika011, as they opened #1317 to attempt to fix
this in a similar way, but my refactoring of the kernel code caused
quite a few conflicts.
operator+ for std::string creates an entirely new string, which is kind
of unnecessary here if we just want to append a null terminator to the
existing one.
Reduces the total amount of potential allocations that need to be done
in the logging path.
Specifically bugs/crashes that arise when putting them in positions that are legal but not typical, such as midline, between patch data, or between patch records.
Placing the array wholesale into the header places a copy of the whole
array into every translation unit that uses the data, which is wasteful.
Particularly given that this array is referenced from three different
translation units.
This also changes the array to contain pairs of const char*, rather than
QString instances. This way, the string data is able to be fixed into
the read-only segment of the program, as well as eliminate static
constructors/heap allocation immediately on program start.
Many of the member variables of the thread class aren't even used
outside of the class itself, so there's no need to make those variables
public. This change follows in the steps of the previous changes that
made other kernel types' members private.
The main motivation behind this is that the Thread class will likely
change in the future as emulation becomes more accurate, and letting
random bits of the emulator access data members of the Thread class
directly makes it a pain to shuffle around and/or modify internals.
Having all data members public like this also makes it difficult to
reason about certain bits of behavior without first verifying what parts
of the core actually use them.
Everything being public also generally follows the tendency for changes
to be introduced in completely different translation units that would
otherwise be better introduced as an addition to the Thread class'
public interface.
GetName() returns a std::string by value, not by reference, so after the
std::string_view is constructed, it's not well defined to actually
execute any member functions of std::string_view that attempt to access
the data, as the std::string has already been destroyed. Instead, we can
just use a std::string and erase the last four characters.
When searching for a file extension, it's generally preferable to begin
the search at the end of the string rather than the beginning, as the
whole string isn't going to be walked just to check for something at the
end of it.
If an error occurs when constructing the PartitionFilesystem instance,
the constructor would be exited early, which wouldn't initialize the
extracted data member, making it possible for other code to perform an
uninitialized read by calling the public IsExtractedType() member
function. This prevents that.
Like the other two bits of factored out code, this can also be put
within its own function. We can also modify the code so that it accepts
a const reference to a std::vector of files, this way, we can
deduplicate the file retrieval.
Now the constructor for NSP isn't a combination of multiple behaviors in
one spot. It's nice and separate.
This too, is completely separate behavior from what is in the
constructor, so we can move this to its own isolated function to keep
everything self-contained.
If any of the error paths before the NCA retrieval are taken, it'll
result in program_nca_status being left in an inconsistent state. So we
initialize it by default with a value indicating an error.
In some games (Splatoon 2 and Splatoon 2 Splatfest World Premiere, notably), pass offset=0 and count=2047 into the ListAddOnContent method which should return all DLCs for the current title. The (presumably) intended behavior is to successfully return a empty array but because of a < v. <= in an if statement, a failure error code was returned causing these games to svcBreak. This fixes that if statement.
Keeps the individual behaviors in their own functions, and cleanly
separate. We can also do a little better by converting the relevant IDs
within the core to a QString only once, instead of converting every
string into a std::string.
Disambiguates what the string represents to help translators more easily
understand what it is that they're translating. While we're at it, we
can move the code to its own function, so that we don't need to specify
the same string twice.
First of all they are foundamentally broken. As our convention is that std::string is always UTF-8, these functions assume that the multi-byte character version of TString (std::string) from windows is also in UTF-8, which is almost always wrong. We are not going to build multi-byte character build, and even if we do, this dirty work should be handled by frontend framework early.
We always use unicode internally. Any dirty work of conversion with other codec should be handled by frontend framework (Qt). Further more, ShiftJIS/CP1252 are not special (they are not code set used by 3ds, or any guest/host dependencies we have), so there is no reason to specifically include them
Now that we have all of the rearranging and proper structure sizes in
place, it's fairly trivial to implement svcGetThreadContext(). In the
64-bit case we can more or less just write out the context as is, minus
some minor value sanitizing. In the 32-bit case we'll need to clear out
the registers that wouldn't normally be accessible from a 32-bit
AArch32 exectuable (or process).
This will be necessary for the implementation of svcGetThreadContext(),
as the kernel checks whether or not the process that owns the thread
that has it context being retrieved is a 64-bit or 32-bit process.
If the process is 32-bit, then the upper 15 general-purpose registers
and upper 16 vector registers are cleared to zero (as AArch32 only has
15 GPRs and 16 128-bit vector registers. not 31 general-purpose
registers and 32 128-bit vector registers like AArch64).
Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
Internally within the kernel, it also includes a member variable for the
floating-point status register, and TPIDR, so we should do the same here to match
it.
While we're at it, also fix up the size of the struct and add a static
assertion to ensure it always stays the correct size.
A process should never require being reference counted in this
situation. If the handle to a process is freed before this function is
called, it's definitely a bug with our lifetime management, so we can
put the requirement in place for the API that the process must be a
valid instance.
boost::static_pointer_cast for boost::intrusive_ptr (what SharedPtr is),
takes its parameter by const reference. Given that, it means that this
std::move doesn't actually do anything other than obscure what the
function's actual behavior is, so we can remove this. To clarify, this
would only do something if the parameter was either taking its argument
by value, by non-const ref, or by rvalue-reference.
Add asserts for compute shader dispatching, transform feedback being
enabled and alpha testing. These have in common that they'll probably break
rendering without logging.
The std::vector instances are already initially allocated with all
entries having these values, there's no need to loop through and fill
them with it again when they aren't modified.
auto x = 0;
auto-deduces x to be an int. This is undesirable when working with
unsigned values. It also causes sign conversion warnings. Instead, we
can make it a proper unsigned value with the correct width that the
following expressions operate on.
Ternary operators have a lower precedence than arithmetic operators, so
what was actually occurring here is "return (out + full) ? x : y" which most
definitely isn't intended, given we calculate out recursively above. We
were essentially doing a lot of work for nothing.
This can cause warnings about static constructors, and is also not ideal
performance-wise due to the indirection through std::function. This also
keeps the behavior itself separate from the surrounding code, which can
make it nicer to read, due to the size of the code.
Given these are only added to the class to allow those functions to
access the private constructor, it's a better approach to just make them
static functions in the interface, to make the dependency explicit.
This converts it into a regular constructor parameter. There's no need
to make this a template parameter on the class when it functions
perfectly well as a constructor argument.
This also reduces the amount of code bloat produced by the compiler, as
it doesn't need to generate the same code for multiple different
instantiations of the same class type, but with a different fill value.
The locations of these can actually vary depending on the address space
layout, so we shouldn't be using these when determining where to map
memory or be using them as offsets for calculations. This keeps all the
memory ranges flexible and malleable based off of the virtual memory
manager instance state.
Previously, these were reporting hardcoded values, but given the regions
can change depending on the requested address spaces, these need to
report the values that the memory manager contains.
Rather than hard-code the address range to be 36-bit, we can derive the
parameters from supplied NPDM metadata if the supplied exectuable
supports it. This is the bare minimum necessary for this to be possible.
The following commits will rework the memory code further to adjust to
this.
* Implemented fatal:u properly
fatal:u now is properly implemented with all the ipc cmds. Error reports/Crash reports are also now implemented for fatal:u. Crash reports save to yuzu/logs/crash_reports/
The register dump is currently known as sysmodules send all zeros. If there are any non zero values for the "registers" or the unknown values, let me know!
* Fatal:U fixups
* Made fatal:u execution break more clear
* Fatal fixups
* Stubbed IRS
Currently we have no ideal way of implementing IRS. For the time being we should have the functions stubbed until we come up with a way to emulate IRS properly.
* Added IRS to logging backend
* Forward declared shared memory for irs
Preserves the meaning/type-safetiness of the stream state instead of
making it an opaque u32. This makes it usable for other things outside
of the service HLE context.
* Added glObjectLabels for renderdoc for textures and shader programs
* Changed hardcoded "Texture" name to reflect the texture type instead
* Removed string initialize
This isn't used anywhere within the header, so we can remove it, along
with the include that was previously necessary. This also uncovers an
indirect include in the cpp file for the assertion macros.
This was very likely intended to be a logical OR based off the
conditioning and testing of inversion in one case.
Even if this was intentional, this is the kind of non-obvious thing one
should be clarifying with a comment.
Even though setting this value to 3 is more correct. We break more games than we fix due to missing implementations. We should keep this as 0 for the time being
The owning process of a thread is required to exist before the thread,
so we can enforce this API-wise by using a reference. We can also avoid
the reliance on the system instance by using that parameter to access
the page table that needs to be set.
Qt provides an overload of tr() that operates on quantities in relation
to pluralization. This also allows the translation to adapt based on the
target language rules better.
For example, the previous code would result in an incorrect translation
for the French language (which doesn't use the pluralized version of
"result" in the case of a total of zero. While in English it's
correct to use the pluralized version of "result", that is, "results"
---
For example:
English: "0 results"
French: "0 résultat" (uses the singular form)
In French, the noun being counted is singular if the quantity is 0 or 1.
In English, on the other hand, if the noun being counted has a quantity
of 0 or N > 1, then the noun is pluralized.
---
For another example in a language that has different counting methods
than the above, consider English and Irish. Irish has a special form of
of a grammatical number called a dual. Which alters how a word is
written when N of something is 2. This won't appear in this case with a
direct number "2", but it would change if we ever used "Two" to refer to
two of something. For example:
English: "Zero results"
Irish: "Toradh ar bith"
English: "One result"
Irish: "Toradh amháin"
English: "Two results"
Irish: "Dhá thorthaí" <- Dual case
Which is an important distinction to make between singular and plural,
because in other situations, "two" on its own would be written as "dó"
in Irish. There's also a few other cases where the order the words are
placed *and* whether or not the plural or singular variant of the word
is used *and* whether or not the word is placed after or between a set
of numbers can vary. Counting in Irish also differs depending on whether or not
you're counting things (like above) or counting people, in which case an
entirely different set of numbers are used.
It's not important for this case, but it's provided as an example as to why one
should never assume the placement of values in text will be like that of
English or other languages. Some languages have very different ways to
represent counting, and breaking up the translated string like this
isn't advisable because it makes it extremely difficult to get right
depending on what language a translator is translating text into due to
the ambiguity of the strings being presented for translation.
In this case a translator would see three fragmented strings on
Transifex (and not necessarily grouped beside one another, but even
then, it would still be annoying to decipher):
- "of"
- "result"
- "results"
There is no way a translator is going to know what those sets of words
are actually used for unless they look at the code to see what is being
done with them (which they shouldn't have to do).
Several classes have a lot of non-trivial members within them, or don't
but likely should have the destructor defaulted in the cpp file for
future-proofing/being more friendly to forward declarations.
Leaving the destructor unspecified allows the compiler to inline the
destruction code all over the place, which is generally undesirable from
a code bloat perspective.
This was used in two different translation units
(deconstructed_rom_directory and patch_manager). This means we'd be
pointlessly duplicating the whole array twice due to it being defined
within the header.
These variables aren't used, which still has an impact, as std::vector
cannot be optimized away by the compiler (it's constructor and
destructor are both non-trivial), so this was just wasting memory.
std::shared_ptr isn't strictly necessary here and is only ever used in
contexts where the object doesn't depend on being shared. This also
makes the interface more flexible, as it's possible to create a
std::shared_ptr from a std::unique_ptr (std::shared_ptr has a
constructor that accepts a std::unique_ptr), but not the other way
around.
An instance of the NAX apploader already has an existing NAX instance in
memory. Calling directly into IdentifyType() directly would re-parse the
whole file again into yet another NAX instance, only to toss it away
again.
This gets rid of unnecessary/redundant file parsing and allocations.
AsNCA() allocates an NCA instance every time it's called. In the current
manner it's used, it's quite inefficient as it's making a redundant
allocation.
We can just amend the order of the conditionals to make it easier to
just call it once.
* Reworked incorrect nifm stubs
Need confirmation on `CreateTemporaryNetworkProfile`, unsure which game uses it but according to reversing. It should return a uuid which we currently don't do.
Any 0 client id is considered an invalid client id.
GetRequestState 0 is considered invalid.
* Fixups for nifm
We uploaded the wrong data before. So the offset on the host GPU pointer may work for the first vertices, the last ones run out bounds.
Let's just offset the upload instead.
MSVC 19.11 (A.K.A. VS 15.3)'s C++ standard library implements P0154R1
(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html)
which defines two new constants within the <new> header, std::hardware_destructive_interference_size
and std::hardware_constructive_interference_size.
std::hardware_destructive_interference_size defines the minimum
recommended offset between two concurrently-accessed objects to avoid
performance degradation due to contention introduced by the
implementation (with the lower-bound being at least alignof(max_align_t)).
In other words, the minimum offset between objects necessary to avoid
false-sharing.
std::hardware_constructive_interference_size on the other hand defines
the maximum recommended size of contiguous memory occupied by two
objects accessed wth temporal locality by concurrent threads (also
defined to be at least alignof(max_align_t)). In other words the maximum
size to promote true-sharing.
So we can simply use this facility to determine the ideal alignment
size. Unfortunately, only MSVC supports this right now, so we need to
enclose it within an ifdef for the time being.
* Fix bug where default username value for yuzu_cmd create an userprofile with uninitialize data as username
* Fix format
* Apply code review changes
* Remove nullptr check
This can just be a regular function, getting rid of the need to also
explicitly undef the define at the end of the file. Given FuncReturn()
was already converted into a function, it's #undef can also be removed.
Previously the second half of the value being written would overwrite
the first half. Thankfully this wasn't a bug that was being encountered,
as the function is currently unused.
This modifies the CPU interface to more accurately match an
AArch64-supporting CPU as opposed to an ARM11 one. Two of the methods
don't even make sense to keep around for this interface, as Adv Simd is
used, rather than the VFP in the primary execution state. This is
essentially a modernization change that should have occurred from the
get-go.
The kernel does the equivalent of the following check before proceeding:
if (address + 0x8000000000 < 0x7FFFE00000) {
return ERR_INVALID_MEMORY_STATE;
}
which is essentially what our IsKernelVirtualAddress() function does. So
we should also be checking for this.
The kernel also checks if the given input addresses are 4-byte aligned,
however our Mutex::TryAcquire() and Mutex::Release() functions already
handle this, so we don't need to add code for this case.
Avoids including unnecessary headers within the audio_renderer.h header,
lessening the likelihood of needing to rebuild source files including
this header if they ever change.
Given std::vector allows forward declaring contained types, we can move
VoiceState to the cpp file and hide the implementation entirely.
We pass a hint to the QPainter instance that we want anti-aliasing on
the compatibility icons, which prevents the circles from looking fairly
jagged, and actually makes them look circular.
Courtesy of @ogniK5377.
This also moves them into the cpp file and limits the visibility to
where they're directly used. It also gets rid of unused or duplicate
error codes.
The kernel caps the size limit of shared memory to 8589930496 bytes (or
(1GB - 512 bytes) * 8), so approximately 8GB, where every GB has a 512
byte sector taken off of it.
It also ensures the shared memory is created with either read or
read/write permissions for both permission types passed in, allowing the
remote permissions to also be set as "don't care".
Part of the checking done by the kernel is to check if the given
address and size are 4KB aligned, as well as checking if the size isn't
zero. It also only allows mapping shared memory as readable or
read/write, but nothing else, and so we shouldn't allow mapping as
anything else either.
Previously, these were sitting outside of the Kernel namespace, which
doesn't really make sense, given they're related to the Thread class
which is within the Kernel namespace.
There were a few places where nested namespace specifiers weren't being
used where they could be within the service code. This amends that to
make the namespacing a tiny bit more compact.
While unlikely, it does avoid constructing a std::string and
unnecessarily calling into the memory code if a game or executable
decides to be really silly about their logging.
Given these are shown to the user, they should be translatable.
While we're at it, also set up the dialog to automatically retranslate
the dialog along with the combo boxes if it receives a LanguageChange
event.
Keeps the individual initialization of the combo boxes logically separate.
We also shouldn't be dumping this sort of thing in the constructor
directly.
"value" is already a used variable name within the outermost ranged-for
loop, so this variable was shadowing the outer one. This isn't a bug,
but it will get rid of a -Wshadow warning.
It allows us to use texture views and it reduces the overhead within the GPU driver.
But it disallows us to reallocate the texture, but we don't do so anyways.
In the end, it is the new way to allocate textures, so there is no need to use the old way.
This places the font data within cpp files, which mitigates the
possibility of the font data being duplicated within the binary if it's
referred to in more than one translation unit in the future. It also
stores the data within a std::array, which is more flexible when it
comes to operating with the standard library.
Furthermore, it makes the data arrays const. This is what we want, as it
allows the compiler to store the data within the read-only segment. As
it is, having several large sections of mutable data like this just
leaves spots in memory that we can accidentally write to (via accidental
overruns, what have you) and actually have it work. This ensures the
font data remains the same no matter what.
When a destructor isn't defaulted into a cpp file, it can cause the use
of forward declarations to seemingly fail to compile for non-obvious
reasons. It also allows inlining of the construction/destruction logic
all over the place where a constructor or destructor is invoked, which
can lead to code bloat. This isn't so much a worry here, given the
services won't be created and destroyed frequently.
The cause of the above mentioned non-obvious errors can be demonstrated
as follows:
------- Demonstrative example, if you know how the described error happens, skip forwards -------
Assume we have the following in the header, which we'll call "thing.h":
\#include <memory>
// Forward declaration. For example purposes, assume the definition
// of Object is in some header named "object.h"
class Object;
class Thing {
public:
// assume no constructors or destructors are specified here,
// or the constructors/destructors are defined as:
//
// Thing() = default;
// ~Thing() = default;
//
// ... Some interface member functions would be defined here
private:
std::shared_ptr<Object> obj;
};
If this header is included in a cpp file, (which we'll call "main.cpp"),
this will result in a compilation error, because even though no
destructor is specified, the destructor will still need to be generated by
the compiler because std::shared_ptr's destructor is *not* trivial (in
other words, it does something other than nothing), as std::shared_ptr's
destructor needs to do two things:
1. Decrement the shared reference count of the object being pointed to,
and if the reference count decrements to zero,
2. Free the Object instance's memory (aka deallocate the memory it's
pointing to).
And so the compiler generates the code for the destructor doing this inside main.cpp.
Now, keep in mind, the Object forward declaration is not a complete type. All it
does is tell the compiler "a type named Object exists" and allows us to
use the name in certain situations to avoid a header dependency. So the
compiler needs to generate destruction code for Object, but the compiler
doesn't know *how* to destruct it. A forward declaration doesn't tell
the compiler anything about Object's constructor or destructor. So, the
compiler will issue an error in this case because it's undefined
behavior to try and deallocate (or construct) an incomplete type and
std::shared_ptr and std::unique_ptr make sure this isn't the case
internally.
Now, if we had defaulted the destructor in "thing.cpp", where we also
include "object.h", this would never be an issue, as the destructor
would only have its code generated in one place, and it would be in a
place where the full class definition of Object would be visible to the
compiler.
---------------------- End example ----------------------------
Given these service classes are more than certainly going to change in
the future, this defaults the constructors and destructors into the
relevant cpp files to make the construction and destruction of all of
the services consistent and unlikely to run into cases where forward
declarations are indirectly causing compilation errors. It also has the
plus of avoiding the need to rebuild several services if destruction
logic changes, since it would only be necessary to recompile the single
cpp file.
* Joystick hotplug support (#4141)
* use SDL_PollEvent instead of SDL_JoystickUpdate
Register hot plugged controller by GUID if they were configured in a previous session
* Move SDL_PollEvent into its own thread
* Don't store SDLJoystick pointer in Input Device; Get pointer on each GetStatus call
* Fix that joystick_list gets cleared after SDL_Quit
* Add VirtualJoystick for InputDevices thats never nullptr
* fixup! Add VirtualJoystick for InputDevices thats never nullptr
* fixup! fixup! Add VirtualJoystick for InputDevices thats never nullptr
* Remove SDL_GameController, make SDL_Joystick* unique_ptr
* fixup! Remove SDL_GameController, make SDL_Joystick* unique_ptr
* Adressed feedback; fixed handling of same guid reconnects
* fixup! Adressed feedback; fixed handling of same guid reconnects
* merge the two joystick_lists into one
* make SDLJoystick a member of VirtualJoystick
* fixup! make SDLJoystick a member of VirtualJoystick
* fixup! make SDLJoystick a member of VirtualJoystick
* fixup! fixup! make SDLJoystick a member of VirtualJoystick
* SDLJoystick: Addressed review comments
* Address one missed review comment
This virtual function is called in a very hot spot, and it does nothing.
If this kind of feature is required, please be more specific and add callbacks
in the switch statement within Maxwell3D::WriteReg. There is no point in having
another switch statement within the rasterizer.
Lets us keep the generic portions of the compatibility list code
together, and allows us to introduce a type alias that makes it so we
don't need to type out a very long type declaration anymore, making the
immediate readability of some code better.
- Fixed all warnings, for renderer_opengl items, which were indicating a
possible incorrect behavior from integral promotion rules and types
larger than those in which arithmetic is typically performed.
- Added const for variables where possible and meaningful.
- Added constexpr where possible.
When not set, this tells the GPU to only use the X size when performing a DMA copy.
This is only implemented for linear->linear and tiled->tiled copies. Conversion copies still retain the assert.
This bit is unset by some games for various purposes, and by nouveau when copying the vertex buffers.
* video_core: Arithmetic overflow fix for gl_rasterizer
- Fixed warnings, which were indicating incorrect behavior from integral
promotion rules and types larger than those in which arithmetic is
typically performed.
- Added const for variables where possible and meaningful.
* Changed the casts from C to C++ style
Changed the C-style casts to C++ casts as proposed.
Took also care about signed / unsigned behaviour.
This has gotten sufficiently large enough to warrant moving it to its
own source files. Especially given it dumps the file_sys headers around
code that doesn't use it for the most part.
This'll also make it easier to introduce a type alias for the
compatibility list, so a large unordered_map type declaration doesn't
need to be specified all the time (we don't want to propagate the
game_list_p.h include via the main game_list.h header).
Given we now have the kernel as a class, it doesn't make sense to keep
the current process pointer within the System class, as processes are
related to the kernel.
This also gets rid of a subtle case where memory wouldn't be freed on
core shutdown, as the current_process pointer would never be reset,
causing the pointed to contents to continue to live.
The only reason this include was necessary, was because the constructor
wasn't defaulted in the cpp file and the compiler would inline it
wherever it was used. However, given Controller is forward declared, all
those inlined constructors would see an incomplete type, causing a
compilation failure. So, we just place the constructor in the cpp file,
where it can see the complete type definition, allowing us to remove
this include.
This is called ~3k times per frame in SMO ingame.
My laptop spends ~3ms per frame on allocating and freeing this string.
Let's just stop printing this kind of redundant information.
This patch caches VAO objects instead of re-emiting all pointers per draw call.
Configuring this pointers is known as a fast task, but it yields too many GL
calls. So for better performance, just bind the VAO instead of 16 pointers.
The idea of this cache is to avoid redundant uploads. So we are going
to cache the uploaded buffers within the stream_buffer and just reuse
the old pointers.
The next step is to implement a VBO cache on GPU memory, but for now,
I want to check the overhead of the cache management. Fetching the
buffer over PCI-E should be quite fast.
The std::string generation with its malloc and free requirement
was a noticeable overhead. Also switch to an ordered_map to
avoid the std::hash call. As those maps usually have a size of
two elements, the lookup time shall not matter.
Multi-line doc comments still need the '<' after the ///, otherwise it's
treated as a regular comment and makes the original doc comment broken
in viewers, IDEs, etc. While we're at it, also fix some typos in the
comments.
Eliminates the need to rebuild some source files if the file_util header
ever changes. This also uncovered some indirect inclusions, which have
also been fixed.
Now that we have a class representing the kernel in some capacity, we
now have a place to put the named port map, so we move it over and get
rid of another piece of global state within the core.
This isn't required to be visible to anything outside of the main source
file, and will eliminate needing to rebuild anything else including the
header if the SSL class needs to be changed in the future.
The follow-up to e2457418da, which
replaces most of the includes in the core header with forward declarations.
This makes it so that if any of the headers the core header was
previously including change, then no one will need to rebuild the bulk
of the core, due to core.h being quite a prevalent inclusion.
This should make turnaround for changes much faster for developers.
core.h is kind of a massive header in terms what it includes within
itself. It includes VFS utilities, kernel headers, file_sys header,
ARM-related headers, etc. This means that changing anything in the
headers included by core.h essentially requires you to rebuild almost
all of core.
Instead, we can modify the System class to use the PImpl idiom, which
allows us to move all of those headers to the cpp file and forward
declare the bulk of the types that would otherwise be included, reducing
compile times. This change specifically only performs the PImpl portion.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
Given std::vector is a type with a non-trivial destructor, this
variable cannot be optimized away by the compiler, even if unused.
Because of that, something that was intended to be fairly lightweight,
was actually allocating 32KB and deallocating it at the end of the
function.
Makes the class interface consistent and provides accessors for
obtaining a reference to the memory manager instance.
Given we also return references, this makes our more flimsy uses of
const apparent, given const doesn't propagate through pointers in the
way one would typically expect. This makes our mutable state more
apparent in some places.
Many containers within the standard library provide different behaviors
based on whether or not a move constructor/assignment operator can be
guaranteed not to throw or not.
Notably, implementations will generally use std::move_if_noexcept (or an
internal implementation of it) to provide strong exception guarantees.
If a move constructor potentially throws (in other words, is not
noexcept), then certain behaviors will create copies, rather than moving
the values.
For example, consider std::vector. When a std::vector calls resize(),
there are two ways the elements can be relocated to the new block of
memory (if a reallocation happens), by copy, or by moving the existing
elements into the new block of memory. If a type does not have a
guarantee that it will not throw in the move constructor, a copy will
happen. However, if it can be guaranteed that the move constructor won't
throw, then the elements will be moved.
This just allows ResultVal to be moved instead of copied all the time if
ever used in conjunction with containers for whatever reason.
Rightnow, in games use GetAvailableLanguageCodes(), there is a WriteBuffer() with size larger than the buffer_size. (Core Critical core\hle\kernel\hle_ipc.cpp:WriteBuffer:296: size (0000000000000088) is greater than buffer_size (0000000000000078))
0x88 = 17(languages) * 8
0x78 = 15(languages) * 8
GetAvailableLanguageCodes() can only support 15 languages.
After firmware 4.0.0 there are 17 supported language instead of 15, to enable this GetAvailableLanguageCodes2() need to be used.
So GetAvailableLanguageCodes() will be caped at 15 languages.
Reference:
http://switchbrew.org/index.php/Settings_services
We can make this error code an alias of the resource limit exceeded
error code, allowing us to get rid of the lingering 3DS error code of
the same type.
We already have the variable itself set up to perform this task, so we
can just return its value from the currently executing process instead
of always stubbing it to zero.
This is needed because the title IDs of update NCAs will not use the update title ID. The only sure way to tell is to look for a partition with BKTR crypto.
By having the following TTF files in your yuzu sysdata directory. You can load sharedfonts via TTF files.
FontStandard.ttf
FontChineseSimplified.ttf
FontExtendedChineseSimplified.ttf
FontChineseTraditional.ttf
FontKorean.ttf
FontNintendoExtended.ttf
FontNintendoExtended2.ttf
While convenient as a std::array, it's also quite a large set of data as
well (32KB). It being an array also means data cannot be std::moved. Any
situation where the code is being set or relocated means that a full
copy of that 32KB data must be done.
If we use a std::vector we do need to allocate on the heap, however, it
does allow us to std::move the data we have within the std::vector into
another std::vector instance, eliminating the need to always copy the
program data (as std::move in this case would just transfer the pointers
and bare necessities over to the new vector instance).
Namespaces all OpenGL code under the OpenGL namespace.
Prevents polluting the global namespace and allows clear distinction
between other renderers' code in the future.
* Added bfttf loading
We can now load system bfttf fonts from system archives AND shared memory dumps. This allows people who have installed their system nand dumps to yuzu to automatically get shared font support. We also now don't hard code the offsets or the sizes of the shared fonts and it's all calculated for us now.
* Addressed plu fixups
* Style changes for plu
* Fixed logic error for plu and added more error checks.
The previous form of initializing done here is a C-ism, an empty set of
braces is sufficient for initializing (and doesn't potentially cause
missing brace warnings, given the first member of the struct is a COORD
struct).
Gets rid of the potential for C array-to-pointer decay, and also makes
pointer arithmetic to get the end of the copy range unnecessary. We can
just use std::array's begin() and end() member functions.
25us is far too small, and would result in std::this_thread::sleep_for
being called with this as a maximum value. This means that a guest
application that produces frames instantly would only be limited to
40 kHz.
25ms is a more appropriate value, as it allows for a 60 Hz refresh
rate while providing enough slack in the negative region.
LOG_TRACE is only enabled on debug builds which can be quite slow when
trying to debug graphics issues. Instead we can log the messages to the
debug log, which is available on both release and debug builds.
Avoids the need to rebuild multiple source files if the filesystem code
headers change.
This also gets rid of a few instances of indirect inclusions being
relied upon
Avoids the need to rebuild whatever includes the romfs factory header if
the loader header ever changes. We also don't need to include the main
core header. We can instead include the headers we specifically need.
Given these functions aren't intended to be used frequently, there's no
need to keep the std::string instances allocated for the whole lifetime
of the program. It's just a waste of memory.
We have an overload of WriteBuffer that accepts containers that satisfy
the ContiguousContainer concept, which std::array does, so we only need
to pass in the array itself.
ProfileInfo is quite a large struct in terms of data, and we don't need
to perform a copy in these instances, so we can just pass constant
references instead.
We can use the constructor initializer list and just compare the
contained u128's together instead of comparing each element
individually. Ditto for comparing against an invalid UUID.
This is an OpenGL renderer-specific data type. Given that, this type
shouldn't be used within the base interface for the rasterizer. Instead,
we can pass this information to the rasterizer via reference.
Given we use a base-class type within the renderer for the rasterizer
(RasterizerInterface), we want to allow renderers to perform more
complex initialization if they need to do such a thing. This makes it
important to reserve type information.
Given the OpenGL renderer is quite simple settings-wise, this is just a
simple shuffling of the initialization code. For something like Vulkan
however this might involve doing something like:
// Initialize and call rasterizer-specific function that requires
// the full type of the instance created.
auto raster = std::make_unique<VulkanRasterizer>(some, params);
raster->CallSomeVulkanRasterizerSpecificFunction();
// Assign to base class variable
rasterizer = std::move(raster)
We were only writing to the first render target before.
Note that this is only the GLSL side of the implementation, supporting multiple render targets requires more changes in the OpenGL renderer.
Dual Source blending is not implemented and stuff that uses it might not work at all.
Moving a const reference isn't possible, so this just results in a copy
(and given ProfileInfo is composed of trivial types and aggregates, a
move wouldn't really do anything).
Before each draw call, for every enabled vertex array configured as instanced, we take the current instance id and divide it by its configured divisor, then we multiply that by the corresponding stride and increment the start address by the resulting amount. This way we can simulate the vertex array being incremented once per instance without actually using OpenGL's instancing functions.
The mode can be used to set the predicate to true depending on the result of the logic operation. In some cases, this means discarding the result (writing it to register 0xFF (Zero)).
This is used by Super Mario Odyssey.
The SSY instruction pushes an address into the stack, and the SYNC instruction pops it. The current stack depth is 20, we should figure out if this is enough or not.
Prevents potentially making copies or doing silly things by accident
with the System instance, particularly given our current core is
designed (unfortunately) around one instantiable instance.
This will prevent the accidental case of:
auto instance = System::Instance();
being compiled without warning when it's supposed to be:
auto& instance = System::Instance();
550d662 load_store_exclusive: Define s == t state to be Constraint_NONE
0b69381 A64/translate: Allow for unpredictable behaviour to be defined
6d236d4 system: Implement MRS CNTFRQ_EL0
6cbb6fb A32/testenv: Add missing headers
6729328 externals: Update xbyak to v5.67
1812bd2 Squashed 'externals/xbyak/' changes from 2794cde7..671fc805
9a95802 externals: Document subtrees
714a840 A64: Implement SQ{ADD, SUB}, and UQ{ADD, SUB}'s vector variants
8cab459 A64: Implement UQADD/UQSUB's scalar variants
18a8151 ir: Add opcodes for unsigned saturating add and subtract
a5660ee x64/reg_alloc: Use type alias for array returned by GetArgumentInfo()
29489b5 ir/value: Use type alias CoprocessorInfo for std::array<u8, 8>
e23ba26 status_register_access: Add support for bits 0 and 1 of mask to MSR
55190bd fuzz_with_unicorn: Split utility functions into fuzz_util
23b049d A32/translate/load_store: Correct detection of writeback
7ec9f15 A32/translate: Add TranslateSingleInstruction
efeecb4 A32/ir_emitter: Bug fix: IREmitter::ExceptionRaised using incorrect opcode
08d1d19 A32/decoders: Split instruction list into include file
2d929cc tests: Refactor unicorn_emu to allow for A32 unicorn
f672368 microinstruction: Improve assert messages
7ebff50 emit_x64_vector: EmitVectorNarrow16: AVX512 implementation
edce230 emit_x64_vector: EmitVectorNarrow32: prefer pblendw to loading constant
Allows querying the inverse of IsDomain() to make things more readable.
This will likely also be usable in the event of implementing
ConvertDomainToSession().
We can make the enum class type compatible with fmt by providing an
overload of operator<<.
While we're at it, perform proper bounds checking. If something exceeds
the array, it should be a hard fail, because it's, without a doubt, a
programmer error in this case.
Many of these aren't necessary and will cause this file to be required
to be recompiled whenever any changes to those files are made, which
lengthens compile times for no reason.
This also removes an unused metadata variable from AppLoader_XCI
Using LOG_TRACE here isn't a good idea because LOG_TRACE is only enabled
when yuzu is compiled in debug mode. Debug mode is also quite slow, and
so we're potentially throwing away logging messages that can provide
value when trying to boot games.
The thread field serves to indicate which thread a log is related to and
provides the length of the thread's name, so we can print that out,
ditto for modules.
Now we can know what threads are potentially spawning off logging
messages (for example Lydie & Suelle bounces between MainThread and
LoadingThread when initializing the game).
We keep track of the current instance and update an uniform in the shaders to let them know which instance they are.
Instanced vertex arrays are not yet implemented.
Previously core itself was the library containing the code to gather
common information (build info, CPU info, and OS info), however all of
this isn't core-dependent and can be moved to the common code and use
the common interfaces. We can then just call those functions from the
core instead.
This will allow replacing our CPU detection with Xbyak's which has
better detection facilities than ours. It also keeps more
architecture-dependent code in common instead of core.
These currently aren't used and contain commented out source code that
corresponds to Dolphin's JIT. Given our CPU code is organized quite
differently, we shouldn't be keeping this around (at the moment it just
adds to compile times marginally).
The filter is returned via const reference, so this was making a
pointless copy of the entire filter every time a message was being
pushed into the logger instance.
Despite being covered by a global mutex, we should still ensure that the
class handles its reference counts properly. This avoids potential
shenanigans when it comes to data races.
Given this is the root object that drives quite a bit of the kernel
object hierarchy, ensuring we always have the correct behavior (and no
races) is a good thing.
We divide the number of ticks to add by the number of cores (4) to obtain a more or less rough estimate of the actual number of ticks added. This assumes that all 4 cores are doing similar work. Previously we were adding ~4 times the number of ticks, thus making the games think that time was going way too fast.
This lets us bypass certain hangs in some games like Breath of the Wild.
We should modify our CoreTiming to support multiple cores (both running in a single thread, and in multiple host threads).
The current core may have nothing to do with the core where the new thread was scheduled to run. In case it's the same core, then the following PrepareReshedule call will take care of that.
WakeAfterDelay might be called from any host thread, so err on the side of caution and use the thread-safe CoreTiming::ScheduleEventThreadsafe.
Note that CoreTiming is still far from thread-safe, there may be more things we have to work on for it to be up to par with what we want.
Exit from AddMutexWaiter early if the thread is already waiting for a mutex owned by the owner thread.
This accounts for the possibility of a thread that is waiting on a condition variable being awakened twice in a row.
Also added more validation asserts.
This should fix one of the random crashes in Breath Of The Wild.
struct should be used when the data type is very simple or otherwise has
no invariants associated with it. Given these are used to form a
hierarchy, class should be used instead.
As we're not handling any anything about the revision data for GetAudioDeviceServiceWithRevisionInfo, it's currently marked as stubbed. However for games this shouldn't affect the result. Proper revision info would be more for homebrew.
Previously these were being unused (or partially unused). While we're at
it, use better naming to make it visibly obvious which variant of the
path is being used.
GetAudioRendererSampleRate is set as a "STUB" as a game could check if the sample rate it sent and the sample rate it wants don't match. Just a thought of something which could happen so keeping it as stub for the mean time